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Abstract

A short comparison between the dif-
ferent state-space models 1s presented. We discuss
proper definitions of state, controllability and

Q chservabilicy and their relation to minimality of

2-D systems. We also present new circuit realiza-
tions a2nd 2-D digital filter hardware implementa-

ticas of 2-D transfer functions, as well as a 2-D

generalization of Levinson's algoritha.

1. Introduction

Attasl, Fornasini-Marchesini, Givone-Roesser
have proposed different state-space models For 2-D
systems and have suggested some extensions of the
usual 1-D notions of controllability, observability
and winimality to the 2-D case, However, these re-
sults are not quite satisfactory; they eilther lack
motivation for the state-space models introduced or
the notion of state-space i1s improperly definecd.

In this paper and 1% [18], we tried to provide
answers to thes2 questlons from a practical as well
as aigebralc standpoint. We start with a discussion
of all the current models based cn a practical (cir-
cuit-orfented) poiat of view and on a proper defi-
niticn of state. Since the other models can be
imbedded in the Givonc-Roesser model, it appears to
be the most satisfactory one.

From the circuit point of view, we present in
Section 3 an implementation of 2-D transfer func-
tions using two types of dynamic elements = hori-
zontal delay elements z-l and vertical delay ele-
rents w~l. The hardware implementation of 2-D digi-
tal filters for imaging systems is also discussed
in Section 3.

An algebralc approach based on eigencurves and
eigencones enables us in Section 5 to introduce the
concept of modal controllability (observability).
we show that a system is minimal 1f and only 1f it

Eis =modally observable and controllable.

This work was supported by the Advanced Re-
search Projects Agaency through the facilitles at
the Stanford Artiffcial Intelligence Laboratory in
part by the lational fecience Foundation under Con-

o tract NSP-Enp75-18952 and in part by the Alr Force

Office of Scilentific Research, AF Systems Commond,
uader Contract AF &54-620-69-0C-0101 and partially by
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If we are given an irreducible transfer func-
tion of order (n,m), a state-space realization is
minimal 1if and only 1f it is of size n + n. The
existence of such (n + m) (real or complex) state

realizations is discussed in Section 6, vhere
we provide a simple counter excmple 2 a rea

.madel. In the Appendix we give a 2-D gensralizatica

of Levinson's algorithm. In conclusion, it
appears that the results obtained by the algebraic
and the practical approaches are quite compatible.

2. State-Space Models for 2-D Systems

During recent years, several authors: Attasi
[1]), [2], Fornasini-Marchesini [3], [4] and Givene-
Roesser |5] have propused dlfferent state-space
modals for 2-D systems. In [4]. Fornasini and
Marchesini were using the algebralc peoint of view
of Nerode equivalence and were the first to rezl-
ize that a major difference between 1-D and 2-D
systems 1s that we can Introduce a glecbal state
and a local state in the 2-D case. The glicbal
state (which is of infinite dimension in general)
prescrves all the past information while the local
state gives us the size of the recursioas to ke
performed at each step by the 2-D filter. However,
their state does not obey a first-order differencs
equation (the notion of first order differcnce
equation for linear systems on partially ordered
sets has been defined by Mullans and Elliott in
[7]). Attasi's model [1], [2] suffers from the
same drawback.

Givone and Roesser "in [8] and [5] have used a
"eircuit approach" to the problem of state space
realizatlion for some 2-D transfer functicns. They
present a model in which the local state is di-
vided into an horizontal and a vertical state
which are propagated respectively horizeontally and
vertically by first order difference equations.

Mitra, Sagar and Pendcrg;ass gave a realiza-
tion for arbitrary transfer functions in [9] by
presenting an Implementation method for 2-D trans-,
fer functions using scme delay clemeats z=1 and w~i,
via an approach that is consistent with Roesser's
model. A detailed comparison can be found in [1B8],
Part II.

3. Circult Realizations and Pardware Designs
First, we can note that the notion of "dynazie
clements’, "multipliers" and "adders" is at the

center of clrcuit theory. 1In the l-D discreote-time
case, the dynanic eclements used arte (time) delay
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elcments. The 1-D realization problems have been Figure 3. 2: 2-D Controller Form Realization

well studied and, given any transfer function, it ‘y

is well kxnown that the realization can be readily £ == 7 _7:-

found in certain standard (e.g. controller canoni- buo by b, b

cal) forms [11]. For the recalization of a 2-D . g i (.o"'

transfer function, a major differrnce 1is that two

3 . types of dynamic elements are necded - “horizontal -

delay element" (2z71) and "vertical delay element” fhm Tl 45 4, b

(=~1). Now an importaat problem is that of how to : > & 1], .-t

use 2-D dynamic elcments, multiplicrs and adders to ©

realize a 2-D digital filter with the transfer

function: (b / T L(.b

% n mn 3 = u i B, 0. i't).
Arse LE ENaEtEh L i w5 [ W =™
u(z.'—l u_l) - b(z W 2 i 1=0 J‘O J (3 1) I-F\K A 97 v z p——tp-L Z o
: -1 =1 B —
a(z yw ) ? lf a Z-iIIJ-J %3 a a a
1=0 j=0 H — e s \:(;P )

