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Abstract / If we are given an irreducible transfer func—
/ tion of order (n ,m), a state—space realization is

A short comparison between the diE— ninimal if and only if it is of size m + n. The
fereat state—space models is presented. We discuss existence of such (n + m) (real or coaple:~) state

~~~~~~~ proper def initions of s ta te, con trollabili ty and re ailz at
~ ons is discussed in Sec tion 6, ~:bere

cbservab iflcy and thefr relat~cn to m t~~a 11ty of we pro-iide a simple co n~ cr e:s:mp ie 2 a

~~~~ 2—D systems. ~
;e also present new circuit realiza— - model. In the Append~~ wo gLve a 2— 0 gemeralizaticn

cior.s and 2—D d igLtal filter hardware Imolementa— 
of Lcvlnson ’s algorithm . In conclus ion , it

tioms of 2—D transfer functions , as well as a 2—D 
appears that the results obtained by the algebraic

.

, generalization of Levinson ’s algorithm, and the practical approaches at-c qu ite compatible.

1. Introduction 
2. State—Space Models for 2—D Systems

Attast, Fornasini—Narchesini , Givone—Roesser 
During recent years , several au thors: Actas~

have proposed different state—soace models for ~~~~~~ 

(1], [2], Fornasini—Marchegini [3], [4~ and Ci~ one—
Roesser [5 1 have ,propu scd d i f f e r e n t  state—space

systems and have suggested some extensions of the models for 2—U systems . In [41. Fornasin~ and
usual l—D notions of controllability , observabi l i ty  Marchesini were using the algebraic poInt of view
and minimality to tae 2—0 case, However, these re— 

of Nerode equivalence and were the first to real—
suits are not quite satisfactory ; they either lack ize that a major d if fe ren ce  between 1—0 and 2—D
r.otivation for tne state—space models introduced or

sys tems is tha t we can in trod uce a ~l~ oal state
the notion of state—space is Improperl y defined. and a local state in the 2—D case. The g~.obal

In this paper and i~ [18], we tried to provide state (which is of infinite dimension in gene ra l )

answers to these questions frets a practical as well preserves all the past information while the local

as algebraic stand point. We start with a discussion State gives us the size of the recursions to be

of all the current models based on a practical (cir— performed at each step by the 2—U filter. However ,

cult—oriented) poitst of vie.~ and on a proper defi— 
their state does not obey a first—order difference

nition of s ta te .  Since the other models can be equation (the not ion  of firs t order differcn~ e

1mbe~ ded In the Civone—Roesser model , it appears to equation for linear systems on partially ordered

be the most sa t I s f ac to ry  one. set’s ha~ been defined by Nullans and Elliott in

From the cIrcui t  point  of view , we presen t in 
(7]). Attasi’s model (1], [2] suffers from the
same drawback.

Section o an implementation of 2—D transfer func-
tions using two types of dynamic elements — hori— Civone and Roesser ln (81 ~nd (51 have used a
zont a l  delay elements z 1 and ve r t i ca l  delay èle.— “c i rcu i t  approach” to the problem of s tat e  spar e

ments of’1. Thc hardware implementation of 2—0 digi— realization for some 2—U transfer functions. They
tal filters for imaging systems is also dIscussed presen t a model in whidh the local state is dl-
in Section 3.. vided in to an hor izon ta l  and a vertical state

An al gebraic approach based on elgencurves and 
which are propagated respectively hor izontally and

eigencones enables us In SectIon 5 to introduce the 
vertically by first order difference eçuations .

concept of mo d s l  control labi l i ty  (observability) . Nitra , Sagar and P cnd ergr a ss  gave a r e a l i z a —
ye show t h a t  a systcm is mInimal if and only if it t iom f o r  a rb it r a ry  t r a n s f e r  f u n c t i o n s  in ( 9 ]  by

is ~odal1y observable and controllable. presentlr.g art I m pl em e n t a t i on  method  for 2—D t rans-

________________ 
fer functions using, some del ay elements z 1 and

• This work was supported by the Advanced Re— 
via an approach that is c o n s i s t e n t  w i t h  Roesser s

~~~~search Projects •\~ on cy  throegh the fac ili ties at 
m0d

~~1.: A deta iled comparison can be found in (IS],

~~~~~the  St a n f o r d  A r t i f ~~cia l lr.re11ig~nce L~t h o r a z o r y  
~~ 

