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NEW RESULTS IN LINEAR SYSTEM STABILITY*

B. D. O. ANDERSON AND J. B, MOORE+

Abstract. This paper considers connections between bounded-input, bounded-output smbility

and asymptotic shb]lity in the sense of Lyapunov for linear ttme-varying systems. By modifying

slightly the definition of bounded-input, bounded-output stability, an equivalence between the two

types of stability is found for systems which are uniformly completely controllable and observable. The

various matrices describing the system need not be bounded. Other results relate to the characterization

of uniform complete controllability and the derivation of Lyapunov functions for linear time-varying

{ystems.

1. Introduction. Connections between various types of stabilit y are examined
in this paper. More precisely, we study linear, finite-dimensional, dynamical
systems which in general are time-varying, and consider descriptions of such
systems of the form

(la) $(l)=Fll)x(f) +G(t)u(f).

(lb) y(r) = H’(t).Y(f)

Here x is an n-dimensional real column vector, u is a p-dimensional real

control vector, y is an m-dimensional real output vector, and F(r), G(oand H(~) are
matrices of real continuous functions with appropriate dimension. It is also
assumed that every component of the control vector function U( ) is piecewise
continuous. All these constraints will not be explicitly stated in the sequel, but hold
throughout the paper.

Under zero-input conditions, the internal stability of(1) may be examined,
This internal, or Lyapunov, stability considers the effect of variations in initial

conditions on the subsequent trajectory of the homogeneous system

c) $x(r) = F(r)x(f).

Obviously, internal stability properties of(l) do not depend at all on the C( ) and
H( ) matrices.

The external stability of(1) may be examined by considering the effect on the

output of inputs from some restricted class; commonly we may be interested in

whether a bounded input will produce a bounded output when the initial state is

taken as zero. We are thus really concerned with properties of the weighting

function matrix

(3)

where 0( ., ) is the transition matrix associated with (2): this is because. under

zero initial state conditions, Y( ) in ( 1) is related to U( ), assumed zero prior to
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J
(

(4) y(f) = W(( , T)U(T) dT

[0

The natural question arises as to whether there are connections between external

and internal stability.
Without further constraints on the matrices in (1), the answer is no [1]. This

is because knowledge of W( ~, ~) in (3) conveys no knowledge at all about @( ~, )
and thus F( . ). In fact, a so-called separable W(I, T) may be realized as the impulse
response of a system of the form (l), with the F matrix being quite arbitrary,
except for a constraint on its order.

In an effort to obtain connections between internal and external stability,
various extra constraints can be used. When W’(., ) is time invariant, in the sense

that W’(?,r) = W(? – T), the natural constraint to impose on F, G and H is that
they may be time invariant. Then it can be shown that if the eigenvalues of F all

possess negative real parts, corresponding to exponential asymptotic stability in
the sense of Lyapunov (abbreviated EAS), the system (1) is bounded-input,
bounded-output stable (abbreviated BIBO). Conversely, if (1) is BIBO and
completely controllable and observable, then it is EAS.

For time-varying systems, it is not so clear what constraints should be
imposed in order to yield equivalences between the two types of stability. Amongst

constraints which have been used, we note those implicit in Perron’s work [2].
He was essentially concerned just with (la) and found conditions such that EAS
led to bounded-input, bounded-state stability (BIBS). (A system is BIBS if, with the

states as outputs, it is BIBO. ) His conclusion was that with the elements of F and
G bounded, and with G possessing an inverse with bounded elements, EAS and
BIBS were equivalent. The nonsingularity of G constituted a major drawback;
in [3], the difficulty was partly removed by showing that with G a column vector,

consisting of all zeros save for a one in the last place, and F in companion matrix
form, EAS and BIBS were equivalent. These special forms of F and G were shown
to arise naturally from the representation of some differential equations in the
form of(l).

More significant are the resu~ts of [4], which essentially include those of [2]
and [3]. The initial restriction is made that the elements of F, G and H are bounded.

