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1 Introduction

This paper aims to give a new and more precise determination of the decay formfactors
of B mesons into light pseudoscalar mesons, i.e. π, K and η. We do not include the η′

which is too heavy to be treated in this framework. The calculation uses the method of
QCD sum rules on the light-cone, which in the past has been rather successfully applied
to various problems in heavy-meson physics, cf. Refs. [1, 2, 3, 4, 5]1; an outline of the
method will be given below. Our calculation improves on our previous papers [3, 4] by

• including radiative corrections to twist-3 contributions to one-loop accuracy, for all
formfactors;

• a precisely defined method for fixing the sum rule specific parameters;

• using updated values for input parameters;

• a careful analysis of the uncertainties of the formfactors at zero momentum transfer;

• a new parametrization of the dependence of the formfactors on momentum transfer,
which is consistent with the constraints from analyticity and heavy-quark expansion;

• detailing the dependence of formfactors on nonperturbative hadronic parameters
describing the π, K, η mesons, the so-called Gegenbauer moments, which facilitates
the incorporation of future updates of their numerical values and also allows a con-
sistent treatment of their effect on nonleptonic decays treated in QCD factorisation.

The motivation for this study is twofold and related to the overall aim of B physics
to provide precision determinations of quark flavor mixing parameters in the Standard
Model. Quark flavor mixing is governed by the unitary CKM matrix which depends on
four parameters: three angles and one phase. The constraints from unitarity can be
visualized by the so-called unitarity triangles (UT); the one that is relevant for B physics
is under intense experimental study. The over-determination of the sides and angles of
this triangle from a multitude of processes will answer the question whether there is new
physics in flavor-changing processes and where it manifests itself. One of the sides of the
UT is given by the ratio of CKM matrix elements |Vub/Vcb|. |Vcb| is known to about 2%
accuracy from both inclusive and exclusive b → cℓν transitions [7], whereas the present
error on |Vub| is much larger and around 15%. Its reduction requires an improvement of
experimental statistics, which is under way at the B factories BaBar and Belle, but also
and in particular an improvement of the theoretical prediction for associated semileptonic
spectra and decay rates. This is the first motivation for our study of the B → π decay
formfactor fB→π

+ , which, in conjunction with alternative calculations, in particular from
lattice [8], will help to reduce the uncertainty from exclusive semileptonic determinations
of |Vub|. Secondly, formfactors of general B → light meson transitions are also needed
as ingredients in the analysis of nonleptonic two-body B decays, e.g. B → Kπ, in the
framework of QCD factorization [9], again with the objective to extract CKM parameters.
One issue calling for particular attention in this context is the effect of SU(3) breaking,
which enters both the formfactors and the K and η meson distribution amplitudes figuring

1See also Ref. [6] for reviews.
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in the factorization analysis. We would like to stress here that the implementation of
SU(3) breaking in the light-cone sum rules approach to formfactors is precisely the same
as in QCD factorization and is encoded in the difference between π, K and η distribution
amplitudes, so that the use of formfactors calculated from light-cone sum rules together
with the corresponding meson distribution amplitudes in factorization formulas allows a
unified and controlled approach to the assessment of SU(3) breaking effects in nonleptonic
B decays.

As we shall detail below, QCD sum rules on the light-cone allow the calculation of
formfactors in a kinematic regime where the final state meson has large energy in the rest-
system of the decaying B, E ≫ ΛQCD. This is in contrast to lattice calculations which
presently are available only for B → π and q2 > 15 GeV2, due to the restriction to π
energies smaller than the inverse lattice spacing.2 First unquenched results are underway
[10, 11], which, once published, will allow one to exploit the complementarity of lattice
simulations and light-cone sum rules in more detail.

The physics underlying B decays into light mesons at large momentum transfer can be
understood qualitatively in the framework of hard exclusive QCD processes, pioneered by
Brodsky and Lepage et al. [12]. The hard scale in B decays is mb and one can show that
to leading order in 1/mb the decay is described by two different parton configurations:
one where all quarks have large momenta and the momentum transfer happens via the
exchange of a hard gluon, the so-called hard-gluon exchange, and a second one where
one quark is soft and does interact with the other partons only via soft-gluon exchange,
the so-called soft or Feynman-mechanism. The consistent treatment of both effects in a
framework based on factorization, i.e. the clean separation of perturbatively calculable
hard contributions from nonperturbative “wave functions”, is highly nontrivial and has
spurred the development of SCET, an effective field theory which aims to separate the
two relevant large mass scales mb and

√
mbΛQCD in a systematic way [13]. In this ap-

proach formfactors can indeed be split into a calculable factorizable part which roughly
corresponds to the hard-gluon exchange contributions, and a nonfactorizable one, which
includes the soft contributions and cannot be calculated within the SCET framework [14].
Predictions obtained in this approach then typically aim to eliminate the soft part and
take the form of relations between two or more formfactors whose difference is expressed
in terms of factorizable contributions.

The above discussion highlights the need for a calculational method that allows nu-
merical predictions while treating both hard and soft contributions on the same footing.
It is precisely QCD sum rules on the light-cone (LCSRs) that accomplish this task. LC-
SRs can be viewed as an extension of the original method of QCD sum rules devised by
Shifman, Vainshtein and Zakharov (SVZ) [15], which was designed to determine proper-
ties of ground-state hadrons at zero or low momentum transfer, to the regime of large
momentum transfer. QCD sum rules combine the concepts of operator product expan-
sion, dispersive representations of correlation functions and quark-hadron duality in an
ingenuous way that allows the calculation of the properties of non-excited hadron-states
with a very reasonable theoretical uncertainty. In the context of weak-decay formfac-

2This situation may change in the future with the successful implementation of “moving NRQCD”
[10], where the B decays while moving “backwards”, which gives access to smaller values of q2 without
increasing the discretisation error.
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tors, the basic quantity is the correlation function of the weak current and a current
with the quantum numbers of the B meson, evaluated between the vacuum and a light
meson. For large (negative) virtualities of these currents, the correlation function is, in
coordinate-space, dominated by distances close to the light-cone and can be discussed
in the framework of light-cone expansion. In contrast to the short-distance expansion
employed by conventional QCD sum rules à la SVZ where nonperturbative effects are en-
coded in vacuum expectation values of local operators with vacuum quantum numbers, the
condensates, LCSRs rely on the factorization of the underlying correlation function into
genuinely nonperturbative and universal hadron distribution amplitudes (DAs) φ which
are convoluted with process-dependent amplitudes T . The latter are the analogues of the
Wilson-coefficients in the short-distance expansion and can be calculated in perturbation
theory. The light-cone expansion then reads, schematically:

correlation function ∼
∑

n

T (n) ⊗ φ(n). (1)

The sum runs over contributions with increasing twist, labelled by n, which are suppressed
by increasing powers of, roughly speaking, the virtualities of the involved currents. The
same correlation function can, on the other hand, be written as a dispersion-relation, in
the virtuality of the current coupling to the B meson. Equating dispersion-representation
and the light-cone expansion, and separating the B meson contribution from that of higher
one- and multi-particle states using quark-hadron duality, one obtains a relation for the
formfactor describing the decay B → light meson.

Our paper is organized as follows: in Sec. 2 we define all relevant quantities, in par-
ticular correlation functions and meson distribution amplitudes. In Sec. 3 we outline our
calculations and derive the light-cone sum rules. In Sec. 4 we present our numerical re-
sults and Sec. 5 contains a summary and conclusions. Detailed expressions for distribution
amplitudes and explicit formulas for the light-cone sum rules are given in the appendices.

2 Definitions

The formfactors fP+ , fP0 and fPT which are relevant for the B → P transition, where P
stands for π, K or η, are defined as follows:3

〈P (p)|V P
µ |B(pB)〉 =

{
(p + pB)µ −

m2
B − m2

P

q2
qµ
}
fP+ (q2) +

{m2
B − m2

P

q2
qµ
}

fP0 (q2), (2)

〈P (p)|JP,σµ |B(pB)〉=
i

mB + mP

{
q2(p + pB)µ − (m2

B − m2
P )qµ

}
fPT (q2, µ), (3)

where V π,η
µ = ūγµb is the standard weak current, V K

µ is given by V K
µ = s̄γµb and J

π(η),σ
µ =

d̄σµνq
νb, JK,σµ = s̄σµνq

νb are penguin currents. The momentum transfer is given by
q = pB − p and the physical range in q2 is 0 ≤ q2 ≤ (mB − mP )2. The formfactors fP+
and fP0 are independent of the renormalization scale µ since Vµ is a physical current, in
contrast to the penguin current Jσµ . Note that fP+ (0) = fP0 (0) which is a consequence of

3The following notations are frequently used in the literature: f+ = F1 and f0 = F0.
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the parametrization chosen in Eq. (2). We assume SU(2) isospin symmetry throughout
this work, i.e. we do not distinguish B̄0 → π+ and B− → π0 formfactors etc.

