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Abstract: The relation of special functions with fractional integral transforms has a great influence
on modern science and research. For example, an old special function, namely, the Mittag–Leffler
function, became the queen of fractional calculus because its image under the Laplace transform
is known to a large audience only in this century. By taking motivation from these facts, we use
distributional representation of the Riemann zeta function to compute its Laplace transform, which
has played a fundamental role in applying the operators of generalized fractional calculus to this
well-studied function. Hence, similar new images under various other popular fractional transforms
can be obtained as special cases. A new fractional kinetic equation involving the Riemann zeta
function is formulated and solved. Thereafter, a new relation involving the Laplace transform of
the Riemann zeta function and the Fox–Wright function is explored, which proved to significantly
simplify the results. Various new distributional properties are also derived.

Keywords: delta function; Riemann zeta-function; fractional transforms; Fox–Wright-function;
generalized fractional kinetic equation

1. Introduction

In general, the Riemann zeta function and its generalizations have always been of
fundamental importance [1–10] due to their widespread applications. For instance, the
role of the Riemann zeta function is vital in fractal geometry for studying the complex
dimensions of fractal strings [1]. More recently, new representations of special functions are
discussed [10–21] in terms of the complex delta function [22,23]. In this article, we use a dis-
tributional representation [10], Equation (33), of the Riemann zeta function to obtain further
new results. On the one hand, several fractional calculus images involving the Riemann
zeta function are obtained under multiple E–K fractional operators, and on the other hand,
a non-integer-order kinetic equation including the Riemann zeta function is formulated
and solved. The Laplace transform of the Riemann zeta function is computed using its
distributional representation, which played a fundamental role in accomplishing the goals
of this research. Several new properties and results for this function are also discussed.

Calculation of the images of special functions using the fractional calculus operators
has emerged as a popular subject in the data of various newly published papers [24–26].
This number is rising regularly, and such research has commented [24] further in mention-
ing Kiryakova’s unified approach. Taking a cue from these facts, the author has followed
the recommendation of [24] and obtained fractional calculus images involving the Riemann
zeta function and its simpler cases using the unified approach [24–28]. The Marichev–
Saigo–Maeda (M-S-M) operators and the Saigo, Erdélyi–Kober, and Riemann–Liouville
(R–L) fractional operators for m = 3, m = 2, m = 1, respectively, are discussed as special
cases of generalized fractional calculus operators (namely, multiple E–K operators of the
multiplicity m). It is recommended in the conclusion section of [24] to examine whether the
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special function can be formulated as a general function, namely, the Fox–Wright function
pΨq, then to use a general result such as [24] and Theorem 3 and 4 therein. It can be
observed that it is not possible to apply these theorems for the Riemann zeta function
using its classical representations, as already mentioned (see [24], p. 2). It is important to
note that the results obtained in this research are completely verifiable with these general
results. The corresponding fractional derivatives in the Riemann–Liouville and Caputo
sense, as discussed in [24] (p. 9, Definition 6; and p. 17, Theorem 4), can now be used for
the Laplace transform of the Riemann zeta function and also straightforwardly using its
new representation.

The remaining paper is organized as follows: Necessary preliminaries related to
the family of the Fox-H function and the generalized fractional integrals (multiple E–K
operators) form part of Section 2. Section 3.1 contains fractional calculus images involving
the Riemann zeta-function. The next Section 3.2, is devoted to the formulation and solution
of a non-integer-order kinetic equation containing the Riemann zeta-function. Further new
properties and results involving the Reimann zeta function are discussed in Section 3.3.
The conclusion is given in Section 4. Related special cases of generalized fractional integrals
(multiple E–K operators) are listed in Appendix A.

Hence, in order to achieve our purpose, let us first go through the basic definitions
and preliminaries in the subsequent section.

2. Materials and Methods

Throughout this article, C and R represent the set of complex and real numbers. The
real part of any complex number is denoted by <, Z−0 denotes a set of negative integers
containing 0, and R+ symbolizes the set containing positive reals.

The Riemann zeta function is a classical function investigated by Riemann [2], de-
fined as

ζ(s) :=
∞

∑
n=1

1
ns ; (s = σ + iτ ;<(s) > 1). (1)

With the exception of a simple pole at s = 1, the meromorphic continuation of this
function extends it to the entire complex s-plane. As shown in [2] (p. 13, Equation (2.1.1)),
this function satisfies the following result (also known as Riemann’s Functional Equation):

ζ(s) := 2sπs−1Γ(1− s)ζ(1− s), (2)

where Γ(s) represents the gamma function [3,4] (a generalization of the factorial). The
Riemann zeta function has simple zeros at negative even integers that are its trivial zeros.
The remaining zeros of the zeta function are known as its nontrivial zeros, which are
symmetrically placed on the line <(s) = 1/2. This unproved fact is also famously known
as the “Riemann Hypothesis”. Several authors have investigated and analyzed different
generalizations of the zeta function. It has different integral representations, for example [2],

ζ(s) := 1
Γ(s)

∫ ∞
0

ts−1

et−1 dt; (<(s) > 1);

ζ(s) := 1
Γ(s)

∫ ∞
0

[
1

et−1 −
1
t

]
ts−1dt; (0 < <(s) < 1);

ζ(s) := 1
Γ(s)(1−21−s)

∫ ∞
0

ts−1

et+1 dt; (<(s) > 0).

(3)

For more details about the zeta function, the interested reader is referred to the
references [4–9] and the cited bibliographies therein. More recently, the distributional
representation of different special functions has been discussed in [10–20]. In this article,
for <(s) > 1, the following representation [10], Equation (33),

Γ(s)ζ(s) = 2π
∞

∑
n,l=0

(−(n + 1))l

l!
δ(s + l) (4)
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is the main focus to achieve the purpose of the current research. For similar studies, the
interested reader is referred to [10–20]. For any suitable function f and the number ω, the
delta function is a famous generalized function (distribution) defined by [22,23]:

〈δ(s−ω),℘(s)〉 = ℘(ω); δ(−s) = δ(s); δ(ωs) =
δ(s)
|ω| , where ω 6= 0. (5)

It has several interesting properties, such as the following (see [22,23]):

δ(s + l) =
∞

∑
p=0

(l)p

p!
δ(p)(s); (6)

δ(z− c) ∗ ϑ(z) = ϑ(z− c);
δ(i)(z− c) ∗ ϑ(z) = ϑ(i)(z− c);(

∞
∑

i=0
δ(i)(z− v)

)
∗
(

∞
∑

i=0
δ(z− v)

)
=

∞
∑

i=0

i
∑

j=0
δ(j)(z− v);(

∞
∑

i=0
δ(i)(z− v)

)
∗
(

∞
∑

i=0
δ(i)(z− v)

)
=

(
∞
∑

j=0
(v + 1)δ(j)(z− v)

)
.