Par t it.

~~~~~p a r t  by th e  ~jrion~e1 ~c 1c-~ co Found~.tion under Con-
tract NS~

’— E n ~ 7 5—189 52  a~
-
~d in p a r t  h -p the  .\ir Force

~~~~Off ice of Sci ific Rc3carch , .\F Sy sr e ’ns  Ca’-.-~~ud , 
3. Circuit Realizations and }~ardwar e De signs

under Contract AF ~!.—62O—69—C—OlUl and ~art~ a l l y  by

~~~~~~th e  J o i n t  ServIces Elcerronica Program uader 
~~~~~~~~ 

Firs t , we can note t h a t  the  r~ot1on of ‘dy~~’~~lc

tract N—00014—67—A— 0112—0044. 
clenents , rnulUp liors and adders ” is at the
Center of c1rcui~ theory . In the l—D discrcte— tlmu

- 

case , the dynamic elements u~;cd arc (timu) delay

r *pptO?~
d for.pu1~1t” ~o~ eaBO
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eicments. The 1—~ realization problems have been Figure 3. 2: 2-D Controller Form Realization
well studied and , given any transfer function , it
is veil known that the realization can be readily -

found in certain standard (e.g. controller canoni— boD b~0 b;0
cal) forms (lii. For the realization of a 2—D
transfer function , a major differ’nce is that two
types of dynamic elements are needed — “horizontal
dçlay element ” (z 1) and “vertical delay element” b~ ~~(te 1). No~ an important problem is that of how to

_ _ _ _ _ _ _  
_ _ _ _ _  

_ _ _ _  

H

use 2—D dynamic elements , multipliers and adders to
realize a 2—0 digital filter with t he  transfer _____________ 

__________

function:
n is 

_ _ _

b S W
-

~~ -i- 

~
j  ~~~~~~~~~~~~~~~~~~~ 

•
~~~~ z~

’
— 
b(z~~ ,u~~) — 

i~O j~ O (3.1) —n m
—i —1a~z ,u ) 

a z w
1—0 J— 0

We can do this in two steps. First we rewrite
(3.1) in a rational—gain representation , i.e. ‘ 

I
~~~~~ J

n ______

~ 
b ’ ’ ~~ 

ass a5, a
~
w ) z 

~— — ___________

n
R(z 1

,w~~) 
“~~ (3.2)

~ a
1

(w4) z~
1

~~ 
a~,

Without loss of generality, we can assume 8
00 

— 1 State Space Model Represen t a t ion
and we denote

As remarked in Section 2, circuit implemen—
a0(w

1) 
~ 
1 + ‘

~~~
(w

~~~
) tations with delay elements z ’ and ce

~~~ 
are in a

one—to—one correspondence with state space ~odc1s

Thus, using the 1—D realization technique, we write of Roosser’s type. The output of the z ’ dela ys

down a realization , where the gains of the multi— are the horizontal states and the outputs of the

pliers are represented in F[w 1]. w~~ 
delays are the vertical states .

Figure 3.1 
_______________________________ 

Thus, the implementation of Figure 3.2 can be
transfotmed readily into the following state space
model:

nr~
(i÷l ,j) 1 x

h
(i l j)

,.1)
b,(c~3’) b

~
(cS
~
) b3(c3~) x

~~
(i,j+l) 

~ 
A [X (i)J)

____ 

m
L

xv (i

~
i+1)j [x~~

u
~i] 

+ b

— 

y(i ,j) — c x(i,j) + b
00
u(i,J)

;cc.~
, c1

~
(c. ’) Q1

(.3’) a3(c~ 
where

rA11 ~~~~~~~~ 
o]

A —  
~~~ — _ .

22 c t~(b ,—b
0~~1,

e
1
j

The realization is almost achieved : in addi— L
~ 

T 
— -no

tion to the n horizontal delay elements we need with
only m vertical delay elements to implement the

a
# 

, Afeedback gains (a 1
(w1), i0 , l...m} and m other A

11
A Z  — 

~l —nO 22— m
vertical delay elements to implement the readout
gains (b j(u~~), 

i0 , l...m}. Thus , the complete and
realization shown in Figure 3.2 requires only n+2m