In the semileptonic decay B → πlνl the formfactor fπ0 enters proportional to the lepton
mass m2

l and hence is irrelevant for light leptons (l = e, µ), where only fπ+ matters. The
semileptonic decay can be used to determine the size of the CKM matrix element |Vub|
from the spectrum

dΓ

dq2
(B → πlνl) =

G2
F |Vub|

2

192π3m3
B

λ(q2)3/2|fπ+(q2)|2 , (4)

where λ(x) = (x + m2
B − m2

π)
2 − 4m2

Bm2
π. The formfactor fπ0 will be relevant in and can

be measured from the decay B → πτντ . fπT is relevant for the rare decay B → πl+l−,
where the penguin current features in the effective Hamiltonian of the process.

Our starting point for calculating the formfactors fπ+,0 is the correlation function

Πµ(q, pB) = i

∫
d4xeiq·y〈π(p)|TVµ(x)j†B(0)|0〉 (5)

= Π+(q2, p2
B)(p + pB)µ + Π−(q2, p2

B)qµ ,

where jB = mbd̄iγ5b is the interpolating field for the B meson. For the calculation of fπT ,
Vµ has to be replaced by Jσµ . For virtualities

m2
b − p2

B ≥ O(ΛQCDmb), m2
b − q2 ≥ O(ΛQCDmb), (6)

the correlation function (5) is dominated by light-like distances and therefore accessible
to an expansion around the light-cone. The above conditions can be understood by de-
manding that the exponential factor in (5) vary only slowly. The light-cone expansion is
performed by integrating out the transverse and “minus” degrees of freedom and leaving
only the longitudinal momenta of the partons as relevant degrees of freedom. The inte-
gration over transverse momenta is done up to a cutoff, µIR, all momenta below which
are included in a so-called hadron distribution amplitude φ, whereas larger transverse
momenta are calculated in perturbation theory. The correlation function is hence decom-
posed, or factorized, in perturbative contributions T and nonperturbative contributions
φ, which both depend on the longitudinal parton momenta and the factorization scale
µIR. If the π is an effective quark-antiquark bound state, as is the case to leading order
in the light-cone expansion, we can write the corresponding longitudinal momenta as up
and (1 − u)p, p being the momentum of the π. The schematic relation (1) can then be
written in more explicit form as

Π+(q2, p2
B) =

∑

n

∫ 1

0

du T (n)(u, q2, p2
B, µIR)φ(n)(u, µIR). (7)

As Π+ itself is independent of the arbitrary scale µIR, the scale-dependence of T (n) and
φ(n) must cancel each other.4 If φ(n) describes the meson in a two-parton state, it is called

4If there are more than one contributions of a given twist, they will mix under a change of the
factorization scale µIR and it is only in the sum of all such contributions that the residual µIR dependence
cancels.
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a two-particle distribution amplitude (DA), if it describes a three-parton, i.e. quark-
antiquark-gluon state, it is called three-particle DA. In the latter case the integration
over u gets replaced by an integration over two independent momentum fractions, say
α1 and α2. Eq. (7) is called a “collinear” factorization formula, as the momenta of the
partons in the π are collinear with the π’s momentum, and its validity actually has to be
verified. We will come back to that issue in the next section.

Let us now define the distribution amplitudes to be used in this paper. Again we only
quote formulas for the π meson, those for the K and η are analogous. All definitions
and formulas are well-known and can be found in Ref. [16]. In general, the distribution
amplitudes we are interested in are related to nonlocal matrix elements of type

〈0|ū(x)Γ[x,−x]d(−x)|π(p)〉 or 〈0|ū(x)[x, vx]ΓGa
µν(vx)λa/2[vx,−x]d(−x)|π(p)〉.

x is light-like or close to light-like and the light-cone expansion is an expansion in x2; v
is a number between 0 and 1 and Γ a combination of Dirac matrices. The expressions
[x,−x] etc. denote Wilson lines that are needed to render the matrix elements, and hence
the DAs, gauge-invariant. One usually works in the convenient Fock-Schwinger gauge
xµAa

µ(x)λa/2 = 0, where all Wilson lines are just 1; we will suppress them from now
on. The DAs are ordered by twist, i.e. the difference between spin and dimension of the
corresponding operators. We will include DAs of twist-2 (the leading twist), 3 and 4. The
leading-twist DA φπ is defined as

〈0|ū(x)γµγ5d(−x)|π−(p)〉 = ifπpµ

∫ 1

0

du eiζp·x
[
φπ(u) +

1

4
m2
πx

2
A(u)

]

+ ifπ
m2
π

px
xµ

∫ 1

0

du eiζp·x gπ(u) + O(xµx
2) (8)

with ζ ≡ 2u− 1 and p2 = 0. The above matrix element also contains two twist-4 DAs, gπ
and A. The variable u can be interpreted as the momentum fraction carried by the quark
(as opposed to the antiquark) in the meson.

There are two two-particle twist-3 DAs, φp and φσ, which are defined as

〈0|ū(x)iγ5d(−x)|π(p)〉 = µ2
π

∫ 1

0

du eiζp·xφp(u) , (9)

〈0|ū(x)iσµνγ5d(−x)|π(p)〉 = −
i

3
µ2
π(1 − ρ2

π)(pµxν − xµpν)

∫ 1

0

du eiζp·xφσ(u) , (10)

where µ2
π ≡ fπm

2
π/(mu + md) and ρ2

π ≡ (mu + md)
2/m2

π.
The precise definitions of three-particle DAs are a bit cumbersome and given in App. B.

The salient feature is that there is one three-particle DA of twist-3 and four of twist-4.
Although we have introduced not less than 10 different DAs, which are all nonper-

turbative quantities, it may seem, at first glance, that light-cone sum rules do not retain
much predictive power. Fortunately, however, it turns out that the DAs are highly con-
strained functions which can be analysed in the framework of conformal expansion, a
topic being discussed in App. B. The main result is that, to next-to-leading order in

5



(0)T TSE TW TB Tbox

Figure 1: Perturbative contributions to the correlation function Π. The external quarks
are on-shell with momenta up and (1 − u)p, respectively.

conformal expansion, which is sufficient for the accuracy we are aiming at, all 10 DAs can
be expressed in terms of 7 independent hadronic parameters.

This completes the definitions necessary for the calculation of formfactors.

3 The Sum Rules

The diagrams to be calculated to O(αs) for two-particle DAs are shown in Fig. 1. The
quark (antiquark) is collinear with the light meson and carries momentum up ((1− u)p).
Quarks are projected onto the corresponding distribution amplitudes using the complete-
ness relation

ūadb =
1

4
(1)ba(ūd) −

1

4
(iγ5)ba(ūiγ5d) +

1

4
(γµ)ba(ūγµd) −

1

4
(γµγ5)ba(ūγµγ5d)

+
1

8
(σµν)ba(ūσµνd)

︸ ︷︷ ︸
≡− 1

8
(σµν iγ5)ba(ūσµν iγ5d)

.

The diagrams are calculated in momentum space. The terms in xµ in the contribution of
φσ, Eq. (10), are rewritten in terms of derivatives

xµ → −i
∂

∂(up)µ
.

In the previous section we mentioned that the fact that Π can be written in factorized
form can not be taken for granted, but requires proof. We do not attempt to give a
proof to all orders in αs, although that should be possible using the techniques of SCET,
but restrict ourselves to O(αs) in twist-2, to all orders in the conformal expansion, and
to O(αs) and leading order in the conformal expansion for twist-3. The proof essentially
relies on the cancellation of singularities, of which there are several possible types: infrared
and ultraviolet singularities arising from loop calculations and so-called soft singularities
which occur when the integral over u in Eq. (7) does diverge at the endpoints. The latter
divergences have actually posed a severe problem in early attempts to treat fπ+ in QCD
factorization: in Ref. [17] only the hard gluon exchange was included, which yields a
logarithmic divergence for the parton configuration where the u quark emerging from the

6



weak decay carries essentially all pion momentum. As we understand now, this divergence
disappears when contributions from the Feynman-mechanism are added. In our case, it
turns out that all T are regular at the endpoints u = 0, 1, so there are no soft divergences,

independent of the end-point behavior of the distribution amplitudes. As for infrared and
ultraviolet singularities, they can be treated in dimensional regularisation. Using the
lowest-order expression of the Brodsky-Lepage evolution kernel for φπ derived in [12], we
have followed the strategy outlined in [18] to check that the infrared divergences precisely
cancel those contained in the bare DA φbare

π . As for twist-3, the evolution kernel is not
known, so we have only checked the cancellation of infrared divergences of the lowest
order term in the conformal expansion, whose divergent behavior is well known – in fact,
only the one-loop renormalisation of the quark condensate is needed. The ultraviolet
divergences cancel for f+ and f0, which are physical formfactors and hence do not depend
on the ultraviolet renormalisation scale; for fT , we reproduce the well-known one-loop
anomalous dimension.

