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Abstract—Probabilistic Automata (PAs) are a recognized
framework for modeling and analysis of nondeterministic sys-
tems with stochastic behavior. Recently, we proposed Abstract
Probabilistic Automata (APAs)—an abstraction framework for
PAs. In this paper, we discuss APAs over dissimilar alphabets, a
determinisation operator, conjunction of non-deterministic APAs,
and an APA-embedding of Interface Automata. We conclude
introducing a tool for automatic manipulation of APAs.

I. INTRODUCTION

Probabilistic Automata (PAs), proposed by Segala [1],

are a mathematical framework for rigorous specification and

analysis of non-deterministic probabilistic systems, or more

precisely systems that combine concurrent behaviour with

discrete probabilistic choice. PAs are akin to Markov decision

processes (MDPs). A detailed comparison with models such

as MDPs, as well as generative and reactive probabilistic

transition systems is given in [2]. PAs are recognized as an

adequate formalism for various applications including random-

ized distributed algorithms and fault tolerant systems [3], [4],

[5], [6], [7].

Recently [8], we have proposed Abstract Probabilistic Au-

tomata (APAs), that is a compact abstraction formalism for

sets of PAs. The model is a marriage between our new

abstract model for Markov chains [9] and modal automata, an

abstraction for non-deterministic systems promoted by [10]

and [11]. In an APA, non-deterministic behaviors are typed

with may and must modalities. The must modalities identify

those behaviors that must be present in any implementation,

while the may modalities refer to those behaviors that are

allowed to be omitted in an implementation. In APAs, proba-

bility distributions that govern the successor states are replaced

by set of distributions, each of them representing a possible

implementation of the abstraction.

One of the major contributions of [8] was to develop the first

specification theory for PAs. This includes a satisfaction rela-

tion (to decide whether a PA is an implementation of an APA),

a consistency check (to decide whether the specification admits

an implementation), a refinement (to compare specifications in

terms of inclusion of sets of implementations), logical compo-

sition (to compute the intersection of sets of implementations),

and structural composition (to combine specifications). Our

framework also supports incremental design [12]. In addition,

we have proposed an abstraction mechanism that allows to

simplify the design in an aggressive manner.

While the theory is already quite complete, some fundamen-

tal aspects have to be improved in order to make it attractive

from a design point of view. First, our theory assumes that

non-stochastic behaviors of the components are defined over

the same alphabets. In various contexts this assumption is

unrealistic. Indeed, one should be able to combine the existing

design with new components whose ports and variables are not

yet specified [13].

Second, the conjunction operation has only been defined for

those systems whose non-stochastic behaviors are described

in a deterministic manner. Again, from the practical point

of view, one should be capable of handling non-determinism

inherent to transition systems and concurrency.

Third, the existing composition operator for APAs as-

sumes closed system composition, inhibiting reasoning about

open systems. Support for open systems, enables incremental

modeling and allows reasoning not only about stochastic

components, but also about the requirements for their usage

(environment).

The aim of this paper is to propose solutions to the above

mentioned problems. Our contributions are described below.

• We extend the theory of APAs to support specifications

over dissimilar alphabets. The principle is similar to

what has been proposed for modal automata in [10].

Unfortunately due to interweaving of probabilistic and

non-deterministic choices, proofs of correctness of [10]

could not be reused.

• We show that the definition of conjunction proposed in [8]

is too strong for non-deterministic APAs. We propose a

more general construction that corresponds to the greatest

lower bound with respect to a new refinement relation,

more precise than refinements introduced before [8].

This result is of additional theoretical interest. In [14] we

have shown that such greatest lower bound generally does

not exist for modal automata. Nevertheless it was possible

to introduce it for APAs, which contain modal automata.

The new construction works for modal automata encoded

as APAs, because it potentially produces an APA which

is not an encoding of any modal automaton.

• We present a determinization algorithm that given an APA

whose non-stochastic behaviors are non-deterministic,

computes its deterministic abstraction. We also show that

there are APAs for which there exists no deterministic

APAs accepting the same set of models (so determiniza-
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tion must be lossy). This lossiness of the abstraction

further motivates the need for the weaker conjunction

operator mentioned above.

• We propose a translation of APAs to Abstract Proba-

bilistic Interfaces (API) that is a stochastic extension of

the classical game-based interface automata proposed by

de Alfaro et al. APIs are similar to the stochastic I/O

automata of Lynch except that they encompass a game-

based semantics that allows for an optimistic composi-

tion. Given two APIs, one can compute the environment

in where they can work together in a proper manner.

• We introduce the APAC tool, in which the APA theory

has been implemented. APAC relies on the SMT solver

Z3 [15] for checking relations between the probability

distributions of the components. To the best of our

knowledge, this is the first implementation of a theory

that proposes both logical and structural compositions for

Probabilistic Automata.

II. BACKGROUND

We now briefly introduce the specification theory of Ab-

stract Probabilistic Automata as presented in [8]. We begin

with the notion of a probabilistic automaton [1]. Let Dist(S)
denote a set of all discrete probability distributions over a finite

set S, and let B2 = {⊤,⊥}. Then:

Definition 1: A probabilistic automaton (PA) is a tuple

(S,A,L,AP, V, s0), where S is a finite set of states with

the initial state s0 ∈ S, A is a finite set of actions, L:

S × A × Dist(S) → B2 is a (two-valued transition) function,

AP is a finite set of atomic propositions and V : S → 2AP is a

state-labeling function.

For a state s, an action a and a probability distribution µ,

the value of L(s, a, µ) symbolizes the presence (⊤) or absence

(⊥) of a transition from s under action a to a distribution µ
specifying possible successor states. In practice L may be a

partial function—if a value of L is unspecified for a given

combination of arguments, then it behaves as if it was specified

to be ⊥.

Example 1: The top of Figure 1 shows a PA P over the

singleton set of actions A = {a} and atomic propositions

AP = {l,m, n, o}. In the figure, ⊤-transitions are drawn ex-

plicitly, and ⊥-transitions are elided. For example, in P there

is one a-transition from s1 to the distribution [0, 0.2, 0.5, 0.3].

An abstract probabilistic automaton relaxes the above def-

inition to allow describing multiple probabilistic automata

(including their probability distributions) within a single ab-

straction. Let C(S) denote a set of all constraints over discrete

probability distributions over a finite set S; so that each

element ϕ ∈ C(S) describes a set of distributions: Sat(ϕ) ⊆
Dist(S). In this paper we do not fix the language of constraints

used to generate C(S). Instead, we just require that C(S)
is closed under usual Boolean connectives, that it includes

equalities over summations and multiplications of probability

values, and that it allows for existential quantification of

variables. Also let B3 = {⊤, ?,⊥}. Then:

{n} {o}

{l}

s3

s1

s4

0.3

a⊤

s2 {m}

0.2

0.5

P

s′3s′2 s′4 s′5

x3
x2

x4

x5

s′1 {{l}, {m}}N

a?