We can do this in two steps. First we rewrite

(3.1) in a rational-gain representation, i.e. g -1

. W

n

J sl ot \le \% &y O\

-1 -1, =0 % D
H(z ",u ") = = (3.2) I
-1, -1 ’ ' o

] a,™) 2 : w

1=0 1 : /% )ﬂ» &)

Without loss of generalicy, we can assume a,, = 1 State Space Model Representation

and ve denote

-1 e As remarked in Section 2, circuit_ impiemen~
ay(w ) 81+ agw ) tations with delay elements z-1 and w-l are in a
one-to-one correspondence with state space models

Thus, using the 1-D realization technique, we write of Roesser's type. The output of the z™' delayvs

down a realization, where the %ains of the multi- are the horizontal states and the outputs of the

plicrs are represented in Flw™i]. Yy w-l delays are the vertical states.

Figure 3.1 Thus, the implementation of Figure 3.2 can be
transformed readily into the following state space
model: ’

n (1+1,1)
“n x,(1,3)
m xvl(isj'i'l) = A xv (ijj) + b u(i'j)
1
my x_ (1,3+1) x, (1,3) (3.3)
L v, v,
; y(,9) = ¢ x(1,3) + b gu(4,9)
where
A, 3+ =88l 1 0 ’
A0 0L vAleagel ool
A - A : A : 0 ) - - -
3 IpcE M. R BRI T A

"i The realization is almost achieved: in addi- O,
B tion to the n horlzontal delay elements we need L6k
only o vertical dclaylelements to implement the ol
A feedback gains {a,(w"l), 1=0, 1...m} and m other A, Az% - 2’0 A, B2 =2 e - ,
A vertical delay elements to implement the readout 11="n 1 =n0 2="a “Om =l {
. gains {bi(w"l), i=0, 1...m}. Thus, the complete and ) |
4 realization shown in Flgure 3.2 requires only n+2m ~ . |
- < < 3 5
dynanic elements. {A]j_jéaj_j 250%;7 °* (1,1)<4,3<(n,m) ;e,4(1,0,..,0]
ta - ' 1
1 This realization 15 a standard (c_anonical) [B),.Ab, ,~a b , 1€i<n, 0¢jsm;b, Albo.,.euyb 1 4
f: one; 1its structure i{s very simple and it involves i3=13 10704 =0n=""01 > 0a 4
. only real gains. Note also that we need fewer [z]ijg{'[if 1+1=] 3 EINCICITERRRL I .
dynanic elements than the implementations in [9]. 9 else n _ P
EaoB bl vasilad s
=0m—""01 Om
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state space models can

Hardware Design of 2-D Digical Filter

The idea of using two types of dynamic ele=-
nents is not very abstract; it is very natural in
delav-differenclal systems. However, before
censidering its practical applicatlon to image sys-
tess, two remarks have to be made:

1) Because the "spatial" dynamic elements seem
unizplementable, (except as Iindex operators in a
dipical computer, for example,) we can replace them
by time-delay elements.

2) In order to have a finite orderdescription,
we shall only consider a bounded frame system, i.e.
we assume that the plcture frame of lnterest is an
MxN frame (with vertical wldth M and horizontal
lengch N).

Yote that in order to use time delay elements
we nead first to find a way to code a 2-D spatial
systenm into a 1-D (discrete-time) system and vice
versa. Thus we shall propose the following imple-
rentation of a 2-D Ffilter:

i) The input scan generator codes the 2-D
spatial input into 1-D (time) data according to
the mapping funccion t(.,.)

e(1,3) = 1M + jIN - (3.4)

where M and N are relatively prime integers.

11) A 1-D (discrete-time) digital filter
processes the 1-D data generated by (1). This
subsysten is implemented by replacing z-1 by 6 ,
w=l 5y A in a 2-D circuit realization (e.g. 2-D
contreoller form). & and A are chosen as

6 = DH = M-units delay element,
N (3.5)
A = D = N-units delay element.