We then have used the explicit expressions for the twist-2 and 3 two-particle DAs
given in App. B to perform the integration over u analytically. Actually it is not the
correlation function Π itself that is needed, but its imaginary part, see below. Π has
a cut in p2

B starting at m2
b and taking the imaginary part after integration over u is

straightforward. The strategy outlined here is different from the procedure we followed
in our previous papers [3, 4], where we took the imaginary part before integrating over u.
This latter procedure resulted in expressions with a very complicated analytical structure
which made it impossible to give explicit formulas for the imaginary parts. With our new
procedure we obtain lenghty, but not very complicated expressions; the complete set of
spectral densities ρ = (Im Π)/π for the sum rule for the formfactor f+ is given in App. C.

Armed with the spectral densities, we can derive the LCSR for e.g. the formfactor f+.
The basic quantity is Π+, which is calculated in two ways. In light-cone expansion, it can
be written in dispersive representation as

ΠLC
+ (p2

B, q2) =

∫ ∞

m2
b

ds
ρLC

+ (s, q2)

s − p2
B

(11)

with the explicit expression for the spectral density ρLC
+ (s) given in App. C. This expres-

sion has to be compared to the physical correlation function, which also features a cut in
p2
B, starting at m2

B:

Πphys
+ (p2

B, q2) =

∫ ∞

m2
B

ds
ρphys

+ (s, q2)

s − p2
B

; (12)

the spectral density is given by hadronic contributions and reads

ρphys
+ (s, q2) = fBm2

Bf+(q2)δ(s − m2
B) + ρhigher−mass states

+ (s, q2). (13)

Here fB is the B meson decay constant defined as

〈0|q̄γµγ5b|B〉 = ifBpµ or (mb + mq)〈0|q̄iγ5b|B〉 = m2
BfB. (14)

To obtain a light-cone sum rule for f+, one equates the two expressions for Π+ and uses
quark-hadron duality to approximate

ρhigher−mass states
+ (s, q2) ≈ ρLC

+ (s, q2)Θ(s − s0), (15)

7



where s0, the so-called continuum threshold is a parameter to be determined within the
sum rule approach itself. In principle one could now write a sum rule

Πphys
+ (p2

B, q2) = ΠLC
+ (p2

B, q2)

and determine f+ from it. However, in order to suppress the impact of the approximation
(15), one subjects both sides of the equation to a Borel transformation

1

s − p2
B

→ B̂
1

s − p2
B

=
1

M2
exp(−s/M2)

which ensures that contributions from higher-mass states be sufficiently suppressed and
improves the convergence of the OPE. We then obtain

e−m
2
B/M

2

m2
BfB f+(q2) =

∫ s0

m2
b

ds e−s/M
2

ρLC
+ (s, q2). (16)

This is the final sum rule for f+; expressions for the other formfactors are obtained
analogously. The task now is to find sets of parameters M2 (the Borel parameter) and s0

(the continuum threshold) such that the resulting formfactor does not depend too much
on the precise values of these parameters; in addition the continuum contribution, that is
the part of the dispersive integral from s0 to ∞ that has been subtracted from both sides
of (16), should not be too large, say less than 30% of the total dispersive integral.

4 Numerics

In this section we obtain numerical results from the sum rules (16). The section is organ-
ised as follows: in Sec. 4.1 we explain how we determine the sum rule specific parameters,
i.e. the Borel parameter M2 and the continuum threshold s0. We also determine fB,
which is a necessary ingredient in (16). In Sec. 4.2 we explain in more detail how we fix
the hadronic input parameters, in particular the Gegenbauer moments a1,2,4 that describe
the final state mesons. In Sec. 4.3 we calculate the formfactors at q2 = 0 and discuss their
uncertainties. In Sec. 4.4 we present the formfactors for central input-values of the pa-
rameters and provide a simple parametrization valid in the full kinematical regime of q2.
The results for q2 = 0 are collected in Tab. 2 and Eq. (27), central results for arbitrary q2

in Tab. 3. More detailed results that allow one to determine the formfactors for arbitrary
values of mb and the Gegenbauer moments a1,2,4 are collected in App. A.

4.1 Fixing the Borel Parameter and the Continuum Threshold

We illustrate our procedure to determine M2 and s0 with the comparatively simple ex-
ample of fB, the B decay constant defined in (14). This example is actually of immediate
practical use, as fB enters our determination of the formfactors from Eq. (16). Since it is
not known from experiment, its value has to be taken from theoretical calculations – which
basically means either lattice determinations [19] or (local) QCD sum rules [20, 21]. To
ensure consistency of our calculations, we use the values of fB as determined from QCD
sum rules to O(αs) accuracy [20]. The reason for this choice is twofold: firstly, it is

8



well-known that the use of fB from sum rules reduces the dependence of the formfactors
on input-parameters, in particular mb [1]; secondly, O(α2

s) corrections to fB turn out
to be rather large [21], which was anticipated in the second reference in [20], where it
was argued that these corrections are dominated by Coulombic corrections. Precisely the
same corrections also enter the light-cone expansion of the correlation function Π, but
will largely cancel in the ratio f+ ∼ Π/fB. In conclusion, we expect a cancellation of
both large radiative corrections and parameter dependence in the formfactors when fB
is replaced by its sum rule to O(αs) accuracy; we do not expect the resulting numerical
values of fB to be “good” predictions for that quantity.

The sum rule for fB reads [20]5

f 2
Bm2

Be−
m2

B
M2 =

∫ s0

m2
b

ds ρpert(s)e−
s

M2 + Cq̄q〈q̄q〉 + Cq̄Gq〈q̄σgGq〉 ≡

∫ s0

m2
b

ds ρtot(s)e−
s

M2 .(17)

The C are the Wilson coefficients multiplying the condensates, for which we use the
following numerical values at µ = 1 GeV:

〈q̄q〉 = −(0.24 ± 0.01)3 GeV3 and 〈q̄σgGq〉 = 0.8 GeV2〈q̄q〉. (18)

The condensates (and αs) are actually evaluated at the scale M2. The criteria for deter-
mining M2 and s0 are often not stated very precisely. In the present context, with many
different formfactors to calculate, which entails the need for a well-defined procedure to
determine the input-parameters for each of them, we decide to opt for a precisely defined
method to fix the pair (M2, s0) and impose the following criteria on the sum rule for fB
(and, later on, the formfactors):

• the derivative of the logarithm of Eq. (17) with respect to 1/M2 gives a sum rule
for the B meson mass mB:

m2
B =

∫ s0

m2
b

ds s ρtot(s)/

∫ s0

m2
b

ds ρtot(s).

We require this sum rule to be fullfilled to high accuracy ∼ 0.1%.

• the sum rule for fB is required to exhibit an extremum for a given pair (M2, s0).

These criteria define a set of parameters for each value of mb, which are collected in Tab. 1,
together with the resulting fB. For all these parameter sets the continuum contribution
(i.e. the integral

∫∞

s0
) is between 25% and 30% of the B contribution and hence well under

control.
For the formfactors fπ+, fπ0 and fπT we follow the same procedure which results in

different values of M2 and s0 for formfactors and fB. For K and η we use the same
values for the Borel parameter and the continuum threshold. From the explicit formulas
of the tree-level sum rules for the formfactors quoted in e.g. the 3rd reference in [1], one
finds that the effective Borel parameter is uM2

LC rather than M2
LC.6 In order to keep this

5The contribution of the gluon condensate is not sizable and we therefore neglect it.
6We denote the Borel parameter of the LCSR (16) by M2

LC and the Borel parameter of the SR (17)
by M2.
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mb s0 M2 fB s+
0 ≈ s0

0 c+
c sT0 cTc

set 1 4.85 33.8 3.8 0.150 33.3 2.00 33.6 2.4
set 2 4.80 34.2 4.1 0.162 33.9 2.25 34.3 2.5
set 3 4.75 34.6 4.4 0.174 34.5 2.50 35.1 2.6
set 4 4.60 35.7 5.1 0.210 36.8 3.00 37.8 2.9

Table 1: Parameter sets for fB and f(0); we use the same values of cc and s0 for π, K
and η. mb and fB are given in GeV, s0 and M2 in GeV2.

product constant, we rescale the Borel parameter by 〈u〉−1 by

〈u〉(q2) ≡

∫ ∞

u0

du u φπ(u)e−
m2

b
−(1−u)q2

uM2 /

∫ ∞

u0

du φπ(u)e−
m2

b
−(1−u)q2

uM2 , u0 =
m2
b − q2

s0 − q2
,

resulting in the approximate values 〈u〉(0 GeV2) = 0.86 and 〈u〉(14 GeV2) = 0.77. Para-
metrising the relation between the Borel parameters by

M2
LC ≡ ccM

2/〈u〉, (19)

we obtain the values and continuum thresholds given in Tab. 1.