(7)

Furthermore, the Laplace transform of an arbitrary function ε(t) is defined by [23]
(Chapter 8):

ε(s) = L[ε(t) : s] =
∫ ∞

0
e−st(t)dt,<(s) > 0 (8)

and we will also use [23] (p. 227):

L
{

δ(r)(z); ξ
}
= ξr. (9)

The generalized fractional integrals, namely (multiple) E–K operators of multiplicity
m, are defined by [24] (p. 8, Equation (18)):

I(γk),(δk)
(βk),m

f (z) =



∫ 1
0 f (zσ) Hm,0

m,m

σ

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dσ; ∑
k

δk > 0

= z−1
∫ z

0 f (ξ) Hm,0
m,m

 ξ
z

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dξ; ∑
k

δk > 0

f (z); δk = 1

(10)

where δk
′s are concerned with the order of integration, γk

′s are weights, and βk
′s are

additional parameters. Hm,n
p,q is the H-function defined in the subsequent paragraph. The

limits of integration (0, 1) and (0, z) in the above equation can be changed to (0, ∞) using
the fact that Hm,0

m,m vanishes for |σ| > 1 (To avoid prolonging this section, the special cases
of (10) in relation to the results of this article are given in Appendix A). However, the
corresponding multiple (m-tuple) Erdélyi–Kober fractional derivative of the R–L type of
multi-order δ = (δ1 ≥ 0, . . . , δm ≥ 0) is defined by [24] (p. 9):

D(γk)m
1 ,(δk)

(βk),m ( f (z)) := Dη I(γk+δk ),(ηk−δk )
(βk ),m f (z)Dη

∫ 1

0
f (zσ)Hm,0

m,m

σ

∣∣∣∣∣∣
(

γk + ηk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dσ (11)

where Dη , is a polynomial of variable z
(

d
dz

)
of degree η1 + . . . + ηm, given by

Dη = ∏
m

r=1∏
ηr

j=1

(
1
βr

z
d
dz

+ γr + j
)

; ηk =

{
[δk] + 1; δk /∈ Z

δk; δk ∈ Z (12)



Fractal Fract. 2022, 6, 254 4 of 16

and the corresponding multiple (m-tuple) Erdélyi–Kober fractional derivative of the Caputo
type is given as (see [24] (p. 9) and references therein):

∗D(γk)m
1 ,(δk)

(βk),m f (z) = I(γk+δk ),(ηk−δk )
(βk ),m Dη f (z). (13)

The action of the E–K operators on the power function yields [24] (p. 9; Equation (27)):

I(γk),(δk)
(βk),m {zp} =

m

∏
i=1

Γ
(

γi + 1 + p
βi

)
Γ
(

γi + δi + 1 + p
βi

) zp; [−βk(1 + γk)] < p; δk ≥ 0; k = 1, . . . , m. (14)

The integrand of (10) involves the Fox H-function defined by [24] (p. 3; see also [25,29]),
which is given here in its integral and series form as follows:

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (ai, Ai)(

bj, Bj
) ]= Hm,n

p,q

[
z
∣∣∣∣ (a1, A1), . . . , (ai, Ai)
(b1, B1), . . . ,

(
bj, Bj

) ]
= 1

2πi
∫
L

∏m
j=1 Γ(bj+Bjs)∏n

i=1 Γ(1−aj−Ajs)
∏

q
j=m+1 Γ(1−bj−Bjs)∏

p
i=n+1 Γ(aj+Ajs)

z−s ds,
(15)

where m, n, p, and q are related as 1 5 m 5 q; 0 5 n 5 p, Ai > 0 ( i = 1, ··· , p);
Bj > 0 ( j = 1, ··· , q), ai ∈ C ( i = 1, ··· , p); bj ∈ C ( j = 1, ··· , q); and L is an appropriate
Mellin–Barnes type of contour that separates the singularities of

{
Γ
(

bj + Bjs
)}m

j=1 from

the singularities of
{

Γ
(

1− aj − Ajs
)}n

j=1. Here, Γ(z) denotes the familiar gamma func-
tion [4], and when all Ap = Bq = 1, then the H-function becomes the Meijer G-function [24]
(p.4; see also [25,29]):

Hm,n
p,q

[
z
∣∣∣∣ (a1, A1), . . . , (ai, Ai)
(b1, B1), . . . ,

(
bj, Bj

) ]
=

∞
∑

m=0

∏m
j=1 Γ

(
bj +Bjm

)
∏n

i=1 Γ
(

1− ai −Aim
)

∏
q
j=m+1 Γ

(
1− bj −Bjm

)
∏

p
i=n+1 Γ

(
ai +im

) zm

m!

Hm,n
p,q

[
z
∣∣∣∣ (a1, 1), . . . , (ai, 1)
(b1, 1), . . . ,

(
bj, 1

) ]
= Gm,n

p,q

[
z
∣∣∣∣ a1 . . . , ai

b1, . . . , bj

]
.

(16)

The basic Fox–Wright function denoted by pΨq is defined and related to the H-function:

pΨq

[
(ai, Ai)
(bj, Bj)

; z
]
=

∞
∑

m=0

∏
p
l=1 Γ(ai+Aim)

∏
q
l=1 Γ((bj+Bjm)

zm

m! = H1,p
p,q+1

[
−z
∣∣∣∣ (1− a1, A1), . . . , (1− ai, Ai)
(0, 1), (1− b1, B1), . . . ,

(
(1− bj, Bj

) ]
(

aiεR+(i = 1, . . . , p); BjεR+(j = 1, . . . , q); 1 +
q
∑

i=1
Bi −

p
∑

j=1
Aj > 0

) (17)

and contains the hypergeometric and other important functions as [24] (p. 4; see also [25,29]):

pΨq

[
(ai, 1)
(bj, 1)

; z
] = G1,p

p,q+1

[
−z
∣∣∣∣ (1− a1, 1), . . . , (1− ai, 1)

0, (1− b1, 1), . . . ,
(
1− bj, 1

) ]
= pFq

[
ai
bj

; z
]

. Γ(a1)...Γ(ai)

Γ(b1)...Γ(bj)
.