• dynamic elements. ~~
3 ij~~~if8io

8
oj 

, (1,l)<i,j<(n ,in);e1
ó(l,0,. .,OJ

I

This realization is a standard (canonical) (BJ jj~
bjj

_a
i0
b
0j , l<i(fl, 0.~j�n;~~~~

[b01,... ,b IOn
• one; its structure is very simple and it involves

only real gains . Note also that we need fewer [zl j.j91U
i+1_i ; !n0~~~1O’~ ”’~’n0~~~ e1sedynamic elements than the implementations in (9~ . ~~~~~~~~~ . ,aOm

$

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

— 

~~~

‘. —



state space mode!s can be toun~ knT~~ I. 
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—

~~

- — — ---
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trdwar~ Desi::n o~ 2—U Digital F i l t e r  (i,j):iM+JN — t

Since the system is a causal system ,The idea of using t~:o types of dynamic ele-
ments is not very abstract; it is very natural in ‘i,~ 

0 if i,J < 0 . (3.11)
delay—differential systems . However , before
considering its practical. application to image sys— Let ur consider only the integer t with
tens, two remarks have to be made:

t — i N + J N ,

1) Because the “spatial” dynamic elements seen 
then (3.10) and (3.11) give

unimplemencable , (except as index operators In a
digital computer , for examp le,) we can replace them Yj , j
by time—delay elements.

since , for this special case, the surrmaticn set of• 2) In order to have a finite order description , 
(3.10) contains only one nonzero point. There—

we shall only consider a bounded frame system , i.e. 
fore, we will obtain a bona fide output picturewe assume that the picture frame of Interest is an 
inside the MxN frame.

NxN frame (with vertical width M and horizontal
length N). This 2—D image scanning. and display system is

— not as complicated as it looks, it can be s imple:
Note that in order to use time delay elements

we nead f i r s t  to f in d  a way to code a 2—fl spatial Example. Problem: Design a 2—fl digital filter for
system into a 1—fl (discrete—time) system and vice

1 —l 1versa. Thus we shall propose the following ~~pp~ e— H(z ,w )
mentation of a 2—fl filter: • l+O.3z +O.2w +O.lz~~w

’

1) The inp ut scan generator codes the 2—D for a frame: MxN lOOxlOl. Assume D 0.O1 ms.
spatial input into 1—fl (tine) data according to 

Solution. Ci) ISG
the mapping function t ( . , .)

In this special frame ~with ~~H+iJ, the i,i~uL
t(i,j) — 124 + jN (3.4) scanning generator is indeed very simple, as shown

in Figure 3.3.
wh ere M and N are relatively prime integers. 

__________________

‘Co
ii) A 1—fl (discrete—time ) digital filter

processes t~~~ l—D data generated by Ci). This

or1 by ~ in a 2—fl circuit realization (e.g. 2—fl
subsystem is implemented by replacing z 1 by 6 , 