4.2 Hadronic Input Parameters

The hadronic parameters needed are, for each meson, 7 parameters characterising the
twist-2, 3 and 4 distribution amplitudes to NLO in the conformal expansion, cf. App. B,
the decay constants of the π, K and η and B, the factorization scale µIR, the b quark
mass mb and the strong coupling αs. As for the latter, we fix αs(mZ) = 0.118 and
use NLO evolution down to the required scale. The quark mass parameter entering our
formulas is the one-loop pole mass mb for which we use mb = (4.80 ± 0.05) GeV (cf.
Table 6 in the recent review [6] and references therein). We also include results for
mb = 4.6 GeV. The infrared factorization scale separating contributions to be included
in DAs and perturbatively calculable terms is chosen to be µ2

IR = m2
B − m2

b , which also
sets the scale of αs; we will discuss the residual scale-dependence of our results below.
The decay constants for the π and K are very well known experimentally; for the η the
situation is complicated due to η–η′ mixing. We use the following values:

fπ = 131 MeV, fK = 160 MeV, fη = 130 MeV. (20)

fB has been discussed in the previous subsection.
As for the meson DAs, we quote the preferred values for the twist-3 and 4 parameters

in Tab. G; the form factors are not too sensitive to their precise values. The situation is
different, however, for the Gegenbauer moments a1,2,4(µ) parametrizing the twist-2 DAs
φπ,K,η, and so we shall discuss in a bit more detail what is presently known about these
parameters.

Both theoretical calculations and experimental determinations focus mainly on the
π DA (for which all odd Gegenbauer moments vanish due to G-parity; in particular

10



aπ1 = 0). The probably earliest calculation of the lowest Gegenbauer moment a2 was done
by Chernyak and Zhitnitsky (CZ), yielding [22]

aCZ
2 (0.5 GeV) = 2/3.

This result was obtained from local QCD sum rules, where an is extracted from the

correlation function of the (local) interpolating field ūγνγ5(
↔

D ·x)nd, where x defines the
light-cone, x2 = 0, and the usual interpolating current for the π, ūγµγ5d. The price to
pay for the expansion of an intrinsically nonlocal quantity like φπ in contributions of local
operators is an increasing sensitivity to nonperturbative effects, i.e. the precise values of
the condensates. As the coefficients of the condensates in the sum rule for an increase with
powers of n and, for sufficiently large n, dominate over the perturbative contributions, it
is clear that this method is inappropriate for calculating high moments, but one might
expect it to be reliable at least for the lowest moment with n = 2.

The DA obtained by CZ has the remarkable feature that φπ(1/2, 0.5 GeV) = 0, which
is of course an artifact of neglecting all contributions from an≥4. It was subsequently
shown by Braun and Filyanov (BF) [23] that both the pion-nucleon-nucleon coupling
gπNN and its mesonic equivalent gρωπ, when calculated from LCSRs, require a value of
φπ(1/2) significantly different from 0 (albeit at a slightly different scale):

φπ(1/2, 1 GeV) = 1.2 ± 0.3 =
3

2
−

9

4
a2(1 GeV) +

45

16
a4(1 GeV) + . . . , (21)

where the dots denote neglected terms in an≥6. The large error is due to a large sensitivity
of this result to twist-4 corrections to the sum rules. BF also redetermined a2, using the
same procedure as CZ, and combining their result, which is consistent with aCZ

2 , with the
above constraint from φπ(1/2), they obtained

aBF
2 (1 GeV) = 0.44, aBF

4 (1 GeV) = 0.25.

An alternative calculation aims to cure the problem of increasing condensate contri-
butions by resumming them into nonlocal condensates [24]. The Gegenbauer moments in
this approach are mostly sensitive to the ratio

λ2
q = 〈q̄σgGq〉/(2〈q̄q〉) = (0.4 ± 0.1) GeV2 (µ = 1 GeV)

and have moderate to small values. The most recent paper on that topic, Ref. [25], quotes

a2(1.16 GeV) = 0.19, a4(1.16 GeV) = −0.13, a6,8,10 ∼ 10−3. (22)

There are not too many lattice calculations of moments of the π DA. The fairly old
values quoted in [26] for the 2nd moment suffer from large uncertainties. This quantity has
been investigated again recently [27], but the results, obtained in quenched approximation,
are still preliminary.

Alternative determinations of Gegenbauer moments rely on the analysis of experimen-
tal data, in particular the pion-photon transition formfactor γ + γ∗ → π, measured at
CLEO and Cello, and the electromagnetic formfactor of the pion. The results of these
analyses are typically either determinations of a2 (setting an≥4 to 0) or constraints on
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a linear combination of a2 and a4 (setting an≥6 to 0).7 These determinations are lim-
ited by mainly two problems: large experimental errors and the contamination by poorly
known twist-4 and higher effects, which are usually estimated from QCD sum rules. As
for the pion-photon transition formfactor, which has been measured by CLEO and Cello,
the technique used to extract a2 and a4 has been pioneered by Khodjamirian [29], re-
fined by Schmedding and Yakovlev [30], with subsequent further refinements by Bakulev,
Mikhailov and Stefanis [31]. The upshot is that for not too small Q2 the pion-photon
transition is mostly sensitive to a like-sign combination of a2 and a4. Summarizing the
analyses of this process, we conclude from Tab. I in [25] that

a2(1 GeV) + a4(1 GeV) = 0.1 ± 0.1 (23)

is a fair reflection of the current state of knowledge of a2,4 from that process.
As for the pion electromagnetic formfactor, the authors of Ref. [32] unfortunately only

obtain a value for a2 and set a4 to zero. A very recent analysis of that formfactor, Ref. [25],
concludes that calculations using the nonlocal-condensate model are in good agreement
with data.

So what then do we actually know about a2 and a4? It seems to us that, taking ev-
erything together, and with due consideration of the respective strengths and weaknesses
of different approaches, the most reliable constraints for these quantities are (21) and
(23). These two constraints contain opposite-sign combinations of a2 and a4 and hence
are about equally sensitive to both parameters. The resulting allowed area for a2 and a4

is shown in Fig. 2; its center is at

a2(1 GeV) = 0.115, a4(1 GeV) = −0.015,

a2(2.2 GeV) = 0.080, a4(2.2 GeV) = −0.0089.
(24)

These are the central values we will use in our calculation of formfactors. The figure also
shows that the remaining uncertainties are still considerable. Anticipating a future better
determination of these parameters, from lattice or else, we will present our final results
in such a way as to facilitate the inclusion of any shift in these values. Since much less
is known about the Gegenbauer moments of the other pseudoscalar mesons K and η, we
resort to SU(3) symmetry and use the same Gegenbauer moments.

Eq. (24) and Fig. 2 confirm the findings of previous analyses that the CZ DA is strongly
disfavored; the same applies to the values obtained by BF and to the local QCD sum rule
for a2, which favors a large positive a2 ∼ 0.4. One explanation for the failure of the
corresponding QCD sum rule could be that already the case n = 2 may be too “nonlocal”
for sum rules to work. Another one could be that the treatment of a1 and other resonances
contributing to that sum rule may be insufficient. We leave a further discussion of that
question to future work. The result from sum rules with nonlocal condensates [24, 25, 31],
shown as black square in Fig. 2, is also outside the favored area in Fig. 2, which is mainly
due to the large value of |a4|. It would definitely be very interesting to see all these results
and constraints on a2,4 be supplemented by lattice determinations.

7In principle it is possible to determine a2, a4 and even higher moments separately from the Q2

dependence of their respective contributions. However, such an analysis requires accurate measurements
of the formfactors over a large enough range of Q2, which are presently not available. See also Ref. [28],
in particular Fig. 4.
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Figure 2: a2(1 GeV) and a4(1 GeV) as determined from the constraints (21) and (23).
Solid line: central values, dashed lines: uncertainties. The black square labeled BZ
denotes the central values used in this paper, Eq. (24), BMS the prediction of the nonlocal
condensate model, Eq. (22), rescaled to µ = 1 GeV, and BF is the central value obtained
in Ref. [16].