{{n}} {{n}, {o}}{{m}} {{o}}

ϕx ≡ (x2+x3 ≥ 0.7) ∧ (x4+x5 ≥ 0.2) ∧ (x2+x3+x4+x5 = 1)

Fig. 1: Examples of a PA (top) and of an APA (bottom)

Definition 2: An Abstract Probabilistic Automaton (APA)

is a tuple (S,A,L,AP, V, s0), where S is a finite set of states,

s0 ∈ S, A is a finite set of actions, and AP is a finite set of

atomic propositions. L : S×A×C(S) → B3 is a three-valued

distribution-constraint function, and V : S→ 22
AP

maps each

state in S to a set of admissible labelings.

APAs play the role of specifications in our framework. An

APA transition abstracts transitions of a certain unknown PA,

called its implementation. Given a state s, an action a, and a

constraint ϕ, the value of L(s, a, ϕ) gives the modality of the

transition. More precisely the value ⊤ means that transitions

under a must exist in the PA to every distribution in Sat(ϕ);
? means that these transitions are permitted to exist; ⊥ means

that such transitions must not exist. Again L may be partial.

In practice, as will be seen in later definitions, a lack of value

for given argument is equivalent to the ⊥ value, so we will

sometimes avoid defining ⊥-value rules in constructions to

avoid clutter, and occasionally will say that something applies

if L takes the value of ⊥, meaning that it is either taking this

value or it is undefined. The function V labels each state with

a subset of the powerset of AP, which models a disjunctive

choice of possible combinations of atomic propositions.

We occasionally write Must(s) for the set of all actions a
such that there exists ϕ, so that L(s, a, ϕ) = ⊤, and write

May(s) for the set of all actions b such that there exists ψ, so

that L(s, b, ψ) = ?.

Example 2: An example of an APA N , with the same sig-

nature as the PA P , is shown in the bottom of Figure 1. Again

we follow a graphical convention of eliding ⊥-transitions.

Must (⊤) and may (?) transitions are shown explicitly with

modalities appended to the action label. Here, in the APA N ,

there is one allowed a-transition from N to a constraint ϕx

(specified under the automaton).

A PA is essentially an APA in which every transition

L(s, a, µ) = m is represented by the same modality transition

L(s, a, ϕ) = m with Sat(ϕ) = {µ}, and each state-label

consists of a single set of propositions.

As already mentioned, we relate APA specifications to PAs

implementing them, by extending the definitions of satisfaction
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introduced in [16]. We begin by relating distributions between

sets of states [8]:

Definition 3: Let S and S′ be non-empty sets, and µ, µ′ be

distributions; µ ∈ Dist(S) and µ′ ∈ Dist(S′). We say that µ
is simulated by µ′ with respect to a relation R ⊆ S × S′ and

a correspondance function δ : S → (S′→ [0, 1]) iff

1) For all s ∈ S, δ(s) is a distribution on S′ if µ(s) > 0
2) For all s′ ∈ S′,

∑

s∈S µ(s) · δ(s)(s
′) = µ′(s′),

3) Whenever δ(s)(s′) > 0 then (s, s′) ∈ R.

We write µ ⋐δ
R µ′ meaning that µ is simulated by µ′ with

respect to R and δ, and we write µ ⋐R µ′ iff there exists a

function δ such that µ ⋐δ
R µ′.

Now, the following definition, originating in [8], formally

establishes the roles of PAs and APAs as implementations and

specifications respectively. For a PA P satisfying an APA N
we require that any must-transition of N is matched by a must-

transition of P agreeing with the distributions specified by the

constraint, and any must-transition of P is matched by a may-

or must-transition in N .

Definition 4: Let P = (S,A,L,AP, V, s0) be a PA and

N = (S′, A, L′,AP, V ′, s′0) be an APA. A binary relation

R ⊆ S × S′ is a satisfaction relation iff, for any (s, s′) ∈ R,

the following conditions hold:

1) Whenever L′(s′, a, ϕ′) = ⊤ for some a∈A, ϕ′∈C(S′)
then also L(s, a, µ) = ⊤ for some distribution µ such

that µ ⋐R µ′ and µ′ ∈ Sat(ϕ′).
2) Whenever L(s, a, µ) =⊤ for some a∈A, µ∈Dist(S)

then L(s′, a, ϕ′) is defined with L′(s′, a, ϕ′) 6= ⊥ for

some ϕ′ ∈ C(S′) and µ′ ∈ Sat(ϕ′) such that µ ⋐R µ′.

3) V (s) ∈ V ′(s′).

We say that P satisfies N , denoted P |= N , iff there exists a

satisfaction relation relating s0 and s′0. If P |= N , then P is

called an implementation of (specification) N .

Example 3: The relation R = {(s1s
′
1), (s2s

′
2), (s3s

′
3),

(s4s
′
4), (s4s

′
5)} is a satisfaction relation between P and N

of Fig. 1. It is easy to see that all pairs in R\{(s1, s
′
1)} fulfill

the definition, as they have no outgoing transitions and the

labelings of states inP respect the labeling constraints ofN .

So consider (s1, s
′
1). Condition 2 is satisfied vacuously. Take

µ′ = [0, 0.2, 0.5, 0.15, 0.15] ∈ Sat(ϕx). Let µ = [0, 0.2, 0.5,
0.3] be the distribution of the only a-transition of P . We are

showing that condition 1 above is satisfied, i.e. that µ ⋐R µ′.

This is witnessed by the following correspondance function:

δ(s2, s
′
2) = δ(s3, s

′
3) = 1, δ(s4, s

′
4) = δ(s5, s

′
5) = 0.5, and

δ(si, s
′
j) = 0 for all remaining pairs of states. �

We denote the set of all implementations of N by JNK =
{P | P |= N}. An APA N is said to be consistent iff JNK 6= ∅.

A state s of an APA is called consistent if and only if V (s) 6= ∅
and (L(s, a, ϕ) = ⊤ =⇒ Sat(ϕ) 6= ∅). If all states of N are

consistent then N is consistent, but not necessarily the other

way around.

In [8], a pruning operator β is defined that filters out

distributions leading to inconsistent states, making these states

unreachable. After a single application of β to an APA N ,

it holds that JNK = Jβ(N)K. Pruning itself may introduce

inconsistent states, so we apply β until a fixpoint is reached,

which is guaranteed to happen after a finite number of steps.