11i) The cutput frame generator decodes the
1-D (discrete-time) output of the 1-D digital
filter described above into a 2-D (discrete-spatial)
picture according to the inverse mapping of (3.4).

(i(c), j(t)) = (PtmodM, [t- (Ptmod M)N]/M)(3.6)
where P is the unique integer such that
PN - Qi = 1 and O<P<M (3.7)

Verification: Let us note the 1-D (discrete-
tize) output will be

y(D) = H(D) U(D)

- 1w ue !
' 2 Lap™,wLap"
=L Y14 " w'jl
2 3 *1=DH w_1=DN (3.8)
wvhere {y } represents the 2-D (discrete-spatial)

output data ficld. Note also that

yo) 8Ly o " , (3.9)
; -

Y, = ) v,y (310
(1,1):1M+N = ¢ o
Since the system 1is a causal system,
o4 " 0 1f 1,4<0 , 0.1
Let us consider only the integer t with
t = IMHN ; 1<N,34H

then (3.10) aand (3.11) give

since, for this special case, the summatica set of
(3.10) contains only one nonzero point. There-
fore, we will obtain a bona fide output picture
inside the MxN frare.

This 2-D image scanning and display systeam is
not as complicated as it looks, it can be simple:

Example: Problem: Design a 2-D digital filter for
H(z_l,m"l) - 1

140.32 440.26" 0.1z w "

for a frame: MxN = 100x101. Assume D=0.01 ms
(1) IsG

In this special frame (with L=l+1), the input
scanning generator is indeed very simple, as shown
in Figure 3.3.

"Solution.

160 N

::B¢:

o &

N\N

[
imsAine 1ol

N

Scanning time: 0.01 ms/pixel = 1 ms/line
Scanning angle: 45°

Fig. 3.4 Input Scan Generator & Qutput Frame
Genecrator

(1i) 1-D digital filter

Constructing the 2-D realization of Figure
3.2 and then replacing z=1 by & and w™l by A we
have the 1-D realization shown in Figure 3.4

LLt + :y%

0.1
o A | b 8 3

0.2 .
Oé"l_-]

A 1.01 s delay element
S : 1.00 ms delay element
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The output frame generator does the reverse of

the ISG, displaying the plcture instead of scanning.
Dimenstonalltv of Clohal State

Considering a beunded frame (MxN) system, {it
1s interesting to know the dimension of the global
state (or inicial conditions) needed to process the
MxN "furure" dacta field. Since vertical states
coenvey informatlon vertically, all the vertical
states along the X-axls are necessary.initial con=-
dizions and thelr dizension is mil. Similarly, all
the horizontal statas along the Y-axis are neces-
sary inicifal conditioans (vith dimension nM) since
théy coavey informacion horizontally. Therefore,
in the bounded frame case a total number of mi+nl
are needed to summarize the "past" information.

This very same idea can be used again from a
cozputational point of view. Indeed, the number of
required storage elements for recursive computa-
tions is also equal to nM+mN Lf initial conditions
are not zero. However, the initial ccrdicions are
often zero, then the size of storage required can
be reduced to mN (resp. n') by storing the updated
data row by row (resp. column by column). No
storage is needed for the rest of the initial con-~
ditions - rM horizontal states (resp. mN vertical
states) = since they are assumed to be zero. This
is consistent with the result of Read [12] derived
from a2 direct polyromial approach.

Another interesting observation concerns the
dimension of the 1-D digital filter contained in
our 2-D digital filter design discussed above.
Since it needs n M-unit-delays and m N-unit-delays,
the corresponding 1-D state-space has also adimen-
sion egual to nM+mN. lNote that, despite the high
dizensicza of the corresponding 1-D filter, its
high sparsity is very encouraging for further
studies.

In short, our studies on the dimensionality of
2-D global states have reached a consistent conclu-

sloa from either theoretical or practical approaches.

4. Global and Local Controllability and
Observability

" For reasons of space we deferred this Section
to [18], part II.

5. Modal Controllabiliry (Observability) and
Minizalicy

In the 1-D case, the relative primeness con-
cepts could also be used to define controllability
and observability. In [16] Roseabrock proved that

A, B was controllable if and only if zI-A,B

were left ceprime.

C, A was observable 1f and only 1f C, z2I-A

were right coprime.

This approach can be generalized very easily
to 2-D svystems and will also provide a definition
of minimality.

Definition 5.1 Let H(z,w) = VI JU where V, T, U
are 2-D plynomial matcices. It is a minimal
description of H(z,w) L1f and only {if

(

»
prime.