The only parameter left to discuss is a1 for the K meson (by which we understand
an sq̄ bound state), which is a G-parity breaking parameter. Here the situation is even
worse than for a2,4, as neither size nor even sign of that quantity are reliably known.
The facts at hand are the following: the intuitive expectation is that a1 (i.e. the moment
with a weight-function proportional to 2u − 1) should be positive, as the DA is expected
to be slightly tilted towards larger values of u which is the momentum fraction carried
by the (heavier) s quark in the meson – the heavier the quark, the more the DA is
expected to peak at large u, the extreme case being a bq̄ bound state whose DA should
be close to δ(1−u). The (tree-level) QCD sum rule calculation in [22] seemed to confirm
intuition, but was challenged, when Ref. [33] found a sign-mistake in that calculation and,
including two-loop radiative corrections, obtained a negative sign for aK1 . For this paper,
we first decided to stick to that result and use the central value aK1 (1 GeV) = −0.18. It
turned out, however, that this value tends to produce formfactors with an unfavorable
q2-dependence.8 We therefore decided to revert to the original result by CZ [22] and use

aK1 (1 GeV) = 0.17 ↔ aK1 (2.2 GeV) = 0.135. (25)

The conclusion from that inconclusive situation can only be that a second opinion has to
be sought, and we urge our colleagues from the lattice community to take up the challenge
and provide the first-ever lattice determination of aK1 . For the time being, we will present
our results in a way that makes it possible to obtain the formfactors also for different
values of aK1 .

4.3 Results for q2 = 0

Let us first discuss the sum rule results for q2 = 0. They are collected in Tab. 2, for all
4 parameter sets from Tab. 1.9 Including the uncertainty of mb, mb = (4.80± 0.05) GeV,
the final central values and uncertainties of the formfactors are given in Eq. (27).

8That is: formfactors not very compatible with the parametrization discussed in Sec. 4.4, which is
based on generic analytic properties of the formfactors.

9f0(0) is not included as f0(0) ≡ f+(0).
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Figure 3: Central values of the formfactors f(0) and uncertainties ∆. Numbers from
Tab. 2.
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Figure 5: (a) Dependence of fK+ (0) on the Gegenbauer moment a1(µIR). (b) fK+ (q2) as
function of q2 for different values of a1: solid line: aK1 (1 GeV) = 0.17, short dashes:
aK1 (1 GeV) = 0, long dashes: aK1 (1 GeV) = −0.18. Input parameters: set 2.
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set 1 set 2 set 3 set 4 ∆as ∆a2,a4 ∆ ∆a1

fπ+(0) 0.250 0.258 0.263 0.274 0.023 0.019 0.030 −

fπT (0) 0.244 0.253 0.260 0.273 0.013 0.022 0.026 −

fK+ (0) 0.324 0.331 0.335 0.339 0.033 0.023 0.040 0.25δa1

fKT (0) 0.347 0.358 0.367 0.381 0.022 0.027 0.035 0.31δa1

f η+(0) 0.269 0.275 0.278 0.286 0.029 0.019 0.035 −

f ηT (0) 0.277 0.285 0.292 0.305 0.018 0.022 0.028 −

Table 2: Final central values of the formfactors at q2 = 0 for the parameter sets of Tab. 1.
f0(0) ≡ f+(0). The errors ∆as, ∆a2,a4 and ∆a1 are described in the text. ∆ is defined as
∆ = (∆2

as+∆2
a2,a4)

1/2 and δa1 as δa1 = a1(1GeV)−0.17. Note that δa1 carries information
on the sign of a1 and can become negative.

The formfactors are calculated from Eq. (16) using the parameter sets given in Tab. 1
and the hadronic input parameters given in Eqs. (24) and (25) and Tab. G. The depen-
dence of the formfactors on mb, i.e. the set, is shown in Fig. 3. It is evident that the
residual dependence of f(0) on mb is much smaller than the one of fB in Tab. 2, which
confirms our expectation that the calculation of fB from a sum rule reduces the parameter
dependence of the formfactors. fπ+(0) depends sensitively on a2 and a4 as illustrated in
Fig. 4. The formfactors show moderate SU(3) breaking between π and η, which is due to
terms in the LCSRs proportional to the meson mass. For K, the situation is different, and
we observe a strong enhancement of the formfactor due to the combination of two effects:
the fact that fK is larger than fπ and the positive contribution of the Gegenbauer moment
a1 to the formfactor. As discussed in the previous subsection, the numerical value of a1,
and even its sign, is not precisely known. Fig. 5(a) illustrates the dependence of fK+ (0)
on a1, which is quite strong. Fig. 5(b) shows the dependence of fK+ (q2) on q2 for different
values of a1. It is evident that a1 mainly determines the normalisation of the formfactor,
but has only minor impact on its shape. The uncertainty of fK+ (0) induced by a1 will
be discussed below. The dependence of fπ+(0) on the sum rule parameters M2 and s0 is
illustrated in Fig. 6 and is very mild, thanks to the optimized criteria for choosing M2 and
s0 outlined in Sec. 4.1. The behavior of the other formfactors is very similar. In Fig. 7 we
show the variation of fπ+(0) with a change of the factorization scale µIR in the large range
1 GeV ≤ µIR ≤ mb. The curve is remarkably flat which can be understood from the fact
that radiative corrections cancel to a certain extent between Π+ and fB and that large
logarithms of type ln mb/µIR occur only at subleading order in the conformal expansion of
the DAs, which is numerically suppressed with respect to the leading (µIR-independent)
term, and at subleading twist, which is also suppressed.

Let us now turn to the uncertainties of the formfactors induced by a variation of
the input parameters. It is convenient to split the formfactors into contributions from
different Gegenbauer moments,

f(q2) = fas(q2) + a1f
a1(q2) +

{
a2f

a2(q2) + a4f
a4(q2)

}
, (26)

where fas contains the contributions to the formfactors from the asymptotic DA and also
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Figure 6: Dependence of fπ+(0) on (a) the Borel parameter M2 and (b) the continuum
threshold s0. Input parameters: set 2 in Tab. 1.
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Figure 7: Dependence of fπ+(0) on the factorization scale µIR. Same input parameters as
in Fig. 6.

all higher-twist effects from three-particle quark-quark-gluon matrix elements. Explicit
expressions for the functions fas,a1,a2,a4 can be obtained from Tab. C in App. A; in par-
ticular fai(0) is just given by the parameters a in that table. We calculate separately the
uncertainties ∆as,a1 of the first and second term and the combined uncertainty ∆a2,a4 of
the term in curly brackets. We start with ∆as. To estimate its value we vary the following
quantities:

• the threshold s0 by ±0.5 GeV2;

• the Borel parameter M2 in Eq. (19) by ±1.2 GeV2;

• the infrared factorization scale µ2
IR = m2

B − m2
b by ±2 GeV2;

• the quark condensate and the mixed condensate as indicated in Eq. (18);

• the twist-3 matrix-element η3 by ±50%.

mb is kept fixed and we calculate the uncertainty separately for each parameter set; for
a given formfactor, ∆as is then the largest uncertainty of the 4 sets. The errors are
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correlated and we therefore scan the five-parameter space for the largest deviations from
the central values. The resulting ∆as are given in Tab. 2.

The uncertainty of fK(0) induced by a1 is dominated by a1 itself, so we do not attempt
to determine the uncertainty of fa1 arising from varying M2, s0 etc., but just take the
maximum value of fa1(0) ≡ a from Tab. C in App. A and multiply it by δ1 = a1(1 GeV)−
0.17 and the leading-order scaling factor from 1GeV to µIR, which gives the entry labeled
∆a1 in Tab. 2.

As the allowed input values of a2 and a4 are correlated and given by the rhomboid
shown in Fig. 2, we only determine the combined uncertainty ∆a2,a4 arising from the
corresponding variation of the Gegenbauer moments, separately for each parameter set.
The resulting uncertainties depend strongly on the precise values of M2 and s0, so for a
conservative estimate of the uncertainty we scan the full 7-parameter space in a2, a4, M2

etc. and quote the largest deviation from the central value as uncertainty, which yields
the ∆a2,a4 quoted in Tab. 2. Taking everything together, and including the variation of
mb = (4.80± 0.05) GeV in the error estimate, adding errors in quadrature, we find (δa1 is
defined in Tab. 2):

fπ+(0) = 0.258 ± 0.031, fπT (0) = 0.253 ± 0.028,

fK+ (0) = 0.331 ± 0.041 + 0.25δa1, fKT (0) = 0.358 ± 0.037 + 0.31δa1 ,

f η+(0) = 0.275 ± 0.036, f ηT (0) = 0.285 ± 0.029. (27)

These are our final results for the formfactors at q2 = 0. For fπ,η the total theoretical
uncertainty is 10% to 13%, for fK it is 12%, plus the uncertainty in a1, which hopefully
will be clarified through an independent calculation in the not too far future. These
uncertainties include a variation of both the external input parameters and the sum rule
specific parameters, but they do not include an additional “systematic” uncertainty of
the sum rule method itself. To a certain extent, this intrinsic sum rule uncertainty is
included by the variation of the sum rule specific parameters M2 and s0, which sets the
minimum uncertainty of the result: all external hadronic parameters fixed, this variation
induces a ∼ 7% uncertainty of fπ+(0) quoted in Eq. (27). Realistically, one may hope to
reduce the ∼ 12% uncertainty quoted to ∼ 10% by reducing the errors on the Gegenbauer
moments a2,4 by a factor of 2. Further improvement will then have to come from a better
control over higher-twist matrix elements, dominated by the quark condensate and the
quark-quark-gluon matrix element η3 discussed in App. B.