We say that an APA N thoroughly refines another APA M iff

JNK ⊆ JMK. Such notion of refinement, although theoretically

satisfying, is not easy to establish algorithmically. For this

reason [8] introduces a more syntactic refinement, called a

weak refinement:

Definition 5: Let N = (S,A,L,AP, V, s0) and N ′ =
(S′, A, L′,AP, V ′, s′0) be APAs. A binary relation R ⊆ S×S′

is a weak refinement relation iff, for all (s, s′) ∈ R, the

following conditions hold:

1) Whenever L′(s′, a, ϕ′) = ⊤ for some action a∈A and

distribution constraint ϕ′ ∈ C(S′) then L(s, a, ϕ) = ⊤
for some distribution constraint ϕ∈C(S) such that ∀µ∈
Sat(ϕ). ∃µ′∈Sat(ϕ′). µ ⋐R µ′

2) Whenever L(s, a, ϕ) 6= ⊥ for some a∈A and ϕ∈C(S)
then L′(s′, a, ϕ′) 6= ⊥ for some constraint ϕ′ ∈ C(S′)
such that ∀µ∈Sat(ϕ). ∃µ′∈Sat(ϕ′). µ ⋐R µ′

3) V (s) ⊆ V ′(s′).

We say that N weakly refines N ′, denoted N � N ′, iff there

exists a weak refinement relation relating s0 and s′0.

The correspondence function δ is not fixed in advance, and

can be chosen for each µ and µ′ separately so that µ ⋐δ
R µ′.

The weak refinement is sound with respect to the thorough

refinement: if N � N ′ then JNK ⊆ JN ′K [8]. It is known

that the two refinements coincide for deterministic APAs if

the initial state admits exactly one labeling: (|V (s0) |= 1) [8].

Definition 6: An APA N = (S,A,L,AP, V, s0) is deter-

ministic if it satisfies the following two conditions:

[action-determinism] An action determines the successor: ∀s∈
S.∀a∈A.|{ϕ∈C(S) | L(s, a, ϕ) 6=⊥}|≤1.

[labeling-determinism] Labels discern possible successor

states: ∀s∈S.∀a∈A.∀ϕ∈C(S) if L(s, a, ϕ) 6= ⊥ then:

∀µ′, µ′′ ∈ Sat(ϕ), s′, s′′ ∈ S.

(µ′(s′) > 0 ∧ µ′′(s′′) > 0 ⇒ V (s′) ∩ V (s′′) = ∅) .

Example 4: The APA N in Fig. 1 is action-deterministic,

but not labeling-deterministic. The distributions µ′ =
[0, 0.4, 0.4, 0.1, 0.1], µ′′ = [0, 0.5, 0.2, 0.3, 0) are both in

Sat(ϕx) and give positive probability to s′3 and s′4, respec-

tively, while their labeling constraints intersect on {{n}}.

To conclude this section, we present the definition of parallel

composition, which is known to be a precongruence with

respect to weak refinement [8].

Definition 7: Let N = (S,A,L,AP, V, s0) and N ′ =
(S′, A′, L′,AP′, V ′, s′0) be APAs with AP∩AP′ = ∅. The par-

allel composition of N‖ĀN
′ with respect to a synchronization

set Ā ⊆ A∩A′ is given as N‖ĀN
′ = (S×S′, A∪A′, L̃,AP∪

AP′, Ṽ , (s0, s
′
0)) and
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1) For each a ∈ Ā

∃ϕ.L(s, a, ϕ) 6= ⊥ ∀ϕ′. L′(s′, a, ϕ′) 6= ⊥

L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) ⊓ L′(s′, a, ϕ′)
(1)

∀ϕ.L(s, a, ϕ) = ⊥ ∨ ∀ϕ′. L(s′, a, ϕ′) = ⊥

∀ϕ̃′.L̃((s, s′), a, ϕ̃′) = ⊥
(2)

where ϕ̃ ∈ C(S × S′) is so that µ̃ ∈ Sat(ϕ̃) iff there

exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) such that µ̃(u, v) =
µ(u) · µ′(v) for all u ∈ S and v ∈ S′.

2) For each a ∈ A \A′:

Sat(ϕ̃) = {µ̃ | µ̃(·, s′)∈Sat(ϕ), µ̃(u, v)=0 for v 6= s′}

L̃((s, s′), a, ϕ̃) = L(s, a, ϕ)

3) And symmetrically for each a ∈ A′ \A:

Sat(ϕ̃′) = {µ̃′ | µ̃′(s, ·)∈Sat(ϕ′), µ̃′(u, v)=0 for u 6= s}

L̃((s, s′), a, ϕ̃′) = L′(s′, a, ϕ′)

4) Ṽ ((s, s′)) = {B∪B′ | B∈V (s) and B′∈V ′(s′)}.

III. EXTENSIONS OF ALPHABETS

So far, the specification theory of APAs has required that

all specifications share same alphabets of actions and labels.

We are now going to lift this restriction, by introducing the

alphabet extension mechanism. Just like for modal transition

systems [17], for which there exist two ways of extending

signatures [13], for APAs it is also necessary to choose the

modality of transitions for new actions introduced, depending

on the operation being applied to the result.

The weak extension is used when conjoining specifications

with different signatures. This extension adds may loop tran-

sitions for all new actions and extends the sets of atomic

propositions in a classical way:

Definition 8: Let N = (S,A,L,AP, V, s0) be an APA, and

let A′ and AP′ be sets of actions and atomic propositions such

that A⊆A′ and AP ⊆ AP′. Let the weak extension of N to

(A′,AP′) be the APA N⇑(A′,AP′) = (S,A′, L′,AP′, V ′, s0)
such that for all states s ∈ S:

• L′(s, a, ϕ) = L(s, a, ϕ) if a ∈ A,

• L′(s, a, ϕ)= ? if a ∈ A′\A and ϕ only admits a single

point distribution µ such that µ(s) = 1.

• V ′(s) = {B ⊆ AP′ | B ∩ AP ∈ V (s)}.

A different extension, the strong one, is used in parallel

composition. This extension adds must self-loops for all new

actions and extends the sets of atomic propositions in a

classical way. See [18] for a formal definition.

These different notions of extension give rise to different

notions of satisfaction and refinement between structures with

dissimilar sets of actions. Satisfaction (or refinement) between

structures with different sets of actions is defined as the

satisfaction (respectively refinement) between the structures

after extension to a union of signatures.

IV. CONJUNCTION

A. Incompleteness of Conjunction

A conjunction operator combines two specifications into a

single one, ideally describing the intersection of their imple-

mentation sets (so JN∧MK = JNK∩JMK). In [8], conjunction

was only defined for action-deterministic APAs with identical

alphabets. In this paper, we first show that construction is

incorrect for non-deterministic APAs. Then we generalize it

to the non-deterministic case with dissimilar alphabets. Let’s

recall the definition given in [8]:

Definition 9: Let N = (S,A,L,AP, V, s0) and N ′ = (S′,
A, L′,AP, V ′, s′0) be action-deterministic APAs. Their con-

junction is the APA N ∧N ′ = (S×S′, A, L̃,AP, Ṽ , (s0, s
′
0))

where Ṽ ((s, s′)) = V (s)∩V ′(s′) and L̃ is defined as follows.