(
aj > 0; bj /∈ Z−0

)
.

(18)

Furthermore, many other special functions studied in the literature are connected with
this class of special functions. For example, the Mittag–Leffler function [30] of parameters
1, 2, and 3 is related with the abovementioned special functions as follows:

Eγ
α,β(z) =

∞
∑

r=0

(γ)rzr

Γ(αr+β)
= 1

Γ(γ) 1Ψ1

[
(γ, 1)
(β, α)

; z
]
= H1,1

1,2

[
−z
∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
;

E1
α,β(z) = Eα,β(z) =

∞
∑

r=0

zr

Γ(αr+β)
= 1Ψ1

[
(1, 1)
(β, α)

; z
]
= H1,1

1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
;

E1
α,1(z) = Eα(z) =

∞
∑

r=0

zr

Γ(αr+1) = 1Ψ1

[
(1, 1)
(1, α)

; z
]
= H1,1

1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (0, α)

]
.

(19)
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Furthermore, (s)k is the Pochhammer symbols defined in terms of the gamma function
as follows:

(s)ρ =
Γ(s + ρ)

Γ(s)
=

{
1 (ρ = 0, s ∈ C\{0})

s(s + 1) . . . (s + k− 1) (ρ = k ∈ N; s ∈ C). (20)

Furthermore, it is important to mention that if any function can be expressed in the
form of the Fox–Wright function, then the generalized (multiple E–K) fractional integrals
and derivatives involving this function can be obtained directly using the general results
of [24], Theorem 3:

I(γk)m
1 ,(δk)

(βk),m

{
zc

pΨq

[
(ak, αk)

p
1

(bk, βk)
q
1

; λzµ

]}
= zc

p+mΨq+m

 (ak, αk)
p
1 ,
(

γk + 1 + c
βk

, µ
βk

)m

1

(bk, βk)
q
1,
(

γk + δk + 1 + c
βk

, µ
βk

)m

1

; λzµ


(δk ≥ 0, γk > −1, βk > 0, k = 1, . . . , m ∧ µ > 0, λ 6= 0)

(21)

and [24], Theorem 4:

D(γk)m
1 ,(δk)

(βk),m

{
zc

pΨq

[
(ai, αi)

p
1

(bj, β j)
q
1

; λzµ

]}
= zc

p+mΨq+m

 (ai, αi)
p
1 ,
(

γk + δk + 1 + c
βk

, µ
βk

)m

1

(bj, β j)
q
1,
(

γk + 1 + c
βk

, µ
βk

)m

1

; λzµ

. (22)

Unless otherwise stated, the conditions of parameters will remain similar to this
Section 2 and references therein.

3. Results
3.1. Fractional Integrals and Derivatives Formulae Involving the Riemann Zeta-Function

The following lemma has significant importance for the application of Equations (21)
and (22).

Lemma 1. Prove that the following result involving the Fox–Wright function holds true:

2π
∞

∑
n=0

0Ψ0

[
−
−

∣∣∣∣− (n + 1)eω

]
=

∞

∑
n,l=0

(−(n + 1))l

l! 0Ψ0

[
−
−

∣∣∣∣lω]. (23)

Proof . First of all, let us use (6) in (4) to get the following form:

Γ(s)ζ(s) = 2π
∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
δ(p)(s). (24)

Then, by applying the Laplace transform to (24), and by making use of (9), we are led
to the following:

L(Γ(s)ζ(s); ω) = 2π
∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp = 2π

∞

∑
n,l=0

(−(n + 1))l

l! 0Ψ0

[
−
−

∣∣∣∣lω]. (25)

From (25), it can be further noticed that

L(Γ(s)ζ(s); ω) =
2π

exp(eω)− 1
= 2π

∞

∑
n=0

exp(−(r + 1)eω) = 2π
∞

∑
n=0

0Ψ0

[
−
−

∣∣∣∣− (n + 1)eω

]
. (26)

From (25) and (26), the required result follows. �

Theorem 1. The multiple E–K fractional transform of the Riemann zeta function is given by:
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I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2πxχ−1

∞
∑

r=0
mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

∣∣∣∣∣∣− (r + 1)eω


[−βk(1 + γk)] < p; δk ≥ 0; k = 1, . . . , m.

(27)

Proof. Let us first consider multiple E–K’s fractional transform using (25):

I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s); ω}

)
= I(γk),(δk)

(βk),m

(
ωχ−12π

∞

∑
n,l,p=0

(−(n + 1))l(m)p

l!p!
ωp

)
, (28)

exchanging the summation and integration,

I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2π

∞

∑
n,l,p=0

(−(n + 1))l(m)p

l!p!
I(γk),(δk)
(βk),m

(
ωχ−1ωp

)
, (29)

and then using (14) yields

I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2π

∞
∑

n,l,p=0

(−(n+1))l(l)p

l!p!

m
∏
i=1

Γ
(

γi+1+ χ+p−1
βi

)
Γ
(

γi+δi+1+ χ+p−1
βi

)ωp+χ−1

= 2πωχ−1
∞
∑

n,l=0

(−(n+1))l

l! mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

∣∣∣∣∣∣lω
,

(30)

which, after using Lemma 1, leads to the required result. �

Remark 1. Hence the result (30) is completely verifiable with ([24], Theorem 3) in view of (25).
Similarly, the generalized fractional derivatives involving the Riemann zeta function can be obtained
using the methodology of theorem 1 or by using directly (22) and (25) as follows:

D(γk)m
1 ,(δk)

(βk),m {zcL(Γ(s)ζ(s); z)} = 2πzc
∞
∑

n,l=0

(−(n+1))l

l! mΨm

 (
γk + δk + 1 + c

βk
, 1

βk

)m

1(
γk + 1 + c

βk
, 1

βk

)m

1

∣∣∣∣∣∣lω


= 2πzc
∞
∑

n=0
mΨm

 (
γk + δk + 1 + c

βk
, 1

βk

)m

1(
γk + 1 + c

βk
, 1

βk

)m

1

∣∣∣∣∣∣− (n + 1)eω

.