~~~~~~~~~~~ 
~~~~~~~~~~~~

controller form). 6 and ~ are ch osen as

6 = N—units delay element ,

— D
N 

— N—units delay element. ___________________ _______________

(3.5)

iii) The cutpu t fr ame generator decodes the ° he 101
1—fl (discre te—ti~:u) output of the l—D digital

filter described above into a 2—fl (discrete—spatial) Scann ing time: 0.01 ms/pixel 1 ms/line
picture according to the inverse mapping of (3.4). Scanning angle: 450

( 1(t), J (t)) (Pt mod fl, It— (Pt mod M)NJ/M)(3.6) Pig. 3.4 Input Scan Generator &Outpu t Frame

where P is the unique integer such that Generator

PN — QM 1 and 0<P<M (3.7) (ii) 1—fl digital filter

Constructing the 2—D realization of Figure

Verification : Let us note the l—D (discrete— ~~ 
and then replacing z 1 by 6 and or1 by t~ we

tine) output will be have the l—D realization shown in Figure 3.4

y(D) - 11(D) 11(0) U
~ 

+

— H(z~~,w )u(z~~,o3
4
) 

—

1 - l M - 1 N
z —D ,w D

~ Yj,j 
z~~ w~~

J —l M —l N 

- 

0.1
• ii z —D ,w —D (3.8) ~

• 1

where {yii) represents the 2 D  (discrete—spatial)
• output data field. Note also that

y(D) ~ D~~ (3.9) 
C

t 
‘1.01 ns delay clement

• & : 1.00 ms delay element

I
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Y i ~~~~~~~~~~!~~~~~d~T ~~~~~~~~~~
prime.The output frame generator does the reverse of

the ISO. displaying the picture instead of scanning. This amounts to requiring tha t  there is no
cancellation in the 2—D transfer function H(z,w).~~Di—en~ (ona1ttv of Global State
[18) part I we also provide the important proparcy

Considering a bounded frame (MXN) system , it that if (V ,T ,U) and (V 1,T 1, U ) are two min Ima l

is interestIng to know the dimension of the global descriptions of H, IT ( = n il. We also presented
state (or initIal condition~) needed to process the an algorithm to extract the greatest co~nen rI~~t
?xN “future ” data field. Since vertical states (left) div i sor  of two polynomial  m a t r ic e s , which

convey information vertically, all the ve r t i ca l  enables us to f ind  a minimal  des .r ip t lon  of H f rom

states alonl the X—axis are necessary.initial con— a nonnininal one.
dittons ~ their dimension Is mU . Similarly, all 

Define A(zthe hor~ :ental states along the Y—axis are neces— ~~~~ ~ ~~~ 
~~ 

0 
~ 

— A) = A (~,u)Win n ,ti

sary in it I al  cond i t ion s  (wi th  d i m e n s i on  mM) since

they convey informat~oa horitontaily. Therefore , Then, in the state space description case

in the bounded f r ame  case a total number of ~~~~ 
H C

~(z,te)’
lB is minimal if and only if

are needed to summarize the “past” information. 
~A(z,ce),B) are left coprime (5.1)

and
This very sane Idea can be used agatn f r o m  a

computational point of view. Indeed , the number of - 
[C ,A(z ,w ) ]  are righ t coprime (5.2)

required storage elements for recursive computa—
Definition 5.2 (1) A ,B is modally controllabletions is also equal to nNl-tnN it initial conditions — 

if (5.1) holds .are not zero. However , the initial conditions are
(ii) C,A is modally observable ifoften zero , then the size of storage required can 

(5.2) holds.be reduced to mM (resp. n:•O by storing the updated
data row by row (resp. column by column). No These definitions are clearly connected
storage is needed for the rest of the initial con— to inininality but the state space signifi—
ditioms — r.M horizontal states (resp. inN vertical cance of controllability and observability disap—
states) — since they are assumed to be zero. This pears in this formul at ion . This is why we shall
is consistent with the result of Read (12) derived give now an equivalent state—space characterization
from a direct polynomial approach. of the notions of modal controllability and obser—

Another interesting observation concerns the vability . Another consequence is that for a

dimension of the 1—fl digital filter contained in 
single input—single output system, if H(a,u)
b(a,u)our 2—~ digital fIlter design discussed above. 

• and if b and a are coprime with B a = n
z

Since 1: needs n M— u n i t — d e l ay s  and m N—uni t—de lays , 
a(z ,u)

the corresponding 1-fl state—space has also adinen— 3
~
a m , them if CA~ (z,w)~~B is a minimal realiza-

tion of H(z,w) we have IA(z ,w)1= a(z,u) andsion ecual to mM+~N. Note that, despite the hIgh
hence p = n and q = in.dimcnsicn of the corresponding 1—D filter , its

high sparsity is very encouraging for further Hence the validity of our definition of mini—
studies. mality of a state—space model will depend on our

In short , our studies on the dimensionality of 
ability to realize a transfer f~:nction of order

2—D global states have reached a consistent conclu— (m ,m) with n-ha states. This problem was considered
in Section 6 of (18), part II.siom from either theoretical or practical approaches.

A consequence of the relatIve primeness
criterion for 2—D polynomial matrices given in

4. Global and Local Controllability and [18), part I is that C and A (z,W) are right
Observability • copri~ne if and only if

For reasons of space we deferred this Section tank {A(z .w)] = n-fm
to (181, part LI.

for any generic point (ci’ 
~
z) of any irreducible

algebraic curve V1 appearing in the decomposition

• 5. flodal Controllability (Observability) ~~d 
of V, the algebraic curve defined by jA(z,w)j = 0.

It is to be noted that the rank is considered overMinimality
the field K(~1, ~

2). A proof of this is given in
In the l—D case , the relative primeness con— (18], part II, along with some illustrating

cepts could also be used to define controllability examples.
and observabillty. In (16) Roseabrock proved that

A , B was controllable if and only if zI—A ,B
were left ccpriine. 6. Minimality of State—S pace Mod el