Given an action a ∈ A and a state (s, s′) ∈ S×S′:

∃ϕ.L(s, a, ϕ) = ⊤ ∀ϕ′. L′(s′, a, ϕ′) = ⊥

L̃((s, s′), a, false) = ⊤
(3)

∀ϕ.L(s, a, ϕ) = ⊥ ∃ϕ′. L′(s′, a, ϕ′) = ⊤

L̃((s, s′), a, false) = ⊤
(4)

∀ϕ.L(s, a, ϕ) 6= ⊤ ∀ϕ′. L′(s′, a, ϕ′) = ⊥

L̃((s, s′), a, ) = ⊥
(5)

∀ϕ.L(s, a, ϕ) = ⊥ ∀ϕ′. L′(s′, a, ϕ′) 6= ⊤

L̃((s, s′), a, ) = ⊥
(6)

L(s, a, ϕ) 6= ⊥ L′(s′, a, ϕ′) 6= ⊥

L̃((s, s′), a, ϕ̃) = L(s, a, ϕ) ⊔ L′(s′, a, ϕ′)
(7)

where ϕ̃ ∈ C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff both

distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ) and

distribution µ′ : t′ →
∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

In [8] it is shown that this construction captures the greatest

lower-bound with respect to weak refinement, i.e. For N , N ′,

and N ′′ action-deterministic consistent APAs over the same

action alphabet we have that:

• β∗(N ∧N ′) � N and β∗(N ∧N ′) � N ′

• If N ′′ � N and N ′′ � N ′ then N ′′ � β∗(N ∧N ′).

At the same time this construction is inadequate for non-

deterministic APAs. Combining one must-transition with sev-

eral may-transitions using the same action is problematic. We

show that the conjunction of non-deterministic APAs, using the

definition above, is not a lower bound with respect to neither

thorough refinement nor weak refinement.

Lemma 1: The construction of Def. 9 is strictly stronger

than the greatest lower bound of the thorough refinement and

of the weak refinement for non-deterministic APAs, in the

following sense:

1) There exists a PA I , and APAs N and N ′ such that

I |= N and I |= N ′ but not I |= N ∧N ′.
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2

1 {{ǫ}}

{{α }{β}}

a⊤

x2

N

ϕx = (x2 = 1) ϕ′
x ≡ (xB = 1)

N ′

xB yC

CB

A {{ǫ}}

{{α }} {{β}}

ϕ′
y ≡ (yC = 1)

a?a?

ϕ′′
y ≡ (y(2,C) = 1)

x(2,B) y(2,C)

a⊤a⊤

{{ǫ}}

{{β}}{{α}}

N ∧N ′

2, B 2, C

1, A

ϕ′′
x ≡ (x(2,B) = 1)

s1

s2

1

{ǫ}

{α}

a⊤

I

Fig. 2: Illustration that conjunction using Definition 9 is not a greatest lower bound.

2) There exists an APA M , such that M � N and M � N ′

but not M � N ∧N ′.

Proof: Figure 2 presents two APAs N = ({1, 2}, {a},
L, {ǫ, α, β}, V, 1) and N ′ = ({A,B,C}, {a}, L′, {ǫ, α, β},
V ′, A) together with their conjunction N ∧ N ′, constructed

according to Definition 9. The rigthmost part of the figure

shows a PA I = ({s1, s2}, {a}, LI , {ǫ, α, β}, VI , s1), which

shows that the conjunction is too strong with respect to the

thorough refinement. It holds that I |= N and I |= N ′, but

I 6|= (N ∧ N ′). The conjunction of N and N ′ has two must

transitions, and the one leading to (2, C) is not fulfilled by I .

For the second part of the theorem it is sufficient to interpret

I as the APA M and the argument follows.

For dissimilar alphabets, conjunction can be treated sepa-

rately from alphabet extension. One first computes the (weak)

alphabet extensions for both APAs, and then compute con-

junction using the above definition 9. Formally:

Definition 10: Let N1=(S1,A1, L1,AP1, V,s1), N2=(S2,
A2, L2,AP2, V2, s2) be action-deterministic APAs. Their con-

junction is the APA N1 ∧ N2 = [N1 ⇑ α] ∧ [N2 ⇑ α], with

α=(A1 ∪ A2,AP ∪ AP′) and ∧ defined as above.

Considering the above definition for APAs with dissimilar

action sets, the following theorem trivially holds.

Theorem 1: Let N1, N2, and N3 be action-deterministic

consistent APAs over action alphabets A1, A2, A3 and atomic

proposition sets AP1, AP2 and AP3 respectively. Let αij =
(Ai ∪Aj ,APi ∪APj), and α123 = (

⋃3
i=1 Ai,

⋃3
i=1 APi). Then:

1) β∗(N1⇑α12 ∧N2⇑α12) � N1⇑α12

2) If N3⇑α123 � N1⇑α123 and N3⇑α123 � N2⇑α123

then N3⇑α123 � β∗(N1⇑α12 ∧N2⇑α12)⇑α123

B. Weak weak Refinement

The weak refinement (Def. 5), along with the so called

strong refinement [8], had been introduced for Constraint

Markov Chains in [9], as syntax directed sound characteri-

zations of thorough refinement. They were then generalized

to APAs in [8] in a “natural” way.

As we see from Lemma 1 the conjunction construction of

[8] is too strong with respect to the weak refinement for non-

deterministic systems. In order to address this problem, one

can (potentially) either weaken the construction or strenghten

the refinement. There are issues with any of the solutions.

First, strengthening the refinement makes it even more strong

with respect to thorough refinement (so it becomes less pre-

cise which is undesirable), and moreover the known strong

refinement [8] still violates Lemma 1 (i.e. it is too coarse).

Second, the natural weakening of the construction gives a

resulting conjunction APA that is too weak with respect to the

weak refinement.

Instead of fine tuning the construction, which could become

very complicated, we decided to explore another possibility:

namely propose a weaker and more precise refinement, the

weak weak refinement, which is designed with APAs (and

not CMCs) in mind. The weak weak refinement approximates

thorough refinement even better than weak refinement, and it

has a naturally characterized greatest lower bound.