This amounts to requiring that there is no
cancellation in the 2-D transfer function H(z,w).In
[18] part I we also provide the imporcant property’
that 1f (V,T,U) and (V,,Ty,U;) are two minimal
descriptfons of H, |T| = rTL}. We 2lso presented
an algorithm to extract the greatest commen risht
(left) divisor of two polynomial matrices, which
enables us to find a minimal description of H from
a nonminimal one.
Define ACz,0) & [(7g™ 0y ) - Al = A (0)

Then, in the state space description case
H = CAz,w)"18 1s minimal 1f and only 1if

[A(z,w),B] are left coprize (5.1)
and

[c,A(z,w)] are right coprime (5.2)

Definition 5.2 (1) A,B 1s modally controllable
if (5.1) holds.
(11) C,A is modally observable if

(5.2) holds.

These definitions are elearly connected

to minimality but the state space signifi-
cance of controllability and observability disap-
pears 1In this formulation. This is why we shall
glve now an equivalent state-space characterization
of the notions of modal controllability and obser-
vability . Another consequence is that for a
sinzle input-single output system, if H(a,u) =
Blazu) and 1f b and a are coprime with 3_a =n
a(z,w) =¥ z
3ua = m, thea 1f CA__(z,w) "B is a minimal realiza-
tion of H(z,w) we must have |A(z,w)|= a(z,w) and
hence p = n and q = m.

Bence the validity of our definition of mini-
mality of a state-space model will depend on our
ability to realize a transfer function of order
(n,m) with n+m states. This problem was coasidered
in Section 6 of [18], part II.

A consequence of the relative primeness
criterion for 2-D polynomial matrices given in
[18], part I is that C and A(z,w) are right
coprime if and only 1if

rank [ﬁ(é,w)] = n+n

for any generic point (£;, £7) of any irreducible
algebraic curve V; appearing in the decomposition
of V, the algebralc curve defined by [A(z,w)| = 0.
It 1s to be noted that the vank is considered over
the field K(£1, §2). A proof of this is givea in
[18], part II, along with some illustrating
exanples.

6. Minimality of State-Snace Mndel

It is shown in the last section and ia [18],
part II, that only a state-space realization with
order (n,m) - i.e. the same order as the transfer
function - can be both modally controllable and
modally observable. Now the question is whether
such a realization exists at all.

The best way to prove the existence of such
realization 1s by coastruction. Note that, in the
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2-D state-space model, the particular transform

T. 0 :
AR g (6.1)

enables us to change the basis of the state-space.
The matrices {A,B,C,D} are transformed to

A=TAT! B = TB
= - (6.2)
¢ =crl D=D

In fact, it is more convenient to work with a:ca-
nonical form under the "similarity transform"
defined by (6.2).

In the 1-D case, all minimal state-space model
can be transformed to the controller canonical form.
Similarly, almost all [18] 2-D state-space model
can be transformed to the follewing modal controller
form {A, B, C,} (assuming D = Q)

z7-e.a” A B"= [e7 |el ]
sl B it (6.3)
An t 22130, | € = [biglbg,)

vhere 2.,a.,b.,e. were defined in (3.3) and the
entries of Ajy and Aj] are to be chosen such that

dgt[A(z.u)} = a(z,w) (6.4)

and m
A(z,w) | B : ’
de = b(z,w) 2 (6.5)
-C |0

It is easy to check that, in (6.4), the co-
efficients {a ,,0<i<n} and {2p;,0<j<m} have already
been matched.” Similarly, in (b.4), the coeffici-
ents {bio, Qiijp] and {bgj, ijfyﬂ have already
been matched. Therefore, only 2Znm coefficeints
{agy; 1<i<n , 1<j<m} and {bgj , 1<i<n , 1<j<m} are
to ge matched. In other words, there are totally
2rm (nonlinear) eguations to be satisfied. Coinci-
dently, the number of free parameters in matrices
A12 and Ap; is also 2nm. Therefore it is natural
to conjecture that a solution (or, more precisely,
a finite number of solutions) should always exist.

Now let us examine the plausibility of this
conjecture by taking a low-order example.

Example 6.1 (1,1) order case

For ease of notation, let Aj2 = a , Az1 = B.
Also (without loss of generality) let us assume
that bjg # 0 (otherwise, we may have to use another
canonical form). Then (4) beconmes

zbﬁa°1-2+alo-w-d3 = zwtag)-z+ajg-wtayy or ;::i;;-
aB = -aj1 = (5.6)

and (6.5) becomes

b01z+b10m+(a10b01+a01b100+b018) - b01z+b1dw+b11

or

b (6.7)

59182102 = ®13731%107210%:1
Since byg # 0., (6.6) and (6.7) have solutions

7&. Sontag (E;I;:-;Etrlsrida) indepe;duﬂtly arrived at the same canjcctsre recunzly (private communication).