The following results are then demonstrated:

(a) EAS implies BIBS and BIBO;
(b) BIBS and uniform complete controllability (see [4]) imply EAS;

(c) BIBO and uniform complete observability (see [4]) imply 131Bs
Thus under the boundedness assumption, EAS implies BIBO, and with the

additional assumptions of uniform complete controllability and uniform complete

observability, BIBO implies EAS.
In this paper we improve on the results of [4]; we are mainly concerned with

eliminating the boundedness requirement on the elements of F, G and H. It turns
out that to do this at the same time to obtain meaningful results, it is necessary to
modify the requirement of boundedness of input and output in the BIBO definition;

in this modification, it is required that the “energy content” over a fixed-length
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interval of the input and output should be bounded, independently of the position

of the interval. The principal conclusions are then that internal (EAS) stability
and external stability, in an appropriately modified form, are equivalent under
uniform complete controllability and observability.

Section 2 is concerned with definitions and a preliminary lemma. Included in

this section are precise statements of what we mean by the modified form of
boundedness discussed above and a review of the uniform complete controllability

and observability concepts.
Section 3 is concerned with (la); in this section EAS is related to a modified

form of BIBS stability. Section 4 examines the system defined by both (la) and (lb)
and achieves results relating EAS to modified BIBO stability.

Finally, two related results are presented in $5. The first establishes a class of
state feedback laws under which uniform complete controllability is invariant:
the second result presents a time-varying version of a lemma due to Lyapunov
which is well known for time-invariant systems.

2. Definitions and preliminaries. The concepts of uniform complete con-

trollability and uniform complete observability appear to have been introduced

originally in [5], in order to guarantee the solution of certain time-variable
quadratic variational problems. Equation (la) is uniformly completely controllable,

or the pair [F(t), G(t)] is uniformly completely controllable, if any two of the
following three conditions hold for some 6, >0 (any two imply the third, see [5]):

(5) all s M(s – 6., s) S azl foralls,

(6) a31 ~ 0(s – dc, s)M(s – d,, s)@’(s – f3c,s) ~ a41 for all s,

where

J

s

(8) M(s – dc, s) = @(s, [)G(z)G’(t)@’(s, r) dt
S–dc

The quantities al, az, as and a4 are positive constants, and a5( ~) maps R into R
and is bounded on bounded intervals. The notation X > Y(X > Y) for symmetric
matrices X and Y means X – Y is nonnegative (positive) definite. For an n-
dimensional vector x, 11x11is (~ X?)’J2; the usual induced matrix norm applies.

Several points should be noted; first, a sufficient condition for (7) is that F(~)
should be bounded; one way to see this is to use the Gronwall-Bellman inequality
[6], Second, if (5), (6) and (7) hold for some SC, they hold for all d >6, (see [5]).

Third, there is a consequence of the right-hand inequality of (5) which will be of use.

It is based on the inequality

(9) IIAx112 ~ 11.4’Al\11x112= &X(,4’/t)llxl12 S (tr A’A)IIx]12.

This consequence, following from (5), (8) and (9), is

J
s

(lo) Il@(s, t)G(t)l\ 2 dt ~ Pm2
S–8.

Uniform complete observability y is defined for the pair of equations (1a) and

(lb), or the matrix pair [F, H]. The system of equations (1) is uniformly completely
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observable if any two of the following three conditions

(again, any two imply the third [5]):

(11) WJ < fV(s, s + do) < a71 for alls,

40 t

hold for some b. >0

(12) a81 S @’(s, s + do) fV(S, s + 60)WS, s + do) S ~y~ for all S,

ll@(t, T)II s a,(lt – TI) for all z and ?,

where

J

s+a(,
(13) IV(S,S + 60) = @’(t, s)H(t)H’(l)@(t , s) dt .

s

The quantities ab, a,, as and ci~ are positive constants.
The remarks made above concerning uniform complete controllability carry

over mutatis mutandis to uniform complete observability.
One of the consequences of uniform complete controllability is contained in

the following lemma, a minor variant on a result of [4].
LEMMA 1. The realization (la) is unijormly completely controllable if and only if

there exist a b, > 0 such that for every state < and for any time s, there exists a
minimal energy input u ~ transforming the system (la) ,jirom the zero state at time

s – bC to the state c at time s, and a minimal energy input U2 transferring (la) from

the state t at times – b<to the zero state at time s, such that for positive constants

ale, u.ll, a12, a13,

J

s

(14a) ctloll~llz ~ u~(t)ul(t)dt s all]l~l/2,
S—sc

J

s

(14b) a12jlt112 S uj(t)u2(t) dt s CK1311<112
s–a.