In the weak refinement, cf. Def. 5, the correspondence

function is established for two constraints: for each solution

of one, there must be a correspondance to some solution of

the other constraints. Weak weak refinement weakens this

condition by allowing to choose, for each solution of the

first constraint, both a different correspondence function and

a different constraint (transition) to which it will be linked:

Definition 11: Let N = (S,A,L,AP, V, s0) and N ′ = (S′,
A′, L′,AP′, V ′, s′0) be APAs with AP = AP′ and A = A′. A

relation R ⊆ S × S′ is a weak weak refinement relation, iff

for all (s, s′) ∈ R, the following conditions hold:

1) ∀a ∈ A′. ∀ϕ′ ∈ C(S′). L′(s′, a, ϕ′) = ⊤ =⇒ ∃ϕ ∈
C(S). L(s, a, ϕ) = ⊤ and ∀µ ∈ Sat(ϕ). ∃µ′ ∈ Sat(ϕ′)
such that µ ⋐R µ′,

2) ∀a ∈ A. ∀ϕ ∈ C(S). L(s, a, ϕ) 6= ⊥ =⇒ ∀µ ∈
Sat(ϕ). ∃ϕ′ ∈ C(S′). L′(s′, a, ϕ′) 6= ⊥ and ∃µ′ ∈
Sat(ϕ′) such that µ ⋐R µ′, and

3) V (s) ⊆ V ′(s′).

We say that N1 weakly weakly refines N2, denoted N1 �W

N2, iff there exists a weak weak refinement relation relating

s0 and s′0.

It follows directly that weak weak refinement is weaker

than weak refinement and thus strong refinement. For action-

deterministic APAs, weak weak refinement is equivalent to

weak refinement.
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C. Conjunction of Non-deterministic APAs

We thus propose the following definition for conjunction of

possibly non-deterministic APAs.

Definition 12: Let N=(S,A,L,AP, V, s0) and N ′=(S′, A,
L′,AP, V ′, s′0) be APAs sharing action and proposition sets.

Their conjunction N ?N ′ is the APA (S×S′, A∪A′, L̃,AP∪
AP′, Ṽ , (s0, s

′
0)) where Ṽ ((s, s′)) = V (s) ∩ V ′(s′) and

a ∈ (Must(s′)\May(s)) ∪ (Must(s)\May(s′))

L̃((s, s′), a, false) = ⊤
, (8)

a ∈ (May(s)\May(s′)) ∪ (May(s′)\May(s))

L̃((s, s′), a, ϕ̃) = ⊥
, (9)

a∈May(s)∩May(s′) L(s, a, ϕ) 6=⊥ L′(s′, a, ϕ′) 6=⊥

L̃((s, s′), a, ϕ̃) = ?
,

(10)
where ϕ̃ ∈ C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff both

distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ) and

distribution µ′ : t′ →
∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s) L(s, a, ϕ) = ⊤

L̃((s, s′), a, ϕ̃⊤) = ⊤
, (11)

where ϕ̃⊤ ∈ C(S × S′) such that µ̃ ∈ Sat(ϕ̃) iff both

the distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ), and

there exists ϕ′ ∈ C(S′) with L′(s′, a, ϕ′) 6= ⊥ and the

distribution µ′ : t′ →
∑

t∈S

µ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s′) L′(s′, a′, ϕ′) = ⊤

L̃((s, s′), a, ϕ̃′⊤) = ⊤
, (12)

where ϕ̃⊤ ∈ C(S × S′) is such that µ̃ ∈ Sat(ϕ̃) iff both

there exists ϕ ∈ C(S) such that L(s, a, ϕ) 6= ⊥ and the

distribution µ : t→
∑

t′∈S′

µ̃((t, t′)) is in Sat(ϕ), and

the distribution µ′ : t′ →
∑

t∈S µ̃((t, t
′)) is in Sat(ϕ′).

The apparent complexity of the new definition concurs our

experience from specification theories for discrete systems.

For example, in [19] the notion of conjunction is presented

for nondeterministic Modal Automata, resulting in a similar

sophistication for resolving nondeterminism (modal automata

do not contain the probabilistic part).

Example 5: Following the example of Fig. 2, we build the

conjunction of APAs N and N ′ using Definition 12. The APA

N?N ′ is given in Figure 3. Clearly, the PA I given in Figure 2

is an implementation of N ?N ′.

We now give the main result of the section: as expected,

the conjunction operator, given in Definition 12 matches the

greatest lower bound of the weak weak refinement.

ϕ′′
z = (z(2,B) = 1) ∨ (z(2,c) = 1)

ϕ′′
x = (x(2,B) = 1)

ϕ′′
y = (y(2,C) = 1)

1, A

2, C2, B {{α}}

a⊤a?

N ? N ′
{{ǫ}}

a?

y2,C

{{β}}

x2,B

z(2,C)z(2,B)

Fig. 3: APA N ?N ′ obtained using Definition 12

Theorem 2: Let N1, N2, and N3 be consistent APAs shar-

ing action and atomic proposition sets. It holds that

• β∗(N1 ?N2) �W N1 and β∗(N1 ?N2) �W N2.

• If N3�W N1 and N3�W N2 then N3�W β∗(N1 ?N2).

As expected, the new conjunction is weaker than the old

one, thus it gives a more precise result:

Theorem 3: Let N1 and N2 be APAs. It holds that N1 ∧
N2 � N1 ?N2.

Although the new notion of conjunction introduces some

syntactic redundancy with the new must transitions, it agrees

with the notion given in Definition 9 when considering action-

deterministic APAs.

Theorem 4: Let N1 and N2 be action-deterministic APAs.

We have N1 ?N2 � N1 ∧N2.

It follows from Theorems 3 and 4 that [[N1∧N2]] = [[N1?N2]]
for any two action-deterministic APAs N1 and N2.

Finally, just like in the case of action-deterministic APAs,

non-deterministic APAs with dissimilar alphabets can be han-

dled by first equalizing their action and atomic proposition

sets using weak extension.

V. DETERMINISM

In the previous section we have seen that the use of non-

determinism changes expressiveness of APAs with respect

to the known conjunction operator. In fact, non-deterministic

APAs are generally more expressive than deterministic ones.

Fig. 4 presents a non-deterministic APA, whose set of im-

plementations cannot be specified by a single deterministic

APA. States 2 and 3 have overlapping labeling constraints

(so state 1 has nondeterministic behaviour). We cannot put

these states on two separate a-transitions as this introduces

action nondeterminism. We cannot merge them either, as their

subsequent evolutions are different (and for the same reason

we cannot factor {α, γ} to a separate state).

Nevertheless use of deterministic abstractions of non-

deterministic behaviours is an interesting alternative to relying

on more complex refinements and more complex operators.

Below, we present a determinization algorithm that can be

applied to any APA N , producing a deterministic APA ρ(N),
such that: N � ρ(N).