C, A was observable if and only if C, il—A It is shown in the last Section and in (18),
were right coprime.

• part II, that only a state—space real~ :aniam with
This approach can be generalized very easily order (n,m) — i.e. the same order as the transfer

to 2—fl svstezn s and will also provide a definition function — cart be both m o d a l l y  c o n t r o ll a b l e  and

of oiniciality. modally observable. Now the question is whether

Definition 5.1 Let H(z,w) — VT 1U where v , T, U such a realization exists at all.

are 2—fl p l y r . om t . a l  matrices. It is a minimal The best way to prove the e:~isten~e of such
description of H(z,W) if and only if realization is by construction. Nate that , in the

• 4
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2—D state—space model , the part icular transform 

•

- 
2b~~ 

~~10~~01
b
10

a
10
b
01
±/

11
-a
10
b

10~~10 01
b ~

r
~i [T

b °~ r
~i T (6.1)

1
~ 

I • T ] l x  I l x i  ...~
.1LLvi 0 v ~~VJ ~~ VJ 8 a • (6.8)

enables us to change the basis of the state—space. Therefore, the existence of (1,1) order state—
The matrices {A,B ,C,D} are cransformed to space model has been proved by construction. Q

A — T A T 1 B — TB Unfortunately , (6.4) and (6.5) usually give

- 
(6.2) a set of 2mm nonlinear equations; therefore the

C — ct~~ D — D solution may not always be in real numbers. For

In fact, it is more convenient to work with a- ca— 
realization with real—gain constraints , we often

nonical form under the “similarity transform” 
need a realization order higher than n+m. To show

defined by (6.2). 
that an (rt ,n) order real—gain realization may not
exist, it is easiest to work on an exa—ple.

In the l—D case, all minimal state—space model
can be transformed to the controller canonical form. 

Example 6.2 The problem is to show that there is

Similarly, almost all [181 2—fl state—space model 
no (1,1) order real—gain realization for the

can be transformed to the folloving rnodalconcroller 
transfer function

form (A , B, C,) (assuming D = 0) z + W

rz~—e a ’ :A 1 B~= r
~

j - t
~; ~ 

— 1

A< I ~ —m O 12 

I (6.3) Solution: Let us assume
z—e a C I b ~~ J b 3a —l—Omj —nO —On • ro a~ [e1

where z . ,a. ,b. ,e. were defined in (3.3) and the 
A 

1 ~ B 
L 

l
entries oT A~2 ~rtd A21 are to be chosen such that 

L8 O
~

(6.9 )

det[A(z,W ) J  = a(z ,W) (6.4) C - (g, h]

and 
Since a11 — —1, ~ — a

1
. Then (6.4) is satisfied ,

• and (6.5) becomes

de I b(z ,w) 
• 

(6.5) 
Thz + egu — (eha~~ 

+ gfa) — z + (a (6.10)fA(z~
w) B~ 

--

—c OJ or equivalently,

fh — 1 (6.11)
It is easy to check that, in (6.4), the co-

efficients (a ,0<i<n} and (a0 ,O<j<m) have already 
eg — 1 (6.12)

been matched .
iO

Sirnilarly, in (L4), the coeffici— eha~~ + gfa = 0 . (6.13)
ents fb j 0, 0<i< n} and {bo~, 0<j<cn} have already
been matched ~Therefore , only 2mm coefficeints 

Now, (6.13) x hg — (6.11) ~c g
2
a — (6.12) x h

2
a~~

{aij; 1<i<n , 1~J~n) and (bij , 
l<i<n , l<j<m) are gives

to be mat~hed . In other words, tSere are totally • 8
2
a + h

2
a~~ = 0

2r.m (nonlinear) equations to be satisfied. Coinci— (6.16)
dently, the number of free parameters in matrices
A12 and A 21 is also 2mm. Therefore it is natural 

Since (6.14) has- no real number solution , no (1,1)

to conjecture that a solution (or, more precisely, 
order real—gain realization exists, (e.g. f = h —

a finite number of solutions) should always exist. 
e = g — 1 , a = —B = ,/1’) . a

Now let us examine the P1ausIbilit~~~f this 
In the practical aspect , real—gain realiza—

ons are much more desirable than complex
conjecture by taking a low-order example

realizations because the former are much easier to
Example 6.1 (1,1) order case physically implement. Therefore our (2m+n ) order

For ease of notation , let A12 — a , A21 — B. 
real—gain realization (ef. Section 3) arc justi—

Also (without loss of generality) let us assume 
fied to be practical and low .crder realizations .

that b10 ~ 0 (otherwise, we may have to use another 
Indeed , for the transfer function in Example 6.2,

canonical form). Then (4) becomes 
the minimal real—gain , realization (A, 8, C) can be
obtained by our realization method ;

zu4.a
01
.z+a

10
.ce—d3 z,*a01.z+a10.&1+a11 or equiva— r0 1 01 B~ — (1101]

• aB • —au 
• lently

(6.6) A —  1 0 0L~ 
I —l oJ 

‘ C — (1101] (6.15)
I and (6.5) becomes

b
01
z+b

10
w+(a

10
b
01
+a

01
b
10
a+b

01
B) — b

01
z+b

10
w+b

11

or 
Special Transfer Functions

b
01

8+b
10

a — b
11
—a

01
b
10—a10

b
01 

(6.7) 
In designing digital filter , the transfer

function may be intendcdly chosen in a certain

Since b10 ~ 0., (6.6) and (6.7) have solutions 
form for the purpose of an easier and/or better 

‘C. Sontag (Lniv. of Florida) independently arrived at the same conjecture recentl y (private conr~unication).
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realization. Therefore, it is worth mentioning Remark: In many design problems the constraints
that some special types of transfer function can be on numerator are much weaker than on denominator .
easily realized in (n+m ) order real—gain realiza— hence this second form seems to have higher pOtett—
tic’ns. There are two impor t an t  special types of tial in practical applications .
transfer functions:

i. with separable denominator.
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~efLne
~~ d i x :~~’-D Levinscn A1~ or t t h m s :  The following - 

• ~~~~~~~~~~~~~~~~~~~~~~
set o~ results ~erc r~ tLv atcd  by the problem of

determining stability of 2-D recursive filters. - as the j th co lumn of the data a r ray ,  0 < j  < n
and

In the l-D cage the connections between stabtltty~
orthogonal pol ynomials and the Levinson recursions ~

(n ,m) 
~~ ~1~

(n~m)S ,. (n ,m) ’
,•..,