The energy associated with u, over (s – 8C,s) is the value of the integral appearing in

(14a); u, is a minimal energy input if no other input taking the zero state at time
s – SCto the state ~ at time s has an associated smaller energy.

Proof Suppose the realization is uniformly completely controllable. Now from
[7], A4(s – C5C,s) is nonsingular and there exist minimal energy controls u, and U2
achieving the desired state transfer. The controls u ~ and U2 are uniquely defined,

except for a set of measure zero, by

(15a) u,(t) = u2(t) = O, t<s– b=, t>s;

(15b) u,(t)= G’(t)@’(s, t)~- ‘(S – bc, S)~ , s—dc$t~s;

(15C) U2(t) = – G’(t)@’(s, t)~- ‘(S – 6,, S)@(S , S – 6.)<, s—ac~t~s.

The fact that u 1(. ) and U2(. ) will effect the transferal is readily established using

(15), (8) and the formulas

(16a) ~ = ~s @(s, T) G(T)U1(T) d~ ,
S—ac

J

s

(16b) o=@(s, s-t5c)<+ @(S , T)G(7)u2(~) dz
S-6.



402 B. D. O. ANDERSON AND J. B. MOORE

Application of(8), (15) and (16) yields

j
(17a) s u~(t)ul(t) dt = ~’M- 1(s – ilc, S)(,

s -6<.

J(17b) “ u~(t)u~(t) df = @’(s, s – 6C)M- ‘(LS– a,, .$)@(s,s – at)<.
S–ac

Equations (5), (6) and (17) then imply that (14a) and (14b) are satisfied.
Conversely, suppose existence of minimal energy controls satisfying (14).

Controllability of the state < for arbitrary < implies M(s – d,,s) is nonsingular,
which in turn implies that the minimal energy controls are unique (except on a set
of measure zero) and are given by (15) (see [7]). Equations (14) and (17) now hold
simultaneously and imply (5) and (6).

The form of (15b) suggests in contrast to [4] that to hope for the existence of a

control bounded only in terms of { which effected the state transferal would be

too much, at least when G, say, is not assumed bounded. This together with (14)
suggests that to discuss the external stability of ( 1), the normally assumed bounded-
ness of the input or output should be replaced by the following definition.

DEFINITION. The vector function W( ) with piecewise continuous components

is termed bouitded* if, for some positive d~ and all s,

J

s
(18) W’(f)w(t) dt ~ ~~q,

s—al,

where x, ~ is a positive constant.

Of course, if W(~) is bounded in the usual sense, W(. ) is then bounded*. It
should also be noted that if (18) holds for some d~ it holds for all positive d, greater
or less than d~ (with, in the case of d > db, LX14perhaps being replaced by a greater

constant depending on d).
Analogously to the abbreviation BIBO for bounded-input, bounded-output

stability, we shall use the abbreviation B*IB*O to denote bounded* -input,
bounded”-output stability. Thus a system is B*IB*O if for all inputs U( ) such that

for some al., some 6~ and alls, there exists als, depending on UIAand d~, with the
zero-state response y(. ) satisfying

(20)

for a]] .s. (Note that earlier stated constraints guarantee that the components of

y( . ) are piecewise continuous.)
The definition of B*IBS proceeds analogously to the definition of BIBS,

modification being made to the class of inputs considered. Thus for all inputs

satisfying (19), we require the existence of a constant a, ~, depending on ml~ and
6fi, such that

(21) llx(t)ll S fX16(U14,db) for all ~

when the system is initially in the zero state.
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LEMMA 2. The system(1) is B* lBS {/”und only (f j~r all bounded* inputs satisfying
(19), there exists a constant u,,, depending on U14 and &, jor which

J

r
(22) 11~(~,r)G(z)u(~)]l d~ ~ al~ for all t.