----------------- -

P b /5 B b7 l

LIPS (®107212107210%01*” (°11210%10710%01
LL R ———————————
~4a) 1051010
a ’
Bm - 1L a
i (6.8)

Therefore, the existence of (1,1) order state-
space model has been proved by construction. [J]

Unfortunately, (6.4) and (6.5) usually give
a set of 2nm nonlinear equations; therefore the
solution may not always be in real numbers. For
realization with real-gain constraints, we often
need a realization order higher than n+m. To show
that an (n,m) order real-galn realization may not
exlst, it 1is easiest to work on an example.

Example 6.2 The problem is to show that there is
no (1,1) order real-gain realization for the
transfer function

z+w
2w =1 2

Solution: Let us assume

S HMETH

C= (g, h] .
Then (6.4) 1s satisfied,

(6.9)

Since a;; = -1, B = al.
and (6.5) becomes
1

fhz + egw - (eha  + gfa) = z + w (6.10)
or equivalently,

fh o= 1 (6.11)
eg =1 (6.12)
ehal+gfa=0 . (6.13)
Now, (6.13) x hg - (6.11) « g2a - (6.12) x hZa™t

Eoee gzn +acla0 .
(6.14)

Since (6.14) has no real number solution, no (1,1)
order real-gain realization exists, (e.g. f = h =
e=g=1,0a=-8= /17,

In the practical aspect, real-gain realiza-
tions are much more desirable than complex
realizations because the former are much ecasier to
physically implement. Therefore our (2min) order
real-gain rcalization (cf. Section 3) are justi-
fied to be practical and low.crder realizations.
Indced, for the transfer function in Example 6.2,
the minimal real-gain.realization {A, B, C} can be
obtained by our realization method;

ol-1 o
A=]1 0 0
0l|-1

B” = [1]01]

Special Transfer Functions

In designing digital filter, the transfer
function may be intendedly chosen in a certain
form for the purposc of an easier and/or better
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realization. Therefore, it is worth mentioning
that some special types of transfer function can be
easily realized in (n+m) order real-gain realiza-
tions. There are two important special types of
transfer funcrions:

. i. with separable denominator.
ii. with separable numerator.

Let us first consider the separable denominator
case. Assunming

e = 1 (6.16)
H(z-l m-l) _ b(z l,m 11 _b(z l,m 1)
a0 Lewh T '
¥ % 21 o3
. 3=0 _3=0 4
-1

(aghayz 4. b 2 )(60+Bl'1+...+amyfm)

then its circuit realization is shown in Figure 6.1

Special Form 1 ]h: A
. - b

b, o

Controller-Observer-Type Form

Sccondly, let us consider the separable
numerator case, which is to say a system with ' :
transfer function.

-1 _aGz'H B(m-l)

'fIb
1=0 j=0

(6.17)

At first sight, it seems quite difficult.
However, in actuality, the realization can be
readily obtained by using the inversioan rule by
Kung [17]. More precisely, to realize the inverse
systea of Figure 6.1, we first note that the path
"{nput == €% -= 8 -- input" is a "feed through"
path (i.e. a path connecting input and output with
only constant gains). The second step is to invert
all the gains and reverse all the arrows on the
path (in our case, replace bgg by bgg~l). Lastly,

change sipgns of the galns of the branches which are
entering this plth. These steps complete the
realization of w-1(z-1, w-l), in [18], part 1I the
implez=entation 1s piven.

Remark: In many design problems the constraintcs
on numerator are much weaker than on dereonlnater,
hence this second form seems to have higher poten~
tial in practical applications.
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Appendix:“2-D Levinscn Algorithms: The following .
set ot results were motivated by the problem of
decermining stability of 2-D recursive filters. -

In the 1-D case the conncctions between stability
orthogonal polynomials and the Levinson recursions
are by now well known.