~~~~ 
] ,

are  by now well known.
the data array scanned column by column . Now thein the 2-b case , Shank conjectured tha t  the
covariance of ~d

(n ,c1) is given byl e a s t — s ç u a r e s  Inve r se , say b ( z ,w) , of an uns tab le
2-b pol ynomial  a(z ,w) (of degree n in z , in

E (~~
(n ,m)

~~
(fl

~
m ) h

) ,~, (n ,m) 
(A.5)in u) is stable , i.e.,

where g~(l ,m) is a (n+l) by (n+l) block Toe,litzn ,m
Z b z~w~ b(z,~) l/a(z,w) , (A.1) 

matrix with Toeplitz block entries , Ri_ i
of size (n*l) by (rn4-l) and R _k R k ,• i,j~ 0 0
(R k )jj  r

k ,J_L .  Now , let
where b (z ,~) minimizes A

Iii — a(z,a)b (z ,w)fl
2 

- (A.2) 
y(n,.t,;n,in) = E (y ( n , i)~~y ( r ,s)

or (0,0) < (r ,s) < (n,m),(r,s) ~
(

11
~oo 

- - 0 < ~~. < m  (A.6)

with - • (0 ,m) 
- 

(n ,rn)

t~ [i ,O,...,0),  [1 x (2n + 1) (m + 1)] 

(n , .
~

) : 
~‘,4iii

= [b00,...,b~,,,b10
,...,b Imm

and the Toeplitz block Toeplitz matrix a. contain- (0,0) (n ,0)1mg the coefficients of a(z,a) such that {a b]
is the vector of the coefficients of the product 

(n,m)’
a
(n.m) (A 7)polynomial (a(z,t~)b(z,w)J. Then b is given by (n ,.f~ n ,to) -

the solution of 
(n ,t.)

where
= [cea.1

~. = 
~~ a0~ (A.3) 

a
(m,m) 

~ [a~~
m)
(n,.~,) 

(n ,rn) ’

By apply ing the Levinson (LRW) recursions [19]1 for (n,-~.) ~~~~~ 
(n ,.