–’X3

Proof We first show that (22) implies B*IBS. Suppose the system is in the zero
state at initial time tO. Then

Ilx(t)ll 5 ~f @(t, ~)G(@@dj
to

J

(
<— ll@(t, ~)G(~)u(~)ll d?

-m

s a,~.—

Now suppose (la) is B*IBS, with (21) holding; suppose too that (22) fails.
Then there exist times tOand t ~and a bounded* control u (satisfying (19)) such that

and then for some i, say i = I,

Now define 0[( ) by

[{ 11a,(~) = MI(T) Sgn ~ @~k(t,>Z)GkJT)Ul(T) ,
k

arbitrarily taking sgn {0} = 1 if required. Then 6( . ). the vector

> a16.

with lth entry.,.
01(. ), is bounded* because tl(. ) is, and the-same constants C$and a 14 apply. Also,

the response 2(. ) to 0( . ) has

J.i,(t,) = “~@,k(f,,Z)Gk1(T)t2,(T)d~
t,, k,l

11

.
J x Qlk(t ~ , ~)G/J~)ul(~) d~

t(l k,!

> u~~,

This contradicts (21), i.e., the assumption that the system is B*IBS. Thus the lemma
is proved.

3. Relations between Lyapunov and bounded”-input, bounded-state stability. In

this section, attention is focused on (1a). By analogy with time-invariant systems,

we seek relations between external stability and internal asymptotic stability;
in time-invariant systems the asymptotic stability, because it is uniform, is also
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exponential. Here also, it is convenient to specialize to exponential asymptotic

stability. The main result is contained in the following theorem.
THEOREM 1. Suppose (la) is uni$ormly completely controllable, Then it is B*lBS

if and only if it is EAS.

Proof We show first that EAS implies B*IBS. Suppose the system is excited
with a bounded* input commencing at time to,being initially in the zero state.

Then

(23)

J
to + kc).

+@(l, to + M,) @(to + k6C, T)G(T)u(T) d7
fo+(k–l)c$.

J

t

+ @(f , T)G(T)u(T) dT
10+kb<

with the integer k being chosen so that O < t – (t.+ kdJ ~ d,. Consider now the
following sequence of inequalities for a typical integral on the right of (23):

Here we have identified, as is legitimate, the d~ of the bounded* definition with

the 6C of the uniform complete controllability definition; as earlier pointed
out, if a vector function satisfies (19) for one pair Sh, alg, it will satisfy it for arbitrary

positive db and some new alq.

Because t – (tO + kd,) ~ 8C, the same bound exists on the absolute value of

the last integral in (23) as on the first k integrals. Also

for some positive constants Mle, a19 existing because of the EAS assumption.

Using (24a) and (24b) in (23), we then have
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The geometric series has a sum bounded independently of k. Also, because

O < t – (to + kclJ s S,, I\@(t, to + kd,)ll is bounded independently oft, tO and k;
he;ce IIx(t)]l is bounded, as required.

We now turn to proving that B*IBS implies EAS. Let 1(. ) be a vector function
such that 2(s) has unit norm for all s. By uniform complete controllability, there

exists a control u,( ) taking the zero state at time s – 6Cto the state J(s) at time s.
One such control is given by (see (15)):

(26a) u.(t) = o, t<s–bc, t>s,

(26b) U.(l) = G’(~)@’(s , t) ft’f- l(S – jc, S)~(S), s—dc~t~s.

Then

J

s

2(s) = @(S , ~)G(~)u,(7) d~
S—dc

and thus

Integrating with respect to s, we have

J
r ts

HIf@(f,S)~(S)llds ~ ds I/@(f , T)G(T)u,(T)II d7
10 10 S-J.