(31)

Continuing in this way, we obtain the following Table 1 of fractional integrals and
derivatives formulae involving the Riemann zeta function by following the methodol-
ogy of Theorem 1 and using Equations (27), (30), and (31), respectively. (As already
mentioned in Section 2, the definitions of the Marichev–Saigo–Maeda, Saigo, Erdélyi–
Kober, and Riemann–Liouville (R–L) fractional operators and their relation to (10) for
m = 3, m = 2, m = 1, respectively, are given in Appendix A; see also [31–34]).

Table 1. Fractional integrals and derivatives formulae involving Riemann zeta-function.

m = 3 Marichev–Saigo–Maeda fractional integrals and derivatives [31–34]

Iγ1 ,γ1
′ ,γ2 ,γ2

′ ,δ
0+

(
ωχ−1L{Γ(s)ζ(s); ω}

)
=

2πωδ+χ−γ1−γ1
′−1

∞
∑

n=0
3Ψ3

[
(χ, 1) (χ + δ− γ1 − γ1

′ − γ2, 1) (χ + γ2
′ − γ1

′, 1)
(χ + γ2

′, 1) (χ + δ− γ1 − γ1
′, 1) χ + δ− γ1

′ − γ2

∣∣∣∣− (n + 1)eω

]
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Table 1. Cont.

m = 3 Marichev–Saigo–Maeda fractional integrals and derivatives [31–34]

Iγ1 ,γ1
′ ,γ2 ,γ2

′ ,δ
0−

(
ωχ−1L{Γ(s)ζ(s); ω}

)
=

2πωδ+χ−γ1−γ1
′−1

∞
∑

n=0
3Ψ3

[
(1− χ− δ + γ1 + γ1

′,−1) (1− χ + γ1 + γ2
′ − δ,−1) (1− χ− γ1,−1)

(1− χ,−1) (1− χ + γ1 + γ1
′ + γ2 + γ2

′ − δ,−1) (1− χ + γ1 − γ2,−1)

∣∣∣∣− (n + 1)eω

]
Dγ1 ,γ1

′ ,γ2 ,γ2
′ ,δ

0+
(
ωχ−1L(Γ(s)ζ(s); ω)

)
= 2πωχ−1

∞
∑

n=0
3Ψ3

[
(χ, 1) (χ− γ2 + γ1, 1) (χ + γ1+γ1

′ + γ2
′ − δ, 1)

(χ− γ2, 1) (χ− δ + γ1 ++γ2
′, 1) (χ− δ + γ1

′ + γ1, 1)

∣∣∣∣− (n + 1)eω

]
Dγ1 ,γ1

′ ,γ2 ,γ2
′ ,δ

−
(
ωχ−1L(Γ(s)ζ(s); ω)

)
=

2πωχ−1 ∑∞
n=0 3Ψ3

[
(1− χ + γ2

′, 1) (1 + γ2
′ − χ− γ2 + γ1, 1) (1− χ− γ1−γ1

′ + δ,−1)
(1− χ, 1) (1− χ− γ1

′ + γ2
′, 1) (1− χ + δ− γ1

′ − γ1 − γ2,−1)

∣∣∣∣− (n + 1)eω

]
m = 2 Saigo fractional integrals and derivatives [31–34]

Iγ1 ,γ2 ,δ
0+

(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2πωχ−γ1−1

∞
∑

n=0
2Ψ2

[
(χ, 1) (χ + γ2 − γ1, 1)

(χ− γ2, 1) (χ + δ + γ2)

∣∣∣∣− (n + 1)eω

]
Iγ1 ,γ2 ,δ
− ωχ−1(L{Γ(s)ζ(s); ω}) = 2πωχ−γ1−1

∞
∑

n=0
2Ψ2

[
(γ1 − χ + 1, 1) (γ2 − χ + 1,−1)

(1− χ, 1) ((γ1 + γ2 + δ− χ + 1,−1)

∣∣∣∣− (n + 1)eω

]
Dγ1 ,γ2 ,δ

0+
(
tχ−1L(Γ(s)ζ(s); ω)

)
= 2π

∞
∑

n=0
2Ψ2

[
(χ, 1) (χ + δ + γ2 + γ1, 1)

(χ + γ2, 1) (χ + δ, 1)

∣∣∣∣− (n + 1)eω

]
Dγ1 ,γ2 ,δ
−

(
tχ−1L(Γ(s)ζ(s); ω)

)
= 2π

∞
∑

n=0
2Ψ2

[
(1− χ− γ2, 1) (1− χ + δ + γ1,−1)

(1− χ + δ− γ2, 1) (1− χ,−1)

∣∣∣∣− (n + 1)eω

]
m = 1 Erdélyi–Kober, Riemann–Liouville (R–L) fractional integrals and derivatives [31–34]

Iγ,δ
0+
(

ωχ−1L{Γ(s)ζ(s); ω}
)
= 2πωχ−1

∞
∑

n=0
1Ψ1

[
(χ + γ, 1)

(χ + γ + δ, 1)

∣∣∣∣− (n + 1)eω

]
Iγ,δ
0−
(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2πωχ+δ−1

∞
∑

n=0
1Ψ1

[
(γ− χ + 1,−1)

(γ + δ− χ + 1,−1)

∣∣∣∣− (n + 1)eω

]
Dγ,δ

0+
{

ωχ−1L(Γ(s)ζ(s); ω)
}
= 2πωχ−1

∞
∑

n=0
1Ψ1

[
(γ + δ + χ, 1)
(γ + χ, 1)

∣∣∣∣− (n + 1)eω

]
Dγ,δ
−
{

ωχ−1L(Γ(s)ζ(s); ω)
}
= 2πωχ−1

∞
∑

n=0
1Ψ1

[
(1− χ + γ + δ,−1)
(1− χ + γ,−1)