~))

block matrices developed by Robinson and WiggIns and
4.m--~+l position[20), to (A.3) ~ can be obta ined from the f i r s t  

a
(n m)’(.~) [x ,...,x ,0 ,x ,...,xJcolumn of the block solution ~ B [I 0 . 0 1’ .

~~~ ‘ ‘

Or with
So that if

—w~~~[1,w,...,w I .
~
.(n ,m)

• in C

b(z,W) — E b.(z)w~ w’b (z) 
- 

- 
. (A.4) -

i=o (n,-t.;n,m) — y(n ,.~;n ,m) - (n,L;n,m)

— [w ’ ,W ’ z , . . . ,w ’ Z
tm

IB 
~~ 

= 
~ ‘B(z)~~1 

. Then

Using the proper ty  of the LRW recursio~s that 
— v

(n;m)t
a
(n lm) (A.8)

13(z)l has its roots inside the unit circfe, the where
g.c.d. of (b j(:fl, vhich divides IB(z)I contains 

-

a subset of these roots. 
a

(n h n) (n,m) 
~
(n,m) 

~~~~~~~
= 

~ l®b u*1 
+ [a(fl,m)~ 

“

~~~ 
(n ,.~.) , (n ,0) 1

We can the re fo re  conclude that the nonorimitive - (A.9)
fn ct c r s  of b (z ,~.: )-- the contents  in z and (a——are

Note that diagonal entries of top block of
indc~d stable. a(n,m) equal unity , mmd denotes Kronecker

However Ge n in and Kamp [21) proved that product . Similarl y we can de f ine

therefore the primitive factors) are in

general not stable for n,m >  1. y(k,m;n,m) E(y(k,m)~y(r,s):

A 2-0 Lrvfnson AIc’r’rithn : Genin and Kamp developed (0,0) < (r,s) < (n,m),(r,s) ~ (k ,m ) )  = (A.6’)
a 2-b generalization of the orthogonal pol ynom ials

on the unit circle. We give here an equiva len t  
- i,(n,

m)t
a
(n,in) 0 < k < n (A.7’)

r e c u r s i o n  in the t im e—domain  us ing  a stochastic (k ,in) ‘ — —
f r a ~:ework (see , e . g . ,  [19]) . t 

also

We consider a finite window of a scalar 2-D 
— (o r)’ —

stationary stochastic process (Yjj . i E [0 ,n ) , j  e[0 ,m ) )  ~ r
wit!; zero mean and covariance

y(k ,ui ;n ,m) — y(k ,tn;n,m) - y(k ,m;n ,m)

T 

E ( y
j 1

y
hk

) 
1 1 1 k  ‘ and

~ . or r (mT) ind cp~ ud~~~L 1 y a~ so dcve1oped

such re~ u r si ons  ( p r i v a t e  co :n.nunication).  
- -
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in r in

where 
e

*(m ,m) 
~~~~®j ,5

)~~~
m P m)

j
~

a
~~

° ’
~~~

=i ®e  
~~~~~~~~~~~~~~ a~°’~’~ 

:
a

(n P m)
) (A 9 ,)  

Thenr —1 (n ,m) • I (k in) t •  (O n)

j t h  row of 1th block en t ry  of (~~n ,m) 
equa l  un i ty .

Also , the f i r s t  columns of •a~~
,th) and of a(~

,m) and

Note that diagonal entries of blqck composed of ~
(n,m)

[a
*(n,m)

a
*(n,m)

j Ce
n hm~~

*
~~
,m)
](A l2)

are the same, Then by (A.5) , (A.8) and (A.8’~~ *(n ,m)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— J~ Diag(e (n_i,m;n,m))J0®L~~1 

=

and also, by (A.6) and (A.6’ )  E
*(f h n) 

0r

[~~(fl P !fl) ~.(nPm)] , (we have used (A® B)(C® D) = AC® BD). Similarly
rr

g
*(fl ,Ifl) 

=

In
~~, ~~Diag (e(n-i) ,m;n ,m) ) ® e 1, [ (mi-I) x (n+l)] ~

n*l®jm 
Diag(c(n,m-i;n,nflJ =

e(k ,in;n,m) > 0 — £~i-l®EC
(0
~
m)

€(n ,L;n ,tn) ~ 0
Now define

e
(n,m) 

~ e100iag(e(n ,m-i;n,m)) , ~ (n,m) 

~ ~~n—l ’~~r ~~~~~ 
1a
(m
~

m) 
(A.l3)C • 

—

hence

= [~~~~
f l

~~
m)

,e
(f h n)

J (A.lO) 
• (n ,in) 

~ 1 (n,m) 
(A.14),Pr — [R 1~ ...,R;~

Rn+ijar

are the 2-fl Levinson ecuation s, therefore we have Now , the 2-fl Levinson recursions can be descr ibed
rt+mi-1 auxi l i a ry  s o l u t i o n s .  Also , the f i r s t  column as follows. Increase in n : in —, ni-i , in —, in ,
of C~

t
~
,m) (or of ~~~fl,in) since they are the same) see FigureAl. 