By defining a new variable r = ~ – s + 8,, itfollows that

a=
——h!dr ‘ \l@(t, r + s – dC)G(r + s – dC)uJr + s – iic)]lds.

o to

Now define a new variable again by T = r + s – 13Cto obtain

Our aim is to demonstrate that the right-hand side of this inequality is bounded.
Note that

because, as is evident from the interval of integration with respect to r in (27),
o~r~d,,andsot+r–h,~t.

From Lemma 2, it follows that the right-hand side of (28) is bounded if

u,(z), defined by u,(~) = u,_, +~c(z), is bounded* for fixed arbitrary r. (Note that for

fixeds, u,(T) is a bounded* function of T, but this certainly does not itself imply that

U,-, +oc(r) = u,(z) is bounded*.)
An explicit formula is available for u,(:), following from (26), for all T:

u,(T) = G’(z)@ ’(T – r + dC,~)M-l(~ – r,r – r + 6C)i(~ – r + d,), O s r s 6,.
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Evidently for arbitrary s,

J
s

J
s

u;(T) u,(T) d~ = {1’(7 – r + 6C)M-1(~ – r,~ – r + 6,)
S-C5C s-h.

M-l(T – r,~ – r + 6C)2(~ – r + dC)}dr

This bound is evidently independent ofs and r.

Hence, by Lemma 2, for some positive constant LZl,, independent of t, to
and r,

and thus in (27),

Since l(s) in the above derivation has only been restricted to have unit norm, we
may at this stage further restrict it so that \l@(r, s)i(s)jl is maximized. Since this

maximum is precisely ll@(t, s)II , we then have

J
f

(29) ll@(t, S)ll ds ~ i$Crxl,.
co

The following bound on @(. ,. ) is derived below, where azo is a positive

constant:

The proof of thk statement foUows by noting from Lemma 1 that there exists

a control which is bounded* independently of to, taking the zero state at (to – 6,)

to state J(to) at time to, where A(to)is an arbitrary vector of unit norm. Set the

control equal to zero for t ~ to. Then over [tO – 6,, m) the control is bounded*,
independently of to, while for t a 10,

x(t) = @(t,10)2(10).

The B*IBS constraint implies x(t) is bounded independently of to and thus yields

(30).
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Arguments as in [8] then establish that (29) and (30) together imply EAS;
thus Theorem 1 is proved.

It is important to note that [8] shows that for a bounded matrix F, (29) alone

implies EAS. Actually the boundedness of F is only used to deduce (30); hence the
applicability of our proof. It is also interesting to note that, although EAS and

boundedness of the matrices F and G imply BIBS (see [4]), EAS does not itself
imply B*IBS, but requires the addition of the uniform complete controllability
constraint, though to be sure, not all the uniform complete controllability y conditions

are used. Those conditions which are used amount to a generalization of the
boundedness constraints on F and G and do not include the left-hand inequalities
of(5) and (6).

4. Relations between Lyapunov and bounded* -input, bounded* -output stability.

Hitherto, we have been concerned with relating the control and state variables;
in this section, we are concerned with relating the state and output variables.
Because the relation (1b) between them is nondynamic, and thus does not involve

derivatives or integrals as the relation (1a) does, the results are much simpler to
achieve. The key theorem is as follows.

THEOREM 2. Suppose the system (1) is uniformly completely observable. Then

it is B*IBS LJand only if it is B*lB*O.

Proof We prove first that B*IBS implies B* IB*O. Observe that

J

S+ao

J

S+cb

y’(t)y(t) dt = x’(t)H(t)H’(t)x(t) dt
s s

J
S+fh

—— f’(t)@’(t , s)H(t)H’(t)@(t , s)~(t) dt ,
s

where ~(t) is defined in the interval [s, s + fiO] by A(t) = @(s, t)x(t). (Note: i(t) is

not a state vector.)
If x(t) is bounded, f(t)is bounded as follows:

Denoting the bound on IIf(t)ll by Uz~, we have that

J
S+60

y’(t)y(t) dt < a; *na7,
s

i.e., -Vis bounded*. Since any bounded* input results in a bounded state by assump-
tion, and since bounded states imply bounded* outputs by the above, we have

that bounded* inputs imply bounded* outputs.