∣∣∣∣− (n + 1)eω

]
Iδ
+

(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2πωχ+δ−1

∞
∑

n=0
1Ψ1

[
(χ, 1)

(δ + χ, 1)

∣∣∣∣− (n + 1)eω

]
Iδ
−
(
ωχ−1L{Γ(s)ζ(s); ω}

)
= 2πωχ+δ−1

∞
∑

n=0
1Ψ1

[
(1− δ− χ,−1)
(1− χ,−1)

∣∣∣∣− (n + 1)eω

]
Dδ

0+
{

ωχ−1L(Γ(s)ζ(s); ω)
}
= 2πωχ−1−δ

∞
∑

n=0
1Ψ1

[
(χ, 1)

(χ− δ, 1)

∣∣∣∣− (n + 1)eω

]
Dδ
−
{

ωχ−1L(Γ(s)ζ(s); ω)
}
= 2πωχ−1−δ

∞
∑

n=0
1Ψ1

[
(δ− χ + 1,−1)
(1− χ,−1)

∣∣∣∣− (n + 1)eω

]

Remark 2. It is mentionable that the succeeding result involving the products of a large class of
special functions is because of (26) and (27):

∫ 1
0

ωρ−1

exp(eω)−1 Hm,0
m,m

ω

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dω

= ωρ−1
∞
∑

n=0
mΨm

 (
γk + 1− 1

βk
, 1

βk

)m

1(
γk + δk + 1− 1

βk
, 1

βk

)m

1

∣∣∣∣∣∣− (n + 1)eω

.

(32)

Remark 3. Using the principle of mathematical induction for (23), it can be proved that

∞

∑
n=0

pΨq

[
(ai, Ai)
(bj, Bj)

;−(n + 1)eω

]
=

∞

∑
n,l=0

(−(n + 1))l

l! pΨq

[
(ai, Ai)
(bj, Bj)

; lω
]

. (33)
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3.2. Formulation of Fractional Kinetic Equation Involving Riemann Zeta-Function

The use of non-integer operators has emerged recently in the different disciplines of
engineering and the physical sciences [35–40]. For instance, the fractional kinetic equation
is important to investigate the theory of gases, aerodynamics, and astrophysics [41–48].
By reviewing the literature, it is found that the fractional kinetic equation comprising the
Riemann zeta function is not formulated. The main purpose of this section is to formulate
and solve this problem.

The change in the rates of production using subsequent kinetic equations to analyze
the reaction and destruction is described in [41]:

dε
dt

= −d(εt) + p(εt), (34)

where εt is given by εt(t∗) = ε(t− t∗), t∗ > 0. Further to this ε = ε(t) = change in
reaction, d = d(ε) = change in destruction, and p = p(ε) = change in production. The
following is obtainable by ignoring the spatial fluctuation and inhomogeneity of ε(t) with
the concentration of species, εj(t = 0) = ε0:

dεj

dt
= −cjεj(t). (35)

Next, ignoring subscript j and integrating (35) yields

ε(t)− ε0 = −c I−1
0+ε(t).

The non-integer-order kinetic equation is due to [41]:

ε(t)− ε0 = −cδ Iδ
0+ε(t), (36)

where Iδ
0+, δ > 0 is the Riemann–Liouville fractional integral, c is a constant, and its Laplace

transform is given by
L
{

Iδ
0+ε(t); ω

}
= ω−δε(ω). (37)

Following to Haubold and Mathai [41], we next formulate and solve the fractional
kinetic equation so that for any integrable function f(t), we have

ε(t)− f (t)ε0 = −dδ Iδ
0+ε(t). (38)

In light of this discussion, the fractional kinetic equation involving the Riemann zeta
function is formulated and solved in Theorem 2. This becomes possible only due to the
Reimann zeta-function’s new representation involving the delta function; otherwise, the
Laplace transform is not found before the w.r.t variable s (see [49]).

Theorem 2. For δ > 0 , the solution of a given fractional kinetic equation containing the Riemann
zeta function is

ε(t)− ε0Γ(t)ζ(t) = −dδ Iδ
0+ε(t) (39)

ε(t) =
2πε0

t

∞

∑
n,l,p=0

(−(n + 1))l
(

l
t

)p

l!p!
Eδ,−p

(
−dδtδ

)
. (40)

Proof. Applying Laplace’s transformation to (39) and making use of (25) as well as
(37) gives

ε(ω) = 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp −

(ω

d

)−δ
ε(ω). (41)
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Therefore, we have

ε(ω)

[
1 +

(ω

d

)−δ
]
= 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp, (42)

and

ε(ω) = 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp

∞

∑
m=0

[
−
(ω

d

)−δ
]m

. (43)

By considering δm− p > 0; δ > 0 and using L−1{ω−δ; t
}
= tδ−1

Γ(δ) , the inverse Laplace
transform of (43) is given by

ε(t) = 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
t−p−1 ×

∞

∑
m=0

(
−dδtδ

)m

Γ(δm− p)
. (44)

Lastly, making use of (19) in the above equation (44) provides the solution as stated in
(39) and (40). �

Remark 4. It can be noted that the solution methodology of Theorem 2 is in line with the existing
methods [41–48], and, as expected, the reaction rate ε(t) contains the Mittag–Leffler function
governed by the non-integer parameter δ. Furthermore, the sum over the coefficients in (40) is
well-defined and can be computed as follows:

C(t) =
∞

∑
n,l,p=0

(−(n + 1))l
(

l
t

)p

l!p!
=

1

exp
(

e
1
t

)
− 1

. (45)

Likewise, lim
t→∞

C(t) = 1
exp(1)−1 and lim

t→0
C(t) = 0.