“In the 2-D case, Shank conjectured that the
least-squares inverse, say b(z,w), of an unstable
2-D polynomial a(z,w) (of degree n in z, nm
in ) is stable, i.e.,

n,m

i]
I b - h(z’ ) o 1{5( 3 ) A.l
T ijz w w) =~ z,w) , (A.1)
where b(z,w) minimizes
1 - atz,w)b(z,wl? @a.2)
or -
legy - @ BI2
with
eo A [1,0,...,0), [1 x (20 + 1)(m + 1))

b' = [bygseerabgsbygaesesd ]

and the Toeplitz block Toeplitz matrix (@ contain-
ing the coefficients of a(z,w) such that (@ b]
is the vector of the coefficients of the product
polynomial [a(z,0)b(z,w)]. Then b 1is given by
the solution of

By applying the Levinson (LRN) recursions [19], for
block matrices developed by Robinson and Wiggins

[20), to (A.3) b can be obtained from the first

column of the block solution & B = [I,,0,...,0]'.
Or with

.h_)_é [1,&9,.--,um]'

m
b(zw) = I b, (2w’ = w'b(z) ° (AG)
i ——
i=0
- [u',w'z,...,m'zn}ﬂ g = w'B(z)e .

Using the property of the LRW recursions that
IB(z)l has its roots inside the unit circle, the
g.c.d. of (bj(z)], vhich divides |B(z)| - contains
a subset of these roots.

We can therefore conclude that the nonorimitive
facters of bfz,.)--the contents in 2z and w--are
indead stable.

However Genin and Kamp [21] proved that
b(z,w), therefore the primitive factors, are in
general not stable for n,m > 1.

A 2-D Levinson Alporithm: Genin and Kamp developed
a 2-D generalization of the orthogonal polynomials
on the unit circle. We gilve here an equivalent
recursion in the time-domain using a stochastic
franework (see, e.g., [19]).l

We consider a finite window of a scalar 2-D
stationary stochastic process [ygj, 1 £[0 n],j €[0,m]])
with zero mean and covariance

......... By i) 7 Teon, gk !

TA> Bagserocr (MIT) Independently aiso developed
such recursions (private communication).

M e s ’ —

d p“’i“e ?(n,m}

i fal [yj'm----,yj'o]'

as the J*M column of the data array, 0<j<n
and i

g(n,m)

] L}
['y(“ L s

the data array scanncd column by column. Wow the
covariance of %(M™) s given by

g(y MMy ™!y g @m (A.5)

where @(Mm™) i 4 (n+l) by (n+l) block Tae:lx*
matrix with Toeplitz block entries R §-1 = (z(n -ﬂ
of size (m+l) hy (m+l) and R = Ry, L3
{Rklij = 3 L' Now, let

y(n.&:n,m) = E(y(n,i)]y(r,s) :

(0,0) < (r,s) £ (n,m), (r s) # (n,4) ],
. 0<l<m (A.6)
3 A (o o (o, %)
/%. (n,d §;.[///
*(0,0) (n, O)
Bidle o (m,m)!_(n,m)
y(n,4;n,h) = - ¥ a(n’m » (A.7)
where )
¢ 2 @™ 0,000,080 (0,00
end

' dm-£+1 position
L AP

So that if
m(n,m)l ~ . ~ . ~ y
yc *[y(n,q.n,HO.---,y(n:isnsto.---:Y(ras).n.m)]
Fatin,m) = y(n,4;0,m) - ¥(n,4:n,m)
Then . ’
;gn.m) - o gits®) aé“"“) (A.8)
where
(r,m) _ (n,m)} (n,m)} (n,m
ac ’ 81®Im+1+[a“m)' ‘."a(n,-{,)'.- |G. 0)]
(& 9
Note that diagonal entries of top block of
afnsm)  equal unity, and (¥) denotes Kronecker
product. Similarly we can define
;(k,m;n,m) - E[y(k,m)[y(r,s):
(0,0) £ (r,s) £ (n,m),(r,s) # (k,m)] = (A.6")
gy m) ! (n,m)
¥ a(km) y, 0<k<n (A.7")
also
-~ ] o~ -~ -
gin'rJ =[y(n,min,m),eea,y(kymin,m) 0.,y (0,min,m) ],
;(k,m;n,m) = y(k,m;n,m) = ;(k,m;n,m)
and




al

¥ %

R ™R e

-

H

-.“ n,m > n Im) B (“ .m)
wherﬂ

(n,2)_ (n,m)! (n,m) ! (n,m)
ar _Im1®£1+[’1(n n)l'.’l (k m)lno.laco ﬂJI(Ag )

Note that diagonal entries of blgck composed of
1t rouw of ith block entry of al™™) equal unity.
Also, the first columns of afn 1)  and of '@(M.m)
are the same, Then by (A.5), (A.8) and (A.8' f

5 (ﬂ.n)[ (n n)' (n m)”q,‘(n m)[a('l )m), a(n n)]

and also by (A.6) and (A.6')