Our algorithm is based on subset construction and it

ressembles the determinization procedure for modal transition

systems described in [20].
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2

3

4

1
x3

x2

a⊤1

a⊤1

{{α, β}}

{{α}}

ϕx

{{α, γ}, {α, β, γ}}
a⊤1

a⊤

ϕx ≡ (x2 = 1) ∨ (x3 = 1)

{{α, γ}{β, γ}}

Fig. 4: A (labeling) nondeterministic APA whose set of

implementations cannot be obtained with a deterministic APA.

Let N = (S,A,L,AP, V, s0) be a (consistent) APA in single

valuation normal form (i.e. for all states s the set V (s) is a

singleton). Given a set of states Q ⊆ S, an action a ∈ A and a

valuation α ∈ AP we define 1-step reachability Reach(Q, a, α)
to be the maximal set of states with valuation α that can be

reached with a non zero probability using a distribution π
satisfying a constraint ϕ such that L(q, a, ϕ) 6= ⊥ for some

q ∈ Q. Formally, Reach : 2S × 2A × 2AP → 2S and:

Reach(Q, a, α) =
⋃

{s ∈ S | V (s) = α and ∃q ∈ Q.

∃ϕ ∈ C(S). ∃µ ∈ Sat(ϕ). L(q, a, ϕ) 6= ⊥ and µ(s) > 0}

We lift this definition to all possible labelings as follows:

Reach(Q, a) = {Reach(Q, a, α) | α ⊆ AP}

Now define the n-step reachability as

Reachn(Q, a) = Reachn−1(Q, a) ∪
⋃

Q′∈Reachn−1(Q,a)

Reach(Q′, a)

where Reach0(Q, a)={Q} and denote its fixpoint as:

Reach∗(Q, a) =
∞
⋃

n=0

Reachn(Q, a).

Now, by construction, the following properties hold:

• For all Q⊆S and a ∈ A, for all Q′, Q′′ ∈ Reach(Q, a),
if Q′ 6= Q′′ then Q′ ∩Q′′ = ∅, and

• For all Q ⊆ S, a∈A and Q′∈Reach∗(Q, a), there exists

α ⊆ AP such that ∀q′ ∈ Q′, we have V (q′) = α.

We will now use the notion of reachability in our determin-

isation construction. As already said, the algorithm works for

APAs in the single valuation normal form. In [8] we show how

every APA can be normalized without changing its semantics.

Definition 13: Let N =(S,A,L,AP, V, s0) be a consistent

APA in single valuation normal form. A deterministic APA

for N is the APA ρ(N)=(S′, A, L′,AP, V ′, {s0}) such that

• S′ =
⋃

a∈A

Reach∗({s0}, a)

• V ′ is such that V ′(Q) = α iff ∀q′∈Q.V (Q) = α. There

always exists exactly one such α by construction

• L′ is defined as follows: Let Q ∈ S′ and a ∈ A.

– If, for all q ∈ Q, we have that ∀ϕ ∈ C(S),
L(q, a, ϕ) = ⊥, then define L′(Q, a, ϕ′) = ⊥ for

all ϕ′ ∈ C(S′).
– Else, define ϕ′ ∈ C(S′) such that µ′ ∈ Sat(ϕ′)

iff (1) ∀Q′ /∈ Reach(Q, a), we have µ′(Q′) = 0,

and (2) there exists q ∈ Q, ϕ ∈ C(S) and

µ ∈ Sat(ϕ) such that L(q, a, ϕ) 6= ⊥ and ∀Q′ ∈
Reach(Q, a), µ′(Q′) =

∑

q′∈Q′ µ(q′). Then define

L′(Q, a, ϕ′) =











⊤ if
∀q ∈ Q, ∃ϕ ∈ C(S) :

L(q, a, ϕ) = ⊤

? else

By construction, ρ(N) is action- and labeling-deterministic.

As expected, determinization is an abstraction. This is formal-

ized in the following theorem.

Theorem 5: Let N be an APA in single valuation normal

form. Then N � ρ(N).

VI. COMPOSITION AND GAMES

So far APAs largely rely on the composition operation

defined for modal transition systems. While, this operation

mimics the classical composition between transition systems,

it does not allow to reason about open systems, when some

transitions are not in system’s control. In a series of work [12],

[21], de Alfaro and Henzinger proposed an approach based

on game theory for doing so. More precisely, they introduced

Interface Automata, or input/output automata [22] with a game

semantic. When composing two such interfaces, the algorithm

identifies bad states in where one of the components can send

an output that cannot be catched by the other one. Then, it

computes the set of states for which there is a possibility to

avoid the set of bad states. Such strategies correspond to the

environments in where the components can work together.

In [19], [23], we have proposed a game semantic to modal

automata by labeling may and must with input and output.

In this section, we extend this setup to APAs. This extension

leads to the first theory for stochastic interface automata—an

optimistic extension of stochastic I/O automata [24].

A. Abstract Probabilistic Interfaces

We begin by introducing profiles as presented in [19].

Definition 14: Given an alphabet of actions A, we define a

profile as a function π : A→{i, o}. We define Ai = {a∈A |
π(a) = i} and Ao={a∈A | π(a)=o}, and write π=(Ai, Ao).

Definition 15: Let π1 = (Ai
1, A

o
1) and π2 = (Ai

2, A
o
2) be

profiles. We define the following operations:

• Refinement: We say that π1 refines π2, denoted π1 �p π2,

if and only if A1 ⊇ A2 and π1(a) = π2(a) for all a ∈ A2

• Composition: If Ao
1 ∩ Ao

2 = ∅, the composition of π1
and π2, denoted π1 ⊗ π2, is defined as the profile π1 ⊗
π2 = (Ai, Ao) over A1 ∪ A2, where Ao = Ao

1 ∪ A
o
2 and

Ai = (Ai
1 ∪A

i
2) \A

o.
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• Conjunction: If π1(a) = π2(a) for all a ∈ A1 ∩ A2, the

conjunction of π1 and π2, denoted π1 ∧ π2, is defined as

Ao = Ao
1 ∪A

o
2 and Ai = Ai

1 ∪A
i
2, where A = A1 ∪A2.

Lemma 2: Let π1 = (Ai
1, A

o
1) and π2 = (Ai

2, A
o
2) be

profiles. If π1(a) = π2(a) for all a ∈ A1 ∩A2, then

1) π1 ∧ π2 �p π1 and π1 ∧ π2 �p π2, and

2) whenever π �p π1 and π �p π2 then π �p π1 ∧ π2.

We are now ready to define Abstract Probabilistic Interfaces,

that are APAs whose transitions are labeled by profiles.

Definition 16: Given an APA N with action set A and a

profile π : A → {i, o}, we call N = (N, π) an abstract

probabilistic interface.

Given an APA N , we use AN and APN to denote the action

and atomic proposition set of N , respectively.