3.3. Further New Properties of the Riemann Zeta function as a Distribution

The Dirac delta function is a linear functional, which transforms each function to its
value at zero. Hence, using (4), we have

∫
sεC

℘(s)Γ(s)ζ(s)ds = 2π
∞

∑
n,l=0

(−(n + 1))l

l!
δ(s + l),℘(s) = 2π

∞

∑
n,l=0

(−(n + 1))l

l!
℘(−l), (46)

or, for a real t, using (24), we have

∫
tεR

℘(t)Γ(t)ζ(t)dt = 2π
∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
δ(p)(t),℘(t) = 2π

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
(−1)p℘(p)(0) (47)

and from the above equations it follows that the most properties that hold for the delta
function will also hold for the Riemann zeta-function. It can be noted that the sum over the
co-efficient in (46) and (47) is finite and well-defined, as well as rapidly decreasing. This
sum also defines a new transform named the zeta transform, and the following formulae
given in Table 2 and many others can be obtained using it.

Table 2. Zeta Transform.

Function Zeta Transform

eat 2π
exp(e−a)−1

sinat IMG
(

2π
exp(e−ia)−1

)
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Table 2. Cont.

Function Zeta Transform

cosat Re
(

2π
exp(e−ia)−1

)
Eα(s) 2π

∞
∑

n,l=0

(−(n+1))l

l! Eα(−l)

Kv (s) [McDonald function [4]] 2π
∞
∑

n,l=0

(−(n+1))l

l! Kv(−l)

Hr,0
r,r

ξ

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)r

1(
γk + 1− 1

βk
, 1

βk

)r

1

 2π
∞
∑

n,l=0

(−(n+1))l

l! Hr,0
r,r

−l

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)r

1(
γk + 1− 1

βk
, 1

βk

)r

1



The purpose of the remaining section is to enlist the new properties of the Riemann zeta
function as a distribution by following the concepts and methodology of [23] (Chapter 7,
pp. 199–207), which is achieved due to the zeta function’s new representations (4) and
(24) in terms of the delta function. First note that the frequently used test functions [22,23]
are of either compact support, or they are rapidly decreasing as well as infinitely differen-
tiable. These domains of test functions are commonly denoted by D and S , respectively,
and their codomains are the spaces D′ and S ′ (also known as their dual spaces). Actually,
D and D′ are not closed w.r.t Fourier transforms, but S and S ′ are closed. Another space
of test functions is denoted by Z , which is the space of the analytic and its entire functions.
Hence, Fourier transforms of the elements of D′ to belong to Z ′, which is dual to Z , and
Fourier transforms of the elements of –Z into D [22,23]. Therefore, the Fourier transform as
well as its inverse are continuous linear functionals from D′ to Z ′ ([23], p. 203). Since the
complex delta function is an element of Z ′, from (4), it is therefore obvious that Γ(s)ζ(s) is
also an element of Z ′. In light of this discussion, the following theorem follows.

Theorem 3. Suppose f is a distribution of bounded support; then,

F
[

f (y) ∗
√

2πeσy

exp(ey )− 1
; s

]
= F [ f (s)]Γ(s)ζ(s). (48)

Proof. Because Γ(s)ζ(s) ∈ Z ′ and F ;F−1 are continuous linear functionals from D′ to Z ′.
Further, we have [14], Equation (42):

F
[ √

2πeσy

exp(ey)− 1
; τ

]
= Γ(s)ζ(s); (s = σ + iτ). (49)

Therefore,
√

2πeσy

exp(ey )−1 is an element of D′ being a Fourier transform of an element of space
Z ′. Hence, the proof of the result (48) is complete using ([23], p. 206, Theorem 7.9.1). �

Example 1. Consider a function f with bounded support defined by

f (y) =

{
1 |y| < 1
0 |y| ≥ 1

(50)

Then, according to Theorem 3,

F
[

f (y) ∗
√

2πeσy

exp(ey )− 1

]
= F [ f (y); s]F

[ √
2πeσy

exp(ey )− 1
; s

]
=

sins
s

Γ(s)ζ(s), (51)
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yields a valuable consequence of distributional representation.
Continuing in this way, we can apply the elements of distributions to the Riemann zeta

function using its distributional representation (4) and (24). Some of these are listed below
in Table 3, and it is mentionable that the proof of all these properties simply follows from the
properties of the delta function and are therefore omitted. Here, we restrict these over the
space of complex analytic functions ℘(s)εZ , as defined in [22,23], but these properties may
hold for a large space of test functions, and it is supposed that c1, γ, and c2 are constants.

Table 3. Properties of Riemann Zeta function as a distribution.

addition with an arbitrary distribution f 〈Γ(s)ζ(s) + f , ℘(s)〉 = 〈Γ(s)ζ(s),℘(s) + f , ℘(s)〉
multiplication with an arbitrary constant c1 〈c1Γ(s)ζ(s),℘(s)〉 = 〈Γ(s)ζ(s), c1℘(s)〉
shifting by an arbitrary complex constant γ 〈Γ(s− γ)ζ(s− γ),℘(s)〉 = 〈Γ(s)ζ(s),℘(s + γ)〉

transposition 〈Γ(−s)ζ(−s),℘(s)〉 = 〈Γ(s)ζ(s),℘(−s)〉
multiplication of the independent variable with a

positive constant c1
〈Γ(c1s)ζ(c1s),℘(s)〉 = 〈Γ(s)ζ(s), 1

c1
℘
(

s
c1

)
〉

distributional differentiation 〈 dk

dsk (Γ(s)ζ(s)),℘(s)〉 =
∞
∑

n,l=0

(−(n+1))l

l! (−1)k℘k(−l)

distributional Fourier transform 〈F [Γ(s)ζ(s)],℘(s)〉 = 〈Γ(s)ζ(s),F [℘](s)〉
duality property of Fourier transform 〈F [Γ(s)ζ(s)],F [℘(s)]〉 = 〈2πΓ(s)ζ(s),℘(−s)〉

Parseval’s identity of Fourier transform
〈F [Γ(s)ζ(s)],F [℘(s)]〉 = 〈F [Γ(s)ζ(s)],F [℘(s)]〉 =

2π〈[Γ(σ)ζ(σ)] , [℘(σ)]〉; σ = <(s)

differentiation property of Fourier transform 〈F
[

dk

dsk (Γ(s)ζ(s))
]
,℘(s)〉 = 〈(−it)mΓ(s)ζ(s),F [℘](s)〉

Taylor series 〈Γ(s + c1)ζ(s + c1),℘(s)〉 = 〈
∞
∑

n=0

(c1)
n

n!
dn

dsn (Γ(s)ζ(s)),℘(s)〉

Convolution property Γ(t)ζ(t) ∗ f (t)= 2π
∞
∑

n,l=0

(−(n+1))l(l)p

l!p!
dp

dtp ( f (t))

