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New Results for the Shannon Channel Capacity in
Generalized Fading Channels
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Abstract— Novel, closed-form expressions for the average
Shannon capacity of single-branch receivers, operating over
generalized fading channels (Nakagami-m, Rice and Weibull),
are derived. As an application, the optimum switching threshold
for maximizing the data transmission rate of switched and stay
combining receivers is obtained and several numerical results are
presented.

Index Terms— Shannon channel capacity, generalized fading
channels, switched diversity, switching threshold.

I. INTRODUCTION

THE growing demand on wireless multimedia services and
products leads to increasing needs for radio channel spec-

trum and information data rates. Therefore, channel capacity
is an important performance metric of primary concern in the
design of future digital telecommunications systems. Shannon
channel capacity provides an upper bound of maximum trans-
mission rate in a given Gaussian environment [1-3].

Diversity is an effective and widely used technique for miti-
gating the effects of multipath fading. Among the well-known
diversity techniques, switched and stay combining (SSC)
requires reduced complexity, avoiding the need for knowledge
of the channel’s state information for all the diversity branches
and the need of a dedicated receiver for each one of them [4].
In a dual-branch SSC receiver, if the instantaneous signal-
to-noise ratio (SNR) of the first branch falls below a prede-
fined switching threshold, the second branch is immediately
selected, regardless of whether or not the SNR of that branch
is above or below the predetermined threshold. Previously
published works concerning the performance of SSC receivers
are included in [5-11]. In most of these papers the optimum
switching threshold for maximum average output SNR or / and
error rate performance has been studied. However, the needs
for higher data rates requires the maximization of the channel’s
capacity for given bandwidth and transmission power.

In this letter, we present novel closed-form and analyt-
ical expressions (in terms of Meijer’s G-function [12, eq.
(9.301)]) for the average Shannon channel capacity for single-
branch receivers operating in Nakagami/Rayleigh, Rice and
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Weibull fading environments with arbitrary values for the
fading severity parameters. As an application, the derived
expressions are used to evaluate the Shannon capacity of
SSC receivers. Moreover, the optimum common switching
threshold for maximum capacity is obtained in a useful closed-
form. Finally, several numerical results are presented to outline
the effect of the fading severity on the maximum achieved data
rate.

II. CAPACITY OF SINGLE-BRANCH RECEIVERS

Considering a signal’s transmission of bandwidth BW
over the additive white Gaussian noise (AWGN) channel,
the Shannon capacity is defined as Cγ

�
= BW log2(1 + γ),

where γ is received SNR. When the same signal is transmitted
over a fading channel, the capacity can be considered as
a random variable. The average channel capacity can be
obtained averaging Cγ over the probability density function
(pdf) of γ, pγ (·) [1], i.e.,

Cγ
�
= BW

∫ ∞

0

log2(1 + γ) pγ(γ) dγ. (1)

Next, using well-known expressions for the pγ(·), the av-
erage capacity is obtained in closed-forms for the Nak-
agami/Rayleigh, Rice and Weibull fading channel models.

A. Nakagami Fading

In Nakagami-m fading, the pdf and the cumulative density
function (cdf) of the received SNR, are [4, Table 9.5]

pγ (γ) =
1

Γ(m)

(
m

γ

)m

γm−1 e−m γ
γ (2)

and Pγ (γ) = 1−Γ (m,mγ/γ) /Γ(m), respectively, where γ
is the corresponding average SNR per, Γ (·, ·) is the incomplete
Gamma function [12, eq. (8.350/2)], Γ (·) is the Gamma
function [12 eq. (8.310/1)] (Γ (·, 0) = Γ (·)) and m is the
fading severity parameter which ranges from 0.5 to ∞. Note,
that for m = 1, (2) reduces to the pdf (exponential) of the
well-known Rayleigh fading channel. By replacing (2) into
(1), an integral of the form