Let I be a PA. Given a profile πI : AI → {i, o} and an

API (N, π), if AI ⊇ AN and API ⊇ APN , we say that I =
(I, πI) satisfies (N, π), denoted I |= (N, π), if and only if

I |= N ⇑ (AI ,API) and πI �p π. We also say that I is

called an implementation of (N, π).
Likewise, let (N ′, π′) be an API. If AN ⊇ AN ′ and

APN ⊇APN ′ , we say that (N, π) refines an (N ′, π′), denoted

(N, π) � (N ′, π′) iff N � N ′ ⇑ (AN ,APN ) and π �p π
′.

Following the presentation in [23] it is possible to express

an arbitrary inteface automaton as an abstract probabilistic

automaton. We refer to [18] for the translation.

B. Parallel Composition of Abstract Probabilistic Interfaces

We now define an optimistic composition for APIs. We start

with the definition of product of two APIs.

Definition 17: Given two APIs N1 = (N1, π1) and N2 =
(N2, π2) with AP1 ∩ AP2 = ∅, we define the product of

N1 = (N1, π1) and N2 = (N2, π2) as N1 ⊗ N2 =
(N1‖A1∩A2

N2, π1 ⊗ π2).

For two APIs N1 and N2 define the set of bad states

badN1⊗N2
as the set of pairs (s1, s2) ∈ S1 × S2 satisfying

one of the two following conditions:

1) There exists a ∈ Ao
1 ∩ Ai

2 and ϕ1 ∈ C(S1) such

that L1(s1, a, ϕ1) ≥ ? and for all ϕ2 ∈ C(S2),
L2(s2, a, ϕ2) 6= ⊤, or

2) There exists a ∈ Ao
2 ∩ Ai

1 and ϕ2 ∈ C(S2) such

that L2(s2, a, ϕ2) ≥ ? and for all ϕ1 ∈ C(S1),
L1(s1, a, ϕ1) 6= ⊤.

Basically, a state of the product is a bad if one of the operands

can send an action that the other operand may avoid to catch.

Example 6: Consider the APIs N1 and N2 given in Fig. 5

and Fig. 6. Their profiles are specified by attaching o and i
letters to transition labels. The API N1 ⊗N2 is given in Fig.

7. Observe that (s1, s
′
2) ∈ badN1⊗N2

. Indeed, the action a is

an output action of N1 and an input action of N2. However,

while there is a may-transition from s1 on a, there is no must-

transition on a from s′2.

We now propose an algorithm that computes the set of states

from where there is a way to reach the set of bad states. Given

a⊤o

a⊤o 1b⊤o
s2 s3

x2s1

{{l1}} {{l1}} {{l1}}

ϕ ≡ (x1 = 0 ∧ x2 ≤ 0.5 ∧ x3 ≥ 0.8 ∧ x2 + x3 = 1)

x3

Fig. 5: N1

a⊤i 1

c?i 1 s′2 s′3s′1

a?i

ϕ ≡ (y2 = 0 ∧ y1 ≥ 0.7 ∧ y3 ≤ 0.4 ∧ y1 + y3 = 1)

{{l2}} {{l2}} {{l2}}

a?i y3

y1

Fig. 6: N2

an API N = (N, π) on state set S and action set A, the

function pre of a set S′ ⊆ S, pre1(S′) is defined as

pre1(S′) = {s ∈ S | ∃a ∈ Ao. ∃ϕ ∈ C(S). ∃µ ∈ Sat(ϕ).

L(s, a, ϕ) ≥ ? ∧ µ(S′) > 0}

We say that pre0(S′) = S′, for k ≥ 0, prek+1(S′) =
pre1(prek(S′)), and pre(S′) =

⋃

k≥0 pre
k(S′).

Definition 18: We say that APIs N1 = (N1, π1) and N2 =
(N2, π2) are compatible, if (s10, s

2
0) 6∈ pre(badN1⊗N2

).

After computing N1⊗N2 and pre(badN1⊗N2
), the product

is relaxed. For each state s∈S and each action a∈A perform

the following: if it is possible to reach one of the states

in pre(badN1⊗N2
) with non-zero probability after issuing a

then redefine s to have only a may-transition on a, with the

constraint containing only a distribution giving probability 1

to a fresh state smay not in S that allows everything but does

not require anything.

Definition 19: Given two compatible APIs N1 = (N1, π1)
and N2 = (N2, π2), we define the composition of N1 and N2,

denoted as N1‖N2, as the API obtained by substituting L and

V in N1 ⊗N2 by L′, a copy of L that is manipulated in the

following way, and V ′, an extension of V : For all (s1, s2) ∈
S1 × S2 and for all a ∈ A, if (s1, s2) 6∈ pre(badN1⊗N2

) and

there exists ϕ ∈ C(S) and µ ∈ Sat(ϕ) such that

L((s1, s2), a, ϕ) ≥ ? ∧ µ(pre(badN1⊗N2
)) > 0

then let L′((s1, s2), a, ϕ) = ⊥ and L′((s1, s2), a, ϕ
′) =

L((s1, s2), a, ϕ), where Sat(ϕ′) = {µ′} and µ′(smay) = 1.

The new state smay, not in S1 × S2, is defined as, for all

a ∈ A, L′(smay, a, ϕ
′′) = ?, where ϕ′′ ∈ C(S) is such that

Sat(ϕ′′) = {µ′′} and µ′′(smay) = 1. The function V ′ is defined

as V ′(s1, s2) = V (s1, s2) for all (s1, s2) ∈ S1 × S2 and

V ′(smay) = 2AP .

Example 7: Returning to Example 6, the parallel composi-

tion of N1 and N2 is obtained as the API in Fig. 8. The profile

of the composition is π1 ⊗ π2 = [a 7→ o, b 7→ o, c 7→ i].
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1c?i

1c?i

1c?i

1a⊤o

s1, s
′
1

{{l1, l2}}

s1, s
′
2

{{l1, l2}}

a?o
z21

a?o

a?o

z31

z33

a?o

z23

s2, s
′
1

{{l1, l2}}

s2, s
′
2

{{l1, l2}}

s2, s
′
3

{{l1, l2}}

s3, s
′
1 s3, s

′
2

{{l1, l2}}{{l1, l2}}

s3, s
′
3

{{l1, l2}}

Fig. 7: N1 ⊗N2

A

1
c?i 1

s1, s
′
1 smay

{{l1, l2}} 2AP

1a⊤o

Fig. 8: N1‖N2

Since (s1, s
′
2) is a bad state it becomes unreachable (and

thus most of other state pairs become unreachable). Instead a

transition to the universal state smay is inserted, modeling the

fact that after receiving c the system becomes unpredictable.

Our composition for APIs satisfies classical theorems of

independent implementability.

Lemma 3: Given two compatible APIs N1 and N2, it holds

that N1 ⊗N2 � N1‖N2.