Γ(s)ζ(s) ∗ exp(as) 2πeas

exp(ea)−1

4. Conclusions

The calculation of the images of special functions using the fractional calculus op-
erators has emerged as a popular subject. In this research, we have obtained fractional
calculus images involving Riemann zeta-functions and their simpler cases. Specifications
of these results were discussed for m = 3, m = 2, and m = 1. It is reasonable to verify,
in view of (25), that Theorems 3 and 4 of [24] are applicable, and the main result (27) and
its several special cases are completely verifiable with these theorems. A new fractional
kinetic equation involving the Riemann zeta function was formulated and solved. A newly
obtained representation of the Riemann zeta function and its Laplace transform has played
a crucial role in accomplishing the goals of this research. Certain distributional properties of
the Riemann zeta function and examples were also discussed. We hope that this confluence
of distribution theory and the function of analytic number theory will have far-reaching
applications in the future.
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Appendix A

Related Special Cases to (10)
Case 1: Marichev–Saigo–Maeda fractional integral operator

First of all, let us consider the case m = 3 and further take β1 = β2 = β3 = β = 1 in
(10). Then, the kernel of (10) will reduce to a special case of the H-function H3,0

3,3 that has the
following relation with the Meijer G-function G3,0

3,3–function and the Appel function (Horn
function) F3 ([2], Vol. 1):

H3,0
3,3

(
t
x

)
= G3,0

3,3

[
t
x

∣∣∣∣∣ γ1
′
+ γ2

′
, δ–γ1, δ –γ2

γ1
′
, γ2

′
, δ–γ1 − γ2

]
=

x−γ1

Γ(δ)
(x− t)δ−1t−γ1

′
F3

(
γ1, γ1

′, γ2, γ2
′, δ; 1− t

x
; 1− x

t

)
(A1)

where

F3
(
γ1, γ1

′, γ2, γ2
′, δ; u; v

)
=

∞

∑
k,l=0

(γ1)k(γ1
′)l(γ2)k(γ2

′)l
(δ)l+m

uk

k!
vl

l!
, max(|u|, |v|) < 1. (A2)

Hence, due to (A1), for the complex parameters γ1, γ1
′, γ2, γ2

′, < (δ) > 0, the
Marichev–Saigo–Maeda fractional integral operator of integration (see ([2], Vol. 1) is
also [31–34]) defined as

(
Iγ1,γ1

′ ,γ2,γ2
′ ,δ

0+ f
)
(x) =

x−γ1

Γ(δ)

∫ x

0
(x− t)δ−1t−γ1

′
F3

(
γ1, γ1

′, γ2, γ2
′, δ; 1− t

x
; 1− x

t

)
f (t)dt (A3)

and

(
Iγ1,γ1

′ ,γ2,γ2
′ ,δ

0− f
)
(x) =

t−γ1
′

Γ(δ)

∫ ∞

x
(x− t)δ−1t−γ1 F3

(
γ1, γ1

′, γ2, γ2
′, δ; 1− x

t
; 1− t

x

)
f (t)dt. (A4)

Both of the above forms have significant importance. Furthermore, it is now obvious
from (20)–(23) that the Marichev–Saigo–Maeda fractional integral operator is related to
the multiple E–K fractional integral operators as given in (10) for m = 3. The Marichev–
Saigo–Maeda fractional integral operator can also be expressed as a composition of three
commutable classical E–K integrals (see Kiryakova [24,25]) as follows:

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0+ f (x) = I(0,δ−γ1−γ1

′−γ2,γ2
′−γ1

′),(γ2
′ ,γ2,δ−γ2−γ2

′)
(1,1,1),3 f (x) = I(0,γ2

′)
1 I(δ−γ1−γ1

′−γ2,γ2)
1 I(γ2

′−γ1
′ ,δ−γ2−γ2

′)
1 f (x) (A5)

Many such representations are found (see Kiryakova [24,25] and cited references)
because of the symmetry of variables γ1, γ1

′ and γ2, γ2
′ in F3, as well as the symmetry in

the upper and lower rows of the G-function in (A-1). Hence, the following result holds true
in view of (A1)–(A4) and (10) (see also [31–34]).

Let γ1, γ1
′, γ2, γ2

′ ∈ C, ω > 0 ∧<(χ) > max{0, <(γ1 + γ1
′ + γ2 – δ), <(γ1

′ − γ2
′)},

<(δ) > 0, then

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0+

(
ωχ−1

)
=

Γ(χ)Γ(χ + δ− γ1 − γ1
′ − γ2)Γ(χ + γ2

′ − γ1
′)

Γ(χ + γ2′)Γ(χ + δ− γ1 − γ1
′)Γ(χ + δ− γ1

′ − γ2)
ωδ+χ−γ1−γ1

′−1 (A6)
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Similarly, let γ1, γ1
′, γ2, γ2

′ ∈ C, ω > 0, and if <(δ) > 0, <(χ) < 1 + min
{<(−γ2),<(γ1 + γ1

′ − δ), <(γ1 + γ2
′ − δ)}; then, the following image formula holds

true in view of (A1)–(A4) and (10) (see also [31–34]):

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0−

(
ωχ−1

)
=

Γ(1− χ− δ + γ1 + γ1
′)Γ(1− χ + γ1 + γ2

′ − δ)Γ(1− χ− γ1)

Γ(1− χ)Γ(1− χ + γ1 + γ1
′ + γ2 + γ2′ − δ)Γ(1− χ + γ1 − γ2)

ωδ+χ−γ1−γ1
′−1 (A7)

Case 2: Saigo fractional operator
Next, let us consider the case m = 2 with β1 = β2 = β > 0.; then, the kernel-functions

of (10) reduce to the Gauss function [24]:

H2,0
2,2

σ

∣∣∣∣∣∣
(

γ1 + δ1 + 1− 1
β , 1

β

)
,
(

γ2 + δ2 + 1− 1
β , 1

β

)(
γ1 + 1− 1

β , 1
β

)
,
(

γ2 + 1− 1
β , 1

β

)  = G2,0
2,2

[
σβ

∣∣∣∣ γ1 + δ2, γ2 + δ2
γ1γ2

]
= β

σβγ2(1 – σβ)
δ1+δ2−1

Γ(δ1+δ2) 2F1
(
γ2 + δ2 − γ1, δ1; δ1 + δ2; 1− σβ

) (A8)

For the purpose of this investigation, let us focus on two fractional integral operators
that are defined for γ1, γ2, δ ∈ C with x;<(δ) > 0 by Saigo [33], which can also be obtained
by taking β = 1; σ = t

x and then σ = x
t , also appropriately specifying the other parameter

values δ1 + δ2 = δ; δ1 = −γ1 in (A1) and (A8) (see also [31,32]).