4.4 Results for q2 6= 0, Fits and Extrapolations

In this subsection we calculate the q2-dependence of the formfactors for central values of
the input parameters and cast them into a three-parameter parametrization that is valid
for all q2. The results are given in Tab. 3 which is to be used together with Eq. (30).
The fit parameters for other sets of input parameters are given in App. A. We refrain
from a complete analysis of the uncertainty of the q2-dependence of the formfactors, but
just mention that it is likely to be smaller than that at q2 = 0, which is indicated by a
decrease of the spread between the formfactors calculated from the different parameter
sets in Tab. 1, cf. Fig. 9.
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The validity of the LCSR approach is restricted to the kinematical regime of large
meson energies, EP ≫ ΛQCD, which via the relation

q2 = m2
B − 2mBEP

implies a restriction to small and moderate q2; specifically, we evaluate the sum rules
only for 0 ≤ q2 ≤ 14 GeV2. The resulting formfactors are plotted in Fig. 8, using the
parameter set 2 in Tab. 1 and the hadronic input parameters given in Eqs. (24) and (25)
and Tab. G. As expected from LEET [34], f+ and fT nearly coincide. Although this
agreement is expected to be best for small q2, i.e. large energies of the light meson, it is
seen to hold for all q2. From the LCSR point of view, this agreement is due to the fact
that the leading twist-2 contributions to the corresponding correlation functions coincide
at tree-level. The figure also shows that the q2-dependence of f0 is weaker than that of the
other formfactors. This is can be understood from the fact that, if f+ is represented as a
dispersion relation over hadronic states, these states have quantum numbers JP = 1− and
hence zero orbital angular momentum, whereas for f0 the quantum number is JP = 0+

and thus the coupling of these states or, in the language of potential-models, their wave-
function at the origin, is suppressed as it corresponds to a state with orbital angular
momentum L = 1. Fig. 8 also shows sizable SU(3) breaking for the K, but a moderate
one for η, which is due to the same effects discussed for the formfactors at q2 = 0. In Fig. 9
we show fπ+(q2) as function of q2, calculated for sets 1, 3 and 4 and normalized to set 2. It
is evident that the uncertainties induced by mb, which amount to 6% at q2 = 0, become
less important for larger q2, so that for instance the branching ratio of the semileptonic
decay B → πeν will be less dependent on the precise value of mb than fπ+(0).

One of the main goals of this paper is to give simple expressions for the formfactors
in the full physical regime 0 ≤ q2 ≤ (mB − mP )2 ≈ 23 GeV2. We thus have to find a
parametrization that

• reproduces the data below 14 GeV2 with good accuracy;

• provides an extrapolation to q2 > 14 GeV2 that is consistent with the expected
analytical properties of the formfactors and reproduces the lowest-lying resonance
(pole) with JP = 1− for f+ and fT .10

It is actually not very difficult to find good fits: the parametrization

f(q2) =
f(0)

1 − aF q2/m2
B − bF (q2/m2

B)2
(28)

advocated in previous works, e.g. [4], is one example for an excellent fit to the results
of the sum rules for q2 < 14 GeV2. In the present context, however, it turns out to be
unsuitable as it produces, for fπ+, a pole at q2 ≈ 23 GeV2, which is below the physical
pole at q2 = m2

B∗ = (5.32 GeV)2. In our previous paper [4] we argued that the above
parametrization should be matched to a simple pole-dominance formula f+ ∼ 1/(m2

B∗−q2)
for q2 above a certain threshold q2

0 ∼ 15 GeV2, defined as the value of q2 that would allow a

10For f0, the lowest pole with quantum numbers 0+ lies above the two-particle threshold starting at
(mB + mP )2 and hence is not expected to feature prominently.
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Figure 8: f+ (solid lines), f0 (short dashes) and fT (long dashes) as functions of q2 for π,
K and η. The renormalisation scale of fT is chosen to be mb. Input parameters: set 2 in
Tab. 1.

smooth transition11 from one parametrization to the other. This procedure unfortunately
does not work for our new formfactors, as the optimum q2

0 turns out to be far outside the
physical regime. We therefore decide to follow, as far as possible, the procedure advocated
by Becirevic and Kaidalov [35], who suggested to write the formfactor f+ as dispersion
relation in q2 with a lowest-lying pole plus a contribution from multiparticle states, which
in turn is to be replaced by an effective pole at higher mass:

f+(q2) =
r1

1 − q2/m2
1

+

∫ ∞

(mB+mP )2
ds

ρ(s)

s − q2
(29)

→
r1

1 − q2/m2
1

+
r2

1 − q2/m2
fit

. (30)

The lowest-lying resonance in the bū channel is well known experimentally: it the B∗(1−)
vector meson with mass 5.32 GeV; this is also the mass to be used for the η, as the
B → η formfactors calculated in this paper refer to a b → u transition. For the K we
have calculated the mass of the B∗

s resonance in the heavy-quark limit and find

m2
B∗

s
− m2

Bs
= m2

B∗ − m2
B → mK

1 = mB∗

s
= 5.41 GeV.

For Eq. (30) to describe all f+ and also fT , which feature the same 1− resonance,
in terms of three fit parameters, r1, r2 and mfit, it is crucial that the position of the

11That is equality of both the parametrization formulas and their first derivatives in q2
0 .
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Figure 9: Ratio of f
π(seti)
+ (q2)/f

π(set2)
+ (q2) as function of q2. Solid line: set 1; long dashes:

set 3; short dashes: set 4.

q
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Figure 10: Variation of the total semileptonic rate Γ(B → πeν) as function of q2
max, the

maximum q2 for which LCSR results are included in the fits. The rate is normalized to
1 for q2

max = 14 GeV2 and fit 1. Solid line: fit 1, long dashes: fit 2, short dashes: fit 3.
Input parameters: set 2.

lowest pole is sufficiently below the two-particle cut starting at (mB + mP )2. We find

that indeed most fπ+,T formfactors, with the exception of f
π(set 4)
T , are described very well

by (30). For f
π(set 4)
T , however, and all fK,η+,T , mfit gets too close to m1, so that the fit

becomes numerically unstable. In this case, it is appropriate to expand (30) to first order
in mfit − m1, which yields

fK,η+,T (q2) =
r1

1 − q2/m2
1

+
r2

(1 − q2/m2
1)

2
(31)

with fit parameters r1 and r2, and m1 = mB∗,B∗

s
fixed.

For f0, one can write a decomposition similar to (29), but here the lowest-lying pole
with quantum numbers 0+ lies either above the two-particle threshold (for π and η) or is
very close to it (for K, cf. Tab. D), so that the pole is effectively hidden under the cut
and only the dispersive term survives in (29). We again follow the suggestion of Becirevic
and Kaidalov and replace this term by an effective pole, i.e. we set

f0(q
2) =

r2

1 − q2/m2
fit

. (32)

The accuracy of the fits of the LCSR results to the above parametrizations is generally
very high and best for sets 1 to 3 of Tab. 1 with mb = (4.80±0.05) GeV, with a maximum
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r1 r2 (m1)
2 m2

fit

fπ+ 0.744 −0.486 (mπ
1 )2 40.73

fπ0 0 0.258 − 33.81

fπT 1.387 −1.134 (mπ
1 )2 32.22

fK+ 0.162 0.173 (mK
1 )2 −

fK0 0 0.330 − 37.46

fKT 0.161 0.198 (mK
1 )2 −

f η+ 0.122 0.155 (mη
1)

2 −

f η0 0 0.273 − 31.03

f ηT 0.111 0.175 (mη
1)

2 −

Table 3: Fit parameters for Eq. (30) for set 2 in Tab. 1 and central values of the input
parameters of the DAs, Eqs. (24), (25) and Tab. G. m1 is the vector meson mass in the
corresponding channel: mπ,η

1 = mB∗ = 5.32 GeV and mK
1 = mB∗

s
= 5.41 GeV. The scale

of fT is µ = 4.8 GeV.

set 1 set 2 set 3 set 4

fit 1 0.97 1 1.01 1.05

fit 2 0.97 0.98 0.99 1.00

fit 3 0.95 0.98 1.00 1.04

Table 4: Total semileptonic decay rates Γ(B → πeν) normalised to 1 for set 2, fit 1, for
different formfactor parametrizations and input parameter sets.