—

correspond’; to the 2-D causal estimate of y(n,m)
given y ( i ,j )  : (0 ,0) < (i ,j )  < (n ,m) ,  i .e. ,  it is O

~~ l 
~~~(n ,m) ’

c
the f-4- predictor of y(n ,m) (one quadrant— -

predictor). The last column of Q(fl~~) gives the 
~ (n+1,m) 

0
(~,m) — ~ (n ,m)

-+ predictor and the last column o~ a~
m ,m) gives

the +-  predictor. a~~
m
~
m) C

The I.evi~ con Recursions: First define • 
- _______

(~~) L~ {l 
if i=m-j 

0
~i-l 

~ (n ,m)

, 0 ,~~i,j~~~m 
.

— 0 else

Now , observe that  the following reorderings hold: 
~~ 

~~(n ,ui)
,~~~

(J ®~ ~~~~~~~~~~~~~~ 
= ~~(n ,m) 

, (A.11) Now , let
n in

hence . 
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f [ a
(f h n)

-• (3 (
~

•‘lj  ),~ (0~ in)
(3 ~~\J  )(i  (i

~~J 
)[a~~

ml ,a~
h n)

I — (n+l,m) 
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I I_______
— - 

—

in ‘- ‘ in n ‘Z.i in n ‘—‘ m r c

I(n+l) (mi-i) 
0

— (3 ®J )[e
(m

~
m) 

e
(n ,m)
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in in r ‘ C 

0 ] 
E*~~

,m)_ l
dl~~

,mso that 
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~
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(n I m)

a
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~
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I ~~(n~m) 
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(A.l5)
r ‘ C

and we multip ly where

~ ~~~~~~ 
= 5

(m ,m) 
-

• ~~n 

~ 
Then 

• •

on the r i ght and deno te 
~

(n+l ,m)a(n+ h ,m) 
= (A.l6)

- a
*(n,m) 

— (3 /_ \ J  )a~
°’°

~J~in m r
and the diagonal of the top block of

and 
• 

— 

~~~~ 
‘a~

” ,
~~~

j  
equals D i a g ( c ( n + 1,m - i ; n+ i ,Tn)~~~

1 
so t hat  a~~~~

l
~

m)

in c in is jus t  obtained by r e — n o r m a l i z i n g  the column s of
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Note I: £ (n+l,k;mi-l,m) ~ 0 otherwise deletin g
the kth column and kth row of ~n+I,e~ ~~
could find Sk~ 

,. (n+l ,m)5 0. But
is a covariance and this would mean that the
estimation problem is singular.

Note 2: Similarly € (n+ l ,k;n+ l ,m) ~ 0 otherwise
there would be C : ~~

(flhl 1,m) c = 0. Also -

• (n ,m)
ni-I Pr

(r+l ,tn) _ (n+ i,m)

= • ~~~~~~~~~~~~

e ,m) o:

and let

- r  5~
.n

- I ~n÷i~J

~~(n+l ,ui) 
kf h n)i E

(n+l ,tn)
~~

(n ,m) 
(A.ll)

then - 
- 

~~~

g(in•Fl,rn) 
[a~~

i
~
n) 

á
(n+l

~m)] , (n+2 columns) ~
I (A.18) ‘

where is the first column of a~~~~
m)
. 

‘-4 C)

cl c
To obtain the recursions for an increase in in, ~,.

we just have to reorder m ,m) in blocks of size ~~~ ~~~
• v-

-.
(n+l)x(rt+l) then the roles of in and in are
exchanged as well as and and we can use
the same recursion as the one just described,

This version of the recursion enables us to - 
~~~

increase n and in separately, instead of the ~~,•

scheme proposed by Genin and Kamp where in = n. in’

Note 3: The inversions required by these recursions
hav e additional structure , i.e., the matrices are 

•

typically non—Toeplitz, but sums of products-of
Toep l~itz matrices.  One can take advantage of such 

•

a st r uct ur e by using generalized Levinson recursions
[22 ) to find a representat ion of the inverse of such
matrices also in terms of sums of products of Toeplitz
matrices, Expressions with Toeplitz matrices,
since they are related to convolutions , can be
evaluated using Fast Fourier Transforms (FFT’ s).
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