Iγ1,γ2,δ
0+ =

x−δ−γ1

Γ(δ)

∫ x

0
(x− t)δ−1

2F1

(
δ + γ2 ,−γ1; δ; 1− t

x

)
f (t)dt (A9)

and

Iγ1,γ2,δ
− ( f (x)) =

1
Γ(δ)

∫ ∞

x
(t− x)δ−1t−δ−γ1

2F1

(
δ + γ2 ,−γ1; δ; 1− x

t

)
f (t)dt (A10)

where 2F1 represents the Gauss hypergeometric function given by (see [34]):

2F1(γ1, γ2, γ3; u) =
∞

∑
k=0

(γ1)k(γ2)k
(γ3)k

uk

k!
, |u|< 1; |u| = 1(u 6= 1),<(γ3 − γ1 − γ2) >0. (A11)

The Appell function F3 diminishes to 2F1 (Gauss hypergeomatric function) and also
contends the following relationships (see [34], p. 301, Equation 9.4):

F3(γ1, δ− γ1, γ2, δ− γ2; δ; u; v) = 2F1(γ1, γ2; δ; u + v− uv)
and

F3(0, γ1
′, γ2, γ2

′, δ) = 2F1(γ1, γ2; δ; x); F3(γ1, 0, γ2, γ2
′, δ) = 2F1(γ1

′, γ2
′, δ; y)

(A12)

Hence, the relation of the Marichev–Saigo–Maeda (A3) and (A4) and the Saigo frac-
tional integral operators (A9) and (A10) is obvious using (31) for γ1 = 0∨ γ

′
1 = 0, where

both equations also interrelated with (10) in view of (A1) and (A8). Hence using these facts
for (10) and (A9), we have (see also [31–34]):

Iγ1,γ2,δ
0+

(
ωχ−1

)
=

Γ(χ)Γ(χ + γ2 − γ1)

Γ(χ− γ2)Γ(χ + δ + γ2)
ωχ−γ1−1,(γ1, γ2, δ ∈ C ;<(δ,) > 0,<(χ) > max[0,<(γ1 − γ2)]). (A13)

Similar to (A13), we have the following right-handed formula (see also [31–34]):

Iγ1,γ2,δ
−

(
ωχ−1) = Γ(γ1−χ+1)Γ(γ2−χ+1)

Γ(1−χ)Γ(γ1+γ2+δ−χ+1)ωχ−γ1−1;
γ1, γ2, δ ∈ C∧ <(δ) > 0∧ <(χ) < 1 + min[<(γ1),<(γ2)].

(A14)

Case 3: Erdélyi–Kober (E–K) and the Riemann–Liouville (R–L) fractional operator
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Let us consider m = 1 in (10); then, the kernel function of (10) becomes

H1,1
1,0

σ
∣∣∣∣∣∣
(

γ + δ, 1
β

)(
γ, 1

β

)  = βσβ−1G1,1
1,0

[
σβ

∣∣∣∣ γ + δ
γ

]
= β

σβγ+β−1(1 – σβ
)δ−1

Γ(δ)
(A15)

and one can obtain the classical fractional operators, namely, the Erdélyi–Kober
(E–K) operators:

Iγ,δ
β f (z) =

1
Γ(δ)

∫ 1

0
σγ (1− σ)δ−1 f

(
zσ

1
β

)
dσ, δ ≥ 0, β > 0, γ ∈ R. (A16)

Further, for γ1 = 0, γ2 = γ, the Saigo operators (A9) and (A10) reduce the other frac-
tional operators, namely, the Erdélyi–Kober integrals defined for complex γ, δ ∈ C, <(δ) > 0,
(see also [31–34]):

I0,γ,δ
0+ ( f (x)) =

(
Iγ,δ
0+ f

)
(x) =

x−δ−γ

Γ(χ)

∫ x

0
(x− t)δ−1tγ f (t)dt (x > 0) (A17)

I0,γ,δ
0− ( f (x)) =

(
Iγ,δ
0− f

)
(x) =

xγ

Γ(χ)

∫ ∞

x
(t− x)δ−1t−δ−γ f (t)dt (x > 0) (A18)

It is obvious that (A17) and (A18) are also obtainable from (A16) for specific values of
β = 1; σ = t

x and then σ = x
t . Similarly, the Saigo operators are also related with the E–K

and the Riemann–Liouville (R–L) operators:

I0,γ,δ
0+ ( f (x)) = Iγ1,0,δ

0+ ( f (x)); Iγ,δ
0+ ( f (x)) = Iγ,δ

0− ( f (x));<(δ) > 0 (A19)

Continuing in this way, if γ1 = −δ, the Saigo operators (A9) and (A10) reduce to
the Riemann–Liouville (R–L) operators (see also [31–34]). The classical left-hand-sided
Riemann–Liouville fractional integrals Iδ

0+ and right-hand-sided Riemann–Liouville frac-
tional integrals Iδ

− of order δ ∈ C, <(δ) > 0 are defined by [7–9]:

Iδ
0+( f (x)) =

1
Γ(δ)

∫ x

0
(x− t)δ−1 f (t)dt (x > 0) (A20)

and
Iδ
−( f (x)) =

1
Γ(δ)

∫ ∞

x
(x− t)δ−1 f (t)dt (x > 0) (A21)

respectively. These are also related to the Weyl transform [7–9]. It can be noted that (A20)
and (A21) are also obtainable from (A16) for specific values of the involved parameters.
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