1.2% deviation; set 4 fares slightly worse with an accuracy of 2% or better. The quality
of the fits is discussed in more detail in App. A. The uncertainty introduced by fitting
is much smaller than the actual uncertainty of the sum rule calculation, which we have
found to be around 10% at q2 = 0, and also much smaller than the intrinsic and irreducible
sum rule uncertainty, which we have estimated to be ∼ 7%. Nevertheless it is legitimate
to ask whether the extrapolation of the fits to q2 > 14 GeV2, or the variation of the
“cutoff” q2

max = 14 GeV2, introduce an additional uncertainty. In answering this question,
we first would like to recall that for most applications it is actually sufficient to know the
formfactors for q2 < 14 GeV2 only — these include in particular nonleptonic B decays
treated in QCD factorization, and also the rare decays B → (π, K, η)ℓ+ℓ−, as the spectrum
for invariant lepton masses above the cc̄ threshold, i.e. q2 ≥ m2

J/ψ ≈ 10 GeV2, is dominated

by long-distance processes unrelated to B → (π, K, η) formfactors. The only, but very
important case where the formfactor is needed over the full range of q2 is the semileptonic
decay B → πℓν, which depends on fπ+ and (for decays into τ) on fπ0 . We discuss the effect
of the extrapolation on this decay by studying three different parametrizations of fπ+:

fit 1: Eq. (30), our standard parametrization;
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fit 2: a modified version of (28), with one zero of the denominator fixed at m2
1 = m2

B∗ :

fπ+(q2) =
fπ+(0)

(1 − q2/m2
1)(1 − q2/m2

fit)
;

fit 3: a parametrization similar to (31), but with the pole mass as fit parameter:

fπ+(q2) =
r1

1 − q2/m2
fit

+
r2

(1 − q2/m2
fit)

2
.

We quantify the difference between these parametrizations by calculating the semileptonic
decay rate, the integral of Eq. (4) over q2 from 0 to (mB − mπ)

2, normalizing to our
central values, set 2 and fit 1. The results are collected in Tab. 4. It is evident that the
dependence of the rate on the fit is rather mild, despite the double-pole of fit 3, which is
however sufficiently far away from the endpoint of the spectrum, mfit = (5.6 ± 0.1) GeV,
and hence has only moderate impact on the rate. We conclude that the extrapolation
of fπ+ causes an uncertainty in the total semileptonic decay rate Γ(B → πeν) which is
considerably less than the expected intrinsic sum rule uncertainty of ∼ 14%.

We conclude the discussion of the uncertainty of the extrapolations by studying the
effect of changing the maximum value of q2 for which the sum rules results are included
in the fits. Our default value q2

max is 14 GeV2; lowering q2
max changes the fit parameters of

all three parametrizations and hence the predictions for the total semileptonic decay rate.
Fig. 10 shows the corresponding change in the rate, normalised to our central values fit 1
and q2

max = 14 GeV2. Again the dependence of the rate on q2
max is mild, which corroborates

our conclusion that the precise shape of the formfactor is not that relevant, as long as it
does not exhibit too strong a singularity at q2 = (5.32 GeV)2.

There are also other tests and checks for the validity of the extrapolation of (30) to
the full physical regime q2 < (mB − mP )2: firstly, the coefficient r1 for fπ+ is related to
the coupling gBB∗π as

r1 =
fB∗gBB∗π

2mB∗

. (33)

At the upper end of the physical range in q2 we can expect vector-meson dominance to be
effective and therefore the fit-parameter should be close to the above value. In fact lattice
[36] and meson-loop calculations (cf. the first reference in [6]) yield r1 ≈ 0.8, but are at
variance with a determination of gBB∗π from LCSRs which yields r1 ≈ 0.44 [5]. The lattice
and meson-loop calculations are further supported by the agreement of their predictions
for gDD∗π with experimental measurements, whereas LCSRs again give a value that is too
low by almost a factor of two. The author of [37] speculates that this discrepancy may be
explained by a violation of quark-hadron duality in the LCSRs used for the determination
of gDD∗π and gBB∗π, which would preclude a clean determination of these couplings from
LCSRs. Another possible solution of the problem was suggested in Ref. [38], where it was
shown that the value of r1 from LCSRs increases once a radial excitation with negative
residue is included in the hadronic parametrization of the correlation function.12 If we
interpret our fit results as determinations of gBB∗π, we get the following values of r1 for

12Note that the corresponding spectral function is not positive definite.
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the sets 1 to 4: (0.73,0.74,0.77,0.94) (cf. Tab. A), which is in reasonable agreement with
lattice and meson-loop calculations.

Secondly, there is one further constraint on the formfactor f0. As first pointed out in
Ref. [39], in the soft-pion limit p → 0 and m2

π → 0 (i.e. q2 = m2
B) fπ0 (m2

B) is related to
the decay constants of the B and π as

fπ0 (m2
B) =

fB
fπ

. (34)

We can compare this relation with our parametrization by solving it for fB. For the
four parameter sets of Tab. 1, we get from Eq. (34) f set1

B = 201 MeV, f set2
B = 193 MeV,

f set3
B = 190 MeV and f set4

B = 207 MeV, which is in good agreement with lattice and sum
rule calculations.

Let us conclude with one more remark. In LEET, f+ and f0 are related as [34]:

f0 =
2E

mB
f+ , (35)

which is valid in the combined limits mB → ∞ and E → ∞. This constraint was used
in Ref. [35] to reduce the number of fit parameters to two as necessitated by the limited
accuracy of the lattice formfactors. We do not impose this constraint explicitly, but find
that it is valid to 4% accuracy for our formfactors, for not too large q2.

Summarizing, we conclude that, for all formfactors, the three-parameter formula (30)
provides both an excellent fit to the LCSR results for q2 < 14 GeV2 and a smooth extrap-
olation to 14 GeV2 < q2 < (mB − mP )2, and is consistent with all known constraints.

5 Summary & Conclusions

In this paper we have given a thorough and careful examination of the predictions of QCD
sum rules on the light-cone for the formfactors f+, f0 and fT for the decays B → π, K, η.
We have not discussed B → η′, which is not accessible within the method due to its large
mass.

The main improvements of our results with respect to our previous publications [3, 4]
are:

• predictions for all formfactors of B → π, K, η transitions to O(αs) accuracy for
twist-2 and 3 two-particle contributions;

• a well-defined and precise method for fixing sum rule specific parameters (cf. Sec. 4.1);

• a careful assessment of uncertainties at zero momentum transfer (cf. Sec. 4.2 and
4.3);

• a detailed breakdown of the contributions of different Gegenbauer moments ai to
the formfactors (cf. App. A), which

– renders straightforward the implementation of future updates of these param-
eters;
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– allows the assessment of the impact of nonasymptotic twist-2 distribution am-
plitudes on QCD factorised nonleptonic B decays in a coherent way, to 4th
order in the conformal expansion;

• a parametrization of the q2-dependence of formfactors valid in the full physical
regime of momentum transfer that reproduces all relevant analytical properties of
the formfactors (cf. Sec. 4.4).

Our main results for q2 = 0 are collected in Tab. 2 and Eq. (27). They depend crucially
on the values of the Gegenbauer moments describing the twist-2 distribution amplitudes
of π, K and η, cf. App. B. We have determined these parameters as discussed in Sec. 4.2,
but a better determination from an independent source, e.g. lattice calculations, would be
extremely useful. This applies in particular to the SU(3) breaking parameter aK1 , whose
size and even sign is under discussion (cf. Ref. [33]). Once more precise values for these
parameters will be available, it is straightforward to obtain the corresponding formfactors
from the data collected in App. A. Setting aside a1, the total theoretical uncertainty of the
formfactors at q2 = 0 is 10% to 13%, which includes a variation of all input parameters.
It can be further improved by reducing the uncertainties of, in particular, a2, a4, the
quark condensate and η3, the dominant quark-quark-gluon matrix element. A reduction
of the uncertainty of a2,4 by a factor of two will give a ∼ 2% gain in accuracy, reducing
the uncertainty of the quark condensate and η3 by the same factor will give another 2%.
The uncertainty due to the variation of only the sum rule specific parameters is 7%,
which cannot be reduced any further and hence sets the minimum theoretical uncertainty
that can be achieved within this method. Comparing with the uncertainties quoted in
our previous publications, we have achieved a reduction of the global estimate ∼ 15%
quoted in [3] and also of the 20% uncertainty for fπ+(0) quoted in [4]. This is partially
due to a reduction of the uncertainties of the hadronic input parameters, in particular
mb, and partially due to a refinement of the assessment of sum rule specific uncertainties
as discussed in Sec. 4.1.

We have also calculated all formfactors for 0 ≤ q2 ≤ 14 GeV2; the upper bound on q2 is
due to the limitations of the light-cone expansion which requires the final-state meson to
have energies E ≫ ΛQCD: for q2

max = 14 GeV2 the meson energy is E = 1.3 GeV. In order
to allow a simple implementation of our results, we have given a parametrisation that
includes the main features of the analytical properties of the formfactors and is valid in
the full physical regime 0 ≤ q2 ≤ (mB−mP )2. The corresponding results for our preferred
set of input parameters are given in Tab. 3; a detailed breakdown of the contributions of
different parameters to the full formfactors is given in App. A. The main features of the
results are that the formfactors f+ and fT are nearly equal as predicted by LEET and
that f0 is very well described by a single-pole formula. The uncertainty induced by the
extrapolation of the parametrization to larger momentum transfers is an issue only for
the semileptonic decay B → πeν; we have checked that the change of the total rate is at
most 5% for three different extrapolations of the light-cone sum rule results.