E[‘L‘(“'n)[ (n m)! (n,m)]} = [Sin'm),ﬁén’m)] !
S:.”e Diagle(n-1),min,m) ) @ &;» [(w+1) x (n+D)]
€(k,m;n,m) > 0

€(n,L;n,m) >0 |

3

C(“'m) A & @Dug[e(n,m-isn,m)} ’
hence

(l'l; [a(n rn) (n m)] [ein,tn),aén,m)]

(A.10)
are the 2-D Levinson ecuations, therefore we have
ntmt+l  auxiliary solutions. Also, the first columm
of cé“ %) (or of agn*m) since they are the same)
corresponds to the 2-D causal estimate of y(n,m)
givea y(i,i) : (0,0) < (i,j) < (n,m), i.e., it is
the ++ predictor of ,(n m) (one quadrant=-

predictor). The last column of @{™™ gives the
—+ predictor and the last column o aén'“‘} gives
the + - predictor.
The Levinson Recursions: First define
1 if fi=m-j
Uy og chaa 0w 95 EI LN
Now, observe that the following reorderings hold:
i (n,m) - g @™
(Jn®Jm).ﬂt (.In @Jm) xR s,  (A.11)
hence
(n,m) (n, m) (n,m)
3, ®I )R G, ®INU @I, ]
-—--—-—-v--—'—-’
I(otl) (m+1)
- (n,m) o(n,m)
(Jn(!:().lm)[er .3c 1,
so that
(n,n) (n,m) ,(n,m) (n,m) o(n,m)
TN ®Ia, oy O (- & ]

and we multiply

J 0
n
0 J
m
on the right and denote

*(n,m) (n,m)
a M - (1 ®Ia,

*(n,m) _ A~ (n,m)
2. CRCEMEN In
and _

(A.8")

e ey U.® Jm)sg“"").x

n

g¥(n,m)
c

- (n,m)
(Jn @JE)E‘.C Jm
Then

(n,m) *(n,m)_*(n,m) *(n,m),*(n,m)
R [ar ac ] = [S‘I C—c 1(A.12)

and

¥(n,m)
Sr = Jn Diag(e(n~i,m;n,m) J'In®£-:.ﬁ-1

*(n,m)
Er ®snﬂ-1
AQ® B)(C®D) = AC(®) BD).

= 2m+l®'1m Diag(e(n,m~-i;n,m) }Jm =

*(n,m)
= Emi-l@Bc

.

(we have used

e*(n,m)

Similarly

Now define
™™ o (R _ 3R peenk ]a(“’ ™D
pr m,m) 4 yeoryRey n+1)a(“ ‘”}. (A.14)

Now, the 2-D Levinson recursions can be described

as follows. Increase in n: n-n+l, m—-m,
see Figurehl,

- 5 (n 'm)-
Omi1 <,
2 (n+1,m) aén,m) < s‘(:n,ﬂ'.) ‘
a*(“ »m) 6*(“ ™)
() c
(n,m)
\_Om-l-l o) qzl;'. .

(n,m) n,m)
@ P,

Now, let
(n;m)
Gc y
=(n+l,m) _ _
Clc ’
0
0
- g*(n,m)- d(nam) (n,m)-1
*(n,m) E c
a. (A.15)
wvhere
Al o (“ ™) ﬂ:*(“ m) p*(n,m) - 1¢(n m)
Ee
Then
(n+1,m)=(n+1,m)
RS B (A.16)
and the diagonal of the top block of gHlm)
q("+1,m)

equals Diag(e(n+l,m-1;n+l, n)} so that
1s just obtained by re-normalizing the columns of

JES—
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E‘En-l-l »m) ’