∫ ∞
0

γm−1 ln(1 + γ) e−m γ/γ dγ,
appears. This kind of integral has been solved when m is an
integer [3]. To the best of the authors’ knowledge, this integral
can not be analytically solved for arbitrary values of m, using
tables included in classical reference books, such as in [12].
However, this type of integral can be efficiently expressed in
closed-form using [13], for arbitrary values of m, as follows.
By expressing the logarithmic and exponential integrands as
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Meijer’s G-functions, i.e., ln(1 + γ) = G1,2
2,2

[
γ| 1,1

1,0

]
and

e−m γ/γ = G1,0
0,1 [mγ/γ|−0 ] [13, eq. (11)] and using [13, eq.

(21)], the average channel capacity can be obtained in a simple
closed-form as

Cγ =
BW

ln(2)
1

Γ(m)

(
m

γ

)m

G3,1
2,3

[
m

γ

∣∣∣∣ −m , 1−m

0 , −m , −m

]
. (3)

Note, that using [14, /07.34.03.0987.01], G3,1
2,3 [·] can be written

in terms of the more familiar generalized hypergeometric
function 2F2 (·, ·; ·, ·; ·) [12, eq. (9.14/1)]. Moreover, for m =
1, using [14, /06.35.26.0001.01], (3) reduces to the average
capacity of the well-known Rayleigh model [1, eq. (5)].

B. Rice Fading

In Rice fading, the pdf and the cdf of the received SNR,
are [4, Table 9.5]

pγ(γ) =
1
γ

(1 + K) e−K e−γ (1+K)/γ I0

[√
4K(1 + K)

γ

γ

]
(4)

and Pγ (γ) = 1 − Q1

[√
2K,

√
2(1 + K)γ/γ

]
, respectively,

where γ is the corresponding average SNR, Q1 (·) is the first
order Marcum Q-function [4, eq. (4.10)], I0(·) is the zeroth
order modified Bessel function of the first kind [12, ch. (8.40)]
and K is the Rician factor. Using (1), (4) and an infinite series
representation for I0 (·) [12, eq. (8.447/1)], an integral of the
same type as that in Nakagami-m fading case appears. Solving
this integral, following the same method as in Section II-A,
the Rice average channel capacity can be obtained as

Cγ =
BW

ln(2)
(1 + K) e−K

γ

∞∑
n=0

1
(n!)2

[
K(1 + K)

γ

]n

× G3,1
2,3

[
K + 1

γ

∣∣∣∣ −1−n , −n

0 , −1−n , −1−n

]
.

(5)

C. Weibull Fading

The Weibull distribution is a flexible model which ex-
hibits an excellent fit to experimental fading channel mea-
surements, for indoor and outdoor environments [15]. The
pdf and the cdf of the received SNR, are [11] pγ (γ) =
β [γ/ (a γ)]β/2−1

e−[γ/(a γ)]β/2
/ (2a γ) and Pγ (γ) = 1 −

e−[γ/(a γ)]β/2
, respectively, where γ is the corresponding aver-

age SNR, a = 1/Γ(1 + 2/β) and β > 0 is the Weibull fading
severity parameter. The average channel capacity is [16]

Cγ =
BW

ln(2)
β

2 (a γ)
β
2

√
k l−1

(2π)
k+2l−3

2

× G k+2l,l
2l,k+2l

[
(a γ)−

βk
2

kk

∣∣∣∣∣ Υ(l,− β
2 ) , Υ(l,1− β

2 )
Υ(k,0) , Υ(l,− β

2 ) , Υ(l,− β
2 )

] (6)

where Υ (n, ξ)
�
= ξ/n, (ξ + 1)/n, . . . , (ξ + n − 1)/n, with

ξ an arbitrary real value and n positive integer. Moreover,
l/k = β/2, where k and l are positive integers. Depending
upon the value of β, a set with minimum values of k and l
can be properly chosen.

Fig. 1. Normalized average channel capacity of SSC versus average SNR
in Nakagami-m fading at optimum common switching threshold.