Now suppose that (1) is known to be B“lB*O. Suppose also it is not B*IBS.

Then there exist an input u ~ and constant a ~~ such that

~

S+ao
u\(t) ul(t) dt s alA for all S,

s

such that, with y ~ the corresponding output,
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and such that for some Z

[-
11.X1(7-)11> *.

Now replace u ~ by u, where u(t) = Ul(t) for t ~ T and u(t) = O for t> T Then

J
S+(?O

J(t)u(t) dt ~ U14 for ails,
s

and thus, with y the corresponding ouput,

J
S+h

(31) y’(t)y(t) dt S als for all s.
s

Also, of course, since x(t) = xl(t) for tS T

(32)

Now use the fact that u(t) is zero for t > T to obtain

J
T+do

J
T+bo

Y’(t)y(f) dt = x’(T) cD’(t, T)H(t)H’(t)@(t , T) dt x(T)
T T

(33) > ct6x’(T)x(T)

The first inequality follows from the uniform complete observability assumption,
the second from (32). Equation (33) now is in contradiction to (31). Hence B*IB*O
must imply B*IBS. This completes the proof.

The arguments above may be used to conclude a result similar to that of
Theorem 2, with bounded inputs replacing bounded* inputs. It is as follows.

COROLLARY 1. Suppo.Ye the system (1) is unijormly completely observable.
Then it is BIBS if and only if it is BIB*O.

The connection bet ween internal and external stability for the system (1) is
obtained by combining Theorems 1 and 2. The proof of the following result,
obtained from these theorems, is trivial.

THEOREM 3.Consider the system ( 1), assumed uniformly completely controllable

and un(formly completely observable. Then it is B*IB*O (f and only if it is EAS.

It is interesting to note that the result of Theorem 2 cannot be improved

upon to the extent of deducing that B*IBS implies B*IBO, though of course
B*IBO implies B*IBS. Construction of a counterexample is easy. Suppose first

that FI and HI are constant matrices such that IFl, H ~] is completely observable
(and thus uniformly so). Define F(t)and H(() by

F’(t)= F,,

H(t)= HI (t~O, n–1~t~n–1/n2)

= nH1 (n–1/n2~r~n)

for n = 1,2, . . Then it is readily verified that F(t) and H(t) are a uniformly

completely observable pair, while evidently the addition of a G ~ so that
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i = FIX + Glu isB*lBS does not imply that, with y = H’([)x, the mapping from
u to y is B*IBO. This mapping is of course B* IB*O.

The uniform complete observability assumption is required in going both
ways in Theorem 2; this is in contrast to the result that for a bounded realization,
BIBS implies BIBO [4]. The explanation is that in establishing that B*l BS implies
B* IB*O, not all the uniform complete observability conditions are used, but only

those reflecting a natural generalization of boundedness constraints on F and H.

5. Some additional results. In this section, we present two additional results

which generalize material of [4] and [9] and which are in part based on the earlier
materials. The first extends a well-known result for time-invariant systems and
can be of use in establishing whether a given pair [F, q is uniformly completely
controllable. Hence we include the result here.

THEOREM 4.Uniform complete controllability in a realization (1) is intarian[
under state variable feedback of the fbrm

(34) u(t) = Zqt)x(t) + g(t),

where the entries oj”K( ) are continuous functions,

(35)
J

s IIK(t)ll 2 dt s u22(dc) jiv alls
.Y–J<

and some constant EZ2, and g( ) is th~ input to the closed loop system.