Theorem 6: Given two compatible APIs N1 and N2, and

two implementations I1 and I2, such that I1 |= N1 and I2 |=
N2, then I1 ⊗ I2 |= N1‖N2.

VII. IMPLEMENTATION

Some of the operations introduced in this paper have been

implemented in a new tool, written in C# 4.0, called APAC.1

To the best of our knowledge, this is the first implementation

effort for stochastic interfaces. Presently the tool relies on the

Z3 solver [15] for solving constraints. The tool implements

the following operations: weak refinement checking, weak

weak refinement checking, determinism checking, pruning

(β∗), alphabet extensions, and conjunction.

Example 8: We present the input format of the tool in an

example. We will be checking weak refinement between two

APAs. The following code example will result in the definition

of two models N1 and N2. The last line specifies that weak

refinement will be checked. Notice, that we require states to

be named with the natural numbers where 1 is the initial state.

Name: N1;

A:(a,b);

AP:(l,m,n,o);

state 1:((l)): a? -> x[1] = 0.0 && x[2] + x[3] >=

7/10 && x[3] + x[4] >= 2/10;

state 2:((m)): b? -> x[1] = 0.0 && x[2] = 0.0 && (x

[3] = 1.0 || x[4] = 1.0);

state 3:((n)): b? -> x[3] = 1.0;

1The tool can be found on www.cs.aau.dk/~mikkelp/apac

state 4:((o)): b? -> x[4] = 1.0;

Name: N2;

A:(a,b);

AP:(l,m,n,o);

state 1:((l)): a? -> x[1] = 0.0 && x[2]+x[3] >= 7/10

&& x[4] + x[5] >= 2/10;

state 2:((m)): b? -> x[3] <= 1.0 && x[4] <= 1.0 && x

[5] <= 1.0 && x[1] = 0.0 && x[2] = 0.0;

state 3:((n)): b? -> x[4] = 1.0;

state 4:((n)): b? -> x[3] = 1.0;

state 5:((o)): b? -> x[5] = 1.0;

check: N1 wref N2;

It takes 179 milliseconds on a typical laptop before APAC

reports that {(1, 1), (2, 2), (3, 3), (3, 4), (4, 5)} is a weak re-

finement relation.

At the moment APAC does not support parallel composition.

This is because its definition requires use of multiplication,

which is not supported by Z3. The situation could have been

the same for refinement, but we have been able to use a

different encoding. The idea is to let the correspondence

functions give the actual value redistributed, and not the pro-

portions. Still, this trick cannot be used for strong refinement,

as defined in [8]. At the moment we do not know, whether

strong refinement can be checked relying solely on solving

linear arithmetic constraints.

We discuss the weak refinement in somewhat more details.

The algorithm is implemented as a coinductive fixpoint itera-

tion. Starting from the full relation, violating pairs are removed

until a fixpoint is reached. Given a pair of states (s, s′) ∈ R
and constraints ϕ and ϕ′, the pseudo-formula, Eq. (13), is

passed to Z3. We invoke quantifier elimination, and since all

variables are quantified, quantifier elimination will evaluate the

formula to true or false.

∀x : ϕ(x) ⇒ ∃δ : S → (S′ → [0, 1]) : (13)

ϕ′

(

t 7→
∑

s∈S

δ(s)(t)

)

∧

∀s ∈ S : xs =
∑

s′∈S′

δ(s)(s′) ∧

∀(s, s′) : [(s, s′) /∈ R∨V (s) 6⊆ V ′(s′)]

⇒ δ(s)(s′) = 0 ∧

∀(s, s′) : [(s, s′) ∈ R∧V (s) ⊆ V ′(s′)]

⇒ 0 ≤ δ(s)(s′) ≤ 1

Notice that, if a pair of states has conflicting labeling, we set

the correspondence function to 0 for this pair. The tool can

also synthesize a witness in case the refinement does not hold.

In order to evaluate the performance of the tool, we gen-

erate "random" APAs and measure the time for performing

operations on these. Given a number of states and whether or

not we are interested in simple or more elaborate constraints,

we generate an APA with an action alphabet A and an atomic

proposition alphabet AP on 5–10 members each, state valua-

tions consisting of up to 0–4 members of 2AP , 1–3 outgoing

transitions for each state on random action and modality, and a
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APA 1 APA 2

states simple states simple time

10 yes 10 yes 10/20/72 ms

10 no 10 no 10/41/1121 ms

10 no 10 yes 20/1046/? ms

10 yes 10 no 18/94/4079 ms

15 yes 15 yes 125/140/? ms

TABLE I: Weak refinement

random choice between constraint designs for each transition.

Given a state i there are three simple constraints and three

more eleborate constraints:

• simple:

– xi+1 ≥ 7/10 ∧ xi+2 ≤ 3/10,

– xi+1 = 7/10 ∧ xi+2 = 3/10, and

– xi+1 = 1.0

• more elaborate:

– xi+1 ≥ 3/10 ∧ xi+1 ≤ 4/10,

– true, and

– xi+1 = 1.0 ∨ (xi+1 ≥ 7/10 ∧ xi+2 ≤ 3/10)

The tests, that are summarized in Table I, are performed on

an x64 Intel Core 2 Duo 2.2 GHz with 4 GB RAM running

Windows 7, using version 2.16 of the Z3 API. The first line

of the table gives execution times for three random input files

(three times are reported, as the experiment was repeated three

times, with different randomly generated instances). In each

input file, weak refinement is checked on two random APAs

on each 10 states with simple constraints.

This procedure is repeated for each line in the table. A

question mark (?) means that the specific random input file

does not stop executing within 5 minutes.

The above results are still preliminary and we hope to

reduce the computation time by adapting classical heuristics

for fixed-point computations [25].

VIII. CONCLUSION

In [8], we have introduced the first complete specification

theory for PAs with a comparison operator and both logical

and structural composition. In this paper, we have strengthened

those results by extending the power of the operators as well

as the expressiveness of the model. The results have been

implemented in APAC, a prototype tool that has been evaluated

on several case studies.

There are many directions for future research. First, one

should pursue the development of APAC by adding the com-

position operators. Heuristics should also be implemented.

Among them, one naturally thinks of the work by Henzinger

et al.[25] that could be adapted to reduce the number of

steps in the fixed-point algorithm for refinement. Another

suggestion would be to adapt bisimulation quotient [26] in

order to minimize the size of the APAs.

Another direction is to develop a generalized model check-

ing procedure for APAs. We postulate that this could be

done by extending results obtained for Hennessy-Milner logic

and modal automata [10]. Finally, we are also considering to

mix the results on APAs with those we obtained on timed

interfaces. This would lead to the first specification theory for

timed systems [27] with a stochastic semantics.
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