III. CAPACITY OF DUAL-BRANCH SSC RECEIVERS

We consider a dual-branch SSC receiver with common
switching threshold γτ operating in a flat fading environment.
Here, it is convenient to replace γ with γ� , � = 1 and 2, in the
pdfs and cdfs of the aforementioned fading channel models,
i.e., denoting them as pγ�

(·) and Pγ�
(·), respectively, as well

as the fading severity parameter of each model m, K and
β, with m� , K� and β� , respectively. The pdf of the SSC
instantaneous output SNR γssc is [4, eq. (9.272)]

pγssc
(γssc) =

⎧⎪⎪⎨
⎪⎪⎩

P1P2
P1+P2

[pγ1(γssc) + pγ2(γssc)] , γssc ≤ γτ

(1+P1)P2
P1+P2

pγ1(γssc)

+ (1+P2)P1
P1+P2

pγ2(γssc) , γssc > γτ

(7)
where P� = Pγ�

(γ� = γτ ). Using (1) and (7), the average
channel capacity at the output of the SSC can be expressed as

Cγssc
=

(1 + P2) P1

P1 + P2
Cγ1 +

(1 + P1) P2

P1 + P2
Cγ2

− BW P2

P1 + P2

∫ γτ

0

log2(1 + γ)pγ1(γ)dγ

− BW P1

P1 + P2

∫ γτ

0

log2(1 + γ)pγ2(γ)dγ.

(8)

The above equation includes finite integrals, which can be
easily evaluated via numerical integration. Using (3), (5) and
(6) and the corresponding expressions for the pdfs, the average
channel capacity of SSC can be expressed in closed-form
for Nakagami/Rayleigh, Rice and Weibull fading, respectively.
For independent and identically distributed (i.i.d.) input branch
SNRs, (8) reduces to

Cγssc
= (1 + P )Cγ − BW

∫ γτ

0

log2(1 + γ)pγ(γ)dγ (9)

where γ = γ� , P = P�, pγ�
(·) = pγ (·) and for Nak-

agami m = m� , Rice K = K� and Weibull β = β�.
In this case, the common optimum switching threshold γ∗

τ

for maximum average channel capacity can be obtained as
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Fig. 2. Normalized average channel capacity of SSC versus common
switching threshold in Weibull fading for γ = 10 dB.

Fig. 3. Optimum common switching threshold of SSC versus average SNR
in Rice fading.

∂Cγssc
/∂γτ

∣∣
γ∗

τ =γτ
= 0, where after some straightforward

mathematical manipulations, yields

γ∗
τ = 2Cγ/BW − 1. (10)

For the non-identically distributed case, the optimum
switching threshold for maximum average channel capacity
can be derived using numerical methods, available in most
of the well-known mathematical software packages, such as
Mathematica and Maple.

IV. NUMERICAL RESULTS

Using (9), in Fig. 1, the normalized to BW average channel
capacity (spectral efficiency) of SSC, operating at the optimum

switching threshold, is plotted as a function of the average
SNR in Nakagami-m fading with i.i.d. input branches and
for several values of m. As it was expected, Cγssc

improves

with an increase of m. In Fig. 2, the normalized to BW
average channel capacity of SSC is plotted as a function of
the switching threshold in Weibull fading with i.i.d. input
branches for several values of β and for γ = 10 dB. As
shown, Cγssc

also improves with an increase of β and a
maximum value of Cγssc

is observed, related to (10), which
is more obvious as the severity of fading increases (e.g. β
decreases). In both Figs. 1 and 2 and for a given value of
γ, the relative capacity advantage is more pronounced in a
poorer channel condition. In Fig. 3, using (10), the optimum
common switching threshold is plotted as a function of the
average SNR in Rice fading with i.i.d. input branches for
several values of K. It is evident that as γ increases, γ∗

τ also
increases. In the same figure, the common switching threshold
is also plotted for comparison reasons for the AWGN channel
(γτ = γ), representing its upper bound.
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