Proof Let (1) be uniformly completely controllable. Then by Lemma 1 there
is a 6C> 0 and a minimal energy input u,, which transfers the zero state at time

s – dCto the state ~ at time s, such that

J
s

(36) u;(t) ul(t)dt ~ &1111&112
S—hc

for all s. Jt is readily verified that if

(37) g(t) = ul(t) – K(t)x l(t)

is the input to the closed loop system, where xl is the trajectory of the open Icop
system due to U1, then Zl(s – d,) = Oand Zl(s) = ~, where z ~is the trajectory of the
closed loop system due to g (in fact, zl(t) = xl(t) for all t = (s – d,, s)),

Using (15b) and (37), we have that for all t ● (s – d,,s)

lIW)II 5
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The integral in the above equation has an upper bound of M(s – 6C,s), and thus
using the bounds on M and M’1, we have

Thus

J(38) s Ilg(j)ll 2 d? s 2
{J 1

S I[u,(f)llz d? + # S:gj C&(P)llC112f IIK(O112 dr .

S-c!c s–a< . S–dc

J
s

This means that, with (35) and (36) satisfied, Ilg(t)ll2dt is bounded above by a
s-d,

term ci23II<II2. A fortiori, the energy of the minimal energy control transferring the

zero state to the state < is bounded above by U2311<112.
We now show that for the closed loop system,

J
s

(39) MC.(S – dC,S) = @CL(S, t)G(t)G’(t)Wc~(s, t)dt
s–a<

is bounded above, where @c-( ~, ) is the transition matrix of the closed loop
system given by

;@cl(s , t)= [F(s) – G(s)K(s)]@cL(s , t) , al~~(t,t)= I.

If we define

J

s

(40) Y(S$f) = @(s, t) – Q--(S , t) – @c-(S , ~)G(~)K(r)@(~ , t) d7 ,
f

the differentiation yields

dY(s, t)

dt =
– Y(s , tp’(f),

while inspection of (40) shows that Y(t, t) = O. This means that Y(s, t) = O for all t
and s. Thus

J
s

@(s, t) – @~~(s, t)– @cL(S , T)G(T)K(T)@(T , t)d~ = O
1

or

J
s

Q-L(S, t)qt,s) = 1 – @cL(S , T)@(T , S)@(S , T)G(T)K(7)@(7 , S) d~
I

This means that

J
s

IIQL(S , ()@(t,S)l] s I + ll@--(S, T)@(T, S)[1l[@(S,T)G(T)K(T)@(T, S)ll d~
t

which implies that

(41) ll~c~(s, f)~(t, s)I] < exp
[f

s )l@(s, r) G(~)K(~)@(r, S)ll d~
f 1



from a trivial extension

S—scstss,

m
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of a result in [6, Theorem 2. p. 134]. With t in the range

[Js sup ~5(P) :_ ~c 1[J
1/7.5

1
1,2

1/0(s, r)G(?)ll 2 dr IIK(T)112d? .
o~p~csc S–rsc

which is bounded independently of ,sand t by the uniform complete controllability
of the open loop system and the restriction on K. Then from (41),

ll@~L(s, f)@(t , S)ll ~ !Z24((),)

for s – dC ~ t ~ s and some positive constant ~zq independent of s and t. Now
observe that in (39), we may rewrite kfc~ as

J

s

kf~~(s – SC>s) = @C1 (S, T)@(? , S)@(S , T) G(7) G’(7)@(S, T)@’(’? , S)@ ’CL(.S, T) dT

s–d<

and thus

IIA4C,(S – ac, .$)11~ a;4(&)
J

s ll@(S, T)G(T)II 2 d~
S—bc

Thus we have established that Mc~(s – d=,s) is bounded above if the open loop
system is uniformly completely controllable.

By using (17a), the above result implies that the minimum energy control u,
taking the closed loop system from the zero state at time s
time s satisfies the inequalities

J

.7
0< a,,ll~ll’ ~ Ilu,(t)ll’dr,

s–a.

where Hz~ is a positive constant independent ofs.
We have shown earlier that the energy associated with

– 6, to ;he state < at

the minimum enerwv
u.

control is also bounded above. Upper and-lower bounds may also be established
in a similar way for the energy of a minimal control taking the state ~ at time

s – dC to the zero state at time .s. It then follows by Lemma 1 that the closed loop
system is uniformly completely controllable, and the theorem is proved.