Note 1: E-]'(!rhl.k;nﬂ-l.n) # 0 otherwi
the kR column

ie deleting e
n?d_'_lkth row of GOtLW -y )
could find ¢p: @ L ’m)g = 0, But g£n+1,m)
is a covariance and this would mean that the
estimation problem is singular.
Note 2: Similarly esn+l,k;n+1,m) # 0 otherwise
there would be c: R("Lim)e = 0, Also
%
0m+1 .
= (r+l,m) '_(n-i-l'm) o 3B P 1
R < . \E'l ?‘ ?.1. g r.rl', .3.
= m < =4
a(ﬁl,m} % o D U,] s
BT e =
end let E‘@’lé"‘%%i=
- C : vy 2 =
w -3
0:1' Et’ig&:?"";
3 3 e FGo
> (otl,m) (a,m) | _ =(o+l,m) (n,m) v ey EE
ar = G.r - ac 5 (A.17) 8 =8
5 Er3gi=
then : ‘; E A :\; w
. =] N iy
| [l A - R
” o B O %
a:&l‘-l.m) o a:iﬁ-lﬂ“} 1 a:fﬂ"iam) , (n+2 columms) a o E} v 2
e a2 =M 1
I (A.18) e "egldh _
L) ¢ >
where czg“'“‘) is the first colummn of ai“'"l'“‘). 4 :*-; g ‘
o
To obtain the recursions for an increase in m, v % v
r we just have to reorder ®R(™™) in blocks of size wmoe B
(n+1)x(n+l) then the roles of m and n are *,2 ?‘
exchanged as well as @, and @, and we can use g;g, =
the same recursion as the one just described, L G
3 This version of the recursion enables us to w g o
increase n and m separately, instead of the ~. &
scheme proposed by Genin and Kamp where m = n, o ¥
Kotz 3: The inversions required by these recursions *
have additional structure, i.e., the matrices are
typically non-Toeplitz, but sums of products-of
Toeplitz matrices. One can take advantage of such
a structure by using generalized Levinson recursions

[22] to find a representation of the inverse of such
matrices.

natrices also in terms of sums of products of Toeplitz

Expressions with Toeplitz matrices,
since they are related to convolutions, can be

evaluated using Fast Fourler Transforms (FFT's).

< n+l T+l NH e+l F 4
- SN KX osa, 0 Chitn) 1GURE Al
N [ [ [#]5he
RS / i
ﬁ \Fal:: Fan \\: N Eand an :)‘: :x:
. Ry b

0|0
S T

-

: X | X700

th?> 6ur)
r e
X

//_:
&

{ﬂr-'} ; E—;.Cn.'!ﬂ)

T SR
7
T A7
&
Vi
9]
o
>
[
b3
"R

R, | X]o] o

e

£




[J——— —UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

! _______ REPORT DOCUMENTATION PAGE ¢ BEESEE R ET e toau
I WMPTE&L e 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
F 7 -
@ ( g - s 7 ﬂ37p -
8. 'n-n_g (and summ.; 5. TYPE OF REPORT & PERIOD COVERED |
e i g g
JNEW RESULTS IN 2-D SYSTEMS THE.'ORY 2-D STATE-SPACE }—Intem.m P

HODET:S - _B,EALIZATION AND THE NOTIONS OF
CONTROLLABILITY OBSER\’ABILITY AND MINIMALITY -

7. &UTHOR(I} 8. CONTRACT OR GRANT NUMBER(s)

| 6. PERFORMING ORG. REPORT NUMBER

i' ¥
-——-n-——_"___

¢ N o7 \ -
< | | B. Levy, S. Y. Kung and M, /Morf V4 FHHBZG 69-0—0101
! et —F 2
; 9. PERFORMING ORGANIZATION NAME AND ADDRESS W- ::ggi;k:oEé.KEﬂE?)T"’uR“OBJEEE; fT AJSK . i
; Stanford University : ey By . |
Dept of Electrical Engineering 61102F = 2304/A6 |
Stanford, CA Ou3QS { | St !
11. CONTROLLIHG OFFICE NAME AND ADDRESS 'IZ.‘,REPQIR‘I DATE 1
! 3 > 3 3 'I-—l - i
| Air Force Office of Scientific Research/NM R Tl TR L Y TS ; |

Bolling AFB, Washington, DC 20332 I Y

3. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) | 15. SECURFTY CLASS. (of this report)

UNCLASSIFIED
[15a. DE cussu-'u:ulouf DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, il different from Report)
)
LLS
| T
18. SUPPLEMENTARY NOTES | /
[4E 1 .
P

19. KEY WORDS (Continue on reverse side if neceasary and identify by block number)

state-space models
controllability, observability
2-D systems

i 2-D digital filter hardware /]" |
% Levinson's algorithm
ol 20. ABSTRACT (Continue on reverse side If necessary and identify by block number) .

3 \lA short comparison between the different state- space modeis is presented.
'- We discuss proper definitions of state, controllability and observability and
their relation to minimality of 2-D systems. We also present new circuit
realizations and 2-D digital filter hardware implementations of 2~D transfer
functions, as well as a 2-D generalization of Levinson's algorithms.

/

" .l ‘:_I

IEIED
SECURITY EATION'OF THIS PAGE (When Data Entered)

»

A

' DD ,52:‘;‘ 1473 EDITION OF 1| NOV 65 IS OBSOLETE
L

ol |

T T TR N <y