As a comment on the application of the above theorem we note that the
problem of deciding whether a prescribed pair F(t), G(t) is uniformly completely

controllable is often difficult; it may require calculation of the transition matrix.

However, the fact that F(t) may be replaced by F(t) – G(t)K(t) for a large class of

matrices K(t) may reduce the difficulty, as occasionally ~(t) COUM b= taken such

\hat F – GK was constant.

We now turn to an extension of the time-varying version of the lemma of

Lyapunov as discussed in [9], In particular, boundedness constraints are removed

and appropriate modifications are made.

THEOREM 5. Consider the system

(42) -:X(t) = F(t)x(t)
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and let L( ~) be a matrix such that [F, L] is uniforml~l completely observable. Both

F( ) and L(~) haue entries which arc continuous. Then
(i) If F is exponentially asymptotically stable, there exists a mafrix P defined by

(43) P(t) = lim II(t,T),
T-z

where II(t, T) in turn is defined by

(44) –h= HF+F’EI +L’L. ~(T, T) = O.

Moreover.

P’(. X,t) = x’(t)P(t)x(t)

is a Lyapunov junction for (42), and jinally P is given by the Jmnula

J

T

(45) P(t) = lim W(J, t)L’(2)L(2)@(l, t) d;..
T+m ~

(ii) If there exists a symmetric matrix P( ) and positive constants 1~1and ~z such
that jor all t

(46) o<plls P(t)s~21<x

and such that

(47) –P= PF + FP +L’L,

then V = X’PX is u Lyapunov ,furwtion such that ,for some positive j’s, do und all t,

t+6(,

AV /v~ –;3.
t

(This condition corresponds to EAS.)

Proof of (i), The solution of (44) can readily be verified to be

J

T

II(t, T) = @’(J., t)L’(l)L(l)@(~. , f) dl
t

Since [F, L] is uniformly completely observable,

J

I+l$o
(48) O<~JZ 0(2, t)L’(l)L(2,)@(2, t)d;. < ~51 < cc

r

for all tand some positive constants P4, 85 and dO. This means that

ll~(t, T)ll S b’dl + (l@(t + 60,t)112+ ll@(t+ 260, t)112 + ~~~ + Il@(t + k&, r)112]

for some k using arguments similar to those in the proof of Theorem 1. Since F is

EAS, positive constants al ~ and al ~ exist such that

Using the nontrivial arguments as in the proof of Lemma 1, it becomes

apparent that IIH(t, T)ll is bounded above independently of f and T. This result
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together with the result that Il(r, T) monotonically increases as T increases means
that the limit (43) exists and is bounded independently of t. The lower bound on
P(f) follows using (45), (48) and the observation that

With V = x’Px, by using (45), V = – x’L’Lx which is plainly nonpositive. This
proves (i).

Proqj” oj’(ii). Equation (46) guarantees that V as distinct from ~ satisfies the

necessary requirements for it to be a Lyapunov function. Since using (47) we havt

~ = –.x’L’Lx, it follows that stability, as distinct from EAS, of F is established.
To establish EAS we compute the change in V along a length 60 of trajectory.
Thus

s
AV1’+aO = ‘+a”~(lt

1, t

J

t+do
——– x’(t) @’(;. , t)L’(2)L(l)@(/l , r) d2x(t)

[

Since [F, L] is uniformly completely observable,

1+30
AV ~ – ~4x’(t)x(t)

,t

and

‘1+60
AV W s –fi.lfil

,C

Simple arguments may be used to show that EAS is implied, and the proof of

part (ii) is completed.

6. Conclusions. This paper has shown that in developing a number of linear
time-varying system stability results, the usually imposed boundedness restriction
on the elements of the system matrices is not essential. Of particular interest is the
result that internal and external stability are equivalent for uniformly completely

controllable and observable systems, provided that in defining external stability,
modification is made to the usual requirement of boundedness of inputs and out-
puts.
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