Our approach is complementary to standard lattice calculations, in the sense that
it works best for large energies of the final state meson (i.e. small q2), whereas lattice
calculations work best for small energies – a situation that may change in the future with
the implementation of moving NRQCD [10]. Previously, the LCSR results for fπ+,0 at
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set 2, mb = 4.8 GeV set 4, mb = 4.6 GeV

r1 m2
1 r2 m2

fit ∆ r1 m1 r2 m2
fit ∆

fπ+ 0.744 (mπ
1 )2 −0.486 40.73 0.3 0.944 (mπ

1 )2 −0.669 34.27 0.3

fπ0 0 − 0.258 33.81 0.1 0 − 0.270 33.63 1.2

fπT 1.387 (mπ
1 )2 −1.134 32.22 0.5 use (A.2) with r1 = 0.152,

r2 = 0.122, m1 = mπ
1 , ∆ = 0.4

fπ,as+ 0.918 (mπ
1 )2 −0.675 38.20 0.1 0.711 (mπ

1 )2 −0.441 44.31 0.1

fπ,as0 0 − 0.244 30.46 0.8 0 − 0.270 31.93 0.1

fπ,asT 1.556 (mπ
1 )2 −1.321 32.56 0.2 1.331 (mπ

1 )2 −1.061 33.43 0.4

Table A: Fit parameters for the π Eq. (A.1) for both the full formfactors and the asymp-
totic ones, fas, Eq. (A.5), using the sets 2 and 4 in Tab. 1. The formfactor f0 is fitted to
the parametrization (A.3). The mass parameters mx

1 are given in Tab. D. ∆ is a measure
of the quality of the fit and is defined in (A.4).

small and moderate q2 were found to nicely match the lattice results obtained for large
q2 [42]. The situation will have to be reassessed in view of our new results and it will be
very interesting to see if and how it will develop with further progress in both lattice and
LCSR calculations.
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Appendix

A Fit Parameters and Comments

This appendix extends the discussion of Sec. 4.4.

Full formfactors. As discussed in Sec. 4.4, we fit the LCSR results to the following
parametrizations:

• for fπ+,T :13

f(q2) =
r1

1 − q2/m2
1

+
r2

1 − q2/m2
fit

, (A.1)

13Apart from fπ
T for set 4, which shows the same behavior as fK,η

+,T and hence is parametrised the same
way, i.e. according to (A.2).
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set 2, mb = 4.8 GeV set 4, mb = 4.6 GeV
r1 r2 mfit(m1) ∆ r1 r2 mfit(m1) ∆

fK+ 0.1616 0.1730 (mK
1 )2 1.2 0.1903 0.1478 (mK

1 )2 1.0
fK0 0 0.3302 37.46 1.0 0 0.3338 38.98 1.9
fKT 0.1614 0.1981 (mK

1 )2 0.5 0.1851 0.1905 (mK
1 )2 1.7

f η+ 0.1220 0.1553 (mη
1)

2 1.0 0.1380 0.1462 (mη
1)

2 0.9
f η0 0 0.2734 31.03 0.5 0 0.2799 30.46 2.0
f ηT 0.1108 0.1752 (mη

1)
2 0.5 0.1160 0.1841 (mη

1)
2 1.6

fK,as+ 0.0541 0.2166 (mK
1 )2 0.2 0.0991 0.2002 (mK

1 )2 0.6

fK,as0 0 0.2719 30.33 0.7 0 0.2984 31.99 0.5

fK,asT 0.0244 0.2590 (mK
1 )2 0.8 0.0660 0.2621 (mK

1 )2 1.3
f η,as+ 0.0802 0.1814 (mη

1)
2 1.0 0.1201 0.1636 (mη

1)
2 0.6

f η,as0 0 0.2604 28.80 0.5 0 0.2803 29.59 0.8
f η,asT 0.0570 0.2115 (mη

1)
2 0.3 0.0914 0.2096 (mη

1)
2 1.0

Table B: Fit parameters for K and η for Eq. (A.2), for both the full formfactors and the
asymptotic ones, fas, Eq. (A.5), using the sets 2 and 4 in Tab. 1. The formfactor f0 is
fitted to the parametrisation A.3. The mass parameters m1 are given in Tab. D. ∆ is a
measure of the quality of the fit and is defined in (A.4).

where mπ
1 is the mass of B∗(1−), mπ

1 = 5.32 GeV; the fit parameters are r1, r2 and
mfit;

• for fK,η+,T and fπT (set 4):

f(q2) =
r1

1 − q2/m2
1

+
r2

(1 − q2/m2
1)

2
, (A.2)

where m1 is the mass of the 1− meson in the corresponding channel, cf. Tab. D; the
fit parameters are r1 and r2;

• for f0:

f0(q
2) =

r2

1 − q2/m2
fit

, (A.3)

the fit parameters are r2 and mfit.

The fit parameters are collected in the upper halves of Tabs. A and B. ∆ is a measure of
the quality of the fit and defined as

∆ = 100 max
t

∣∣∣∣
f(t) − ffit(t)

f(t)

∣∣∣∣ , t ∈ {0, 1
2
, . . . , 27

2
, 14}GeV2, (A.4)

i.e. it gives, in per cent, the maximum deviation of the fitted formfactors from the original
LCSR result for q2 < 14 GeV2. From the ∆ given in the table we conclude that the overall
quality of the fits is very good and best for the pion and also that they work better for
our preferred set 2 than for set 4.
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set 2, mb=4.8 GeV set 4, mb=4.6 GeV

a b × 102 c × 102 d × 103 δ a b × 102 c × 102 d × 103 δ

fK+ (a1) 0.310 0.930 0.139 −0.083 0.3 0.276 0.060 0.151 −0.157 0.7

fK0 (a1) 0.308 0.106 0.026 −0.048 0.2 0.273 −0.433 0.0001 −0.051 0.2

fKT (a1) 0.381 1.056 0.167 −0.108 0.3 0.354 0.027 0.178 −0.194 0.7

fπ+(a2) 0.187 −0.517 0.014 −0.117 0.5 0.040 −0.762 −0.201 0.050 1.5

fπ0 (a2) 0.185 −0.841 −0.075 −0.005 0.4 0.041 −1.078 −0.123 0.068 1.2

fπT (a2) 0.203 −0.659 −0.008 −0.118 0.3 0.038 −0.944 −0.244 0.073 1.5

fK+ (a2) 0.228 −0.632 0.017 −0.143 0.5 0.049 −0.931 −0.245 0.061 1.5

fK0 (a2) 0.226 −1.031 −0.092 −0.005 0.4 0.050 −1.32 −0.150 0.083 1.2

fKT (a2) 0.264 −0.858 −0.011 −0.153 0.3 0.049 −1.228 −0.318 0.095 1.5

f η+(a2) 0.185 −0.514 0.014 −0.116 0.5 0.039 −0.757 −0.199 0.049 1.5

f η0 (a2) 0.183 −0.829 −0.076 −0.002 0.4 0.041 −1.068 −0.122 0.069 1.2

f ηT (a2) 0.216 −0.722 −0.007 −0.128 0.3 0.040 −1.019 −0.259 0.076 1.4

fπ+(a4) −0.141 −0.775 0.004 0.161 0.7 −0.054 −0.506 0.621 −0.326 5.2

fπ0 (a4) −0.139 −0.687 0.170 0.002 1.5 −0.061 0.703 0.323 −0.209 2.9

fπT (a4) −0.167 −0.895 0.077 0.143 1.1 −0.047 −0.327 0.698 −0.394 4.9

fK+ (a4) −0.173 −0.947 0.005 0.196 0.7 −0.067 −0.618 0.759 −0.398 5.2

fK0 (a4) −0.170 −0.838 0.209 0.001 1.5 −0.075 0.871 0.392 −0.254 2.9

fKT (a4) −0.217 −1.165 0.101 0.187 1.1 −0.061 −0.426 0.909 −0.513 4.9

f η+(a4) −0.140 −0.770 0.004 0.159 0.7 −0.054 −0.502 0.616 −0.323 5.2

f η0 (a4) −0.138 −0.681 0.170 0.0005 1.5 −0.061 0.710 0.318 −0.206 2.9

f ηT (a4) −0.178 −0.955 0.083 0.153 1.1 −0.050 −0.349 0.745 −0.421 4.9

Table C: Fit parameters for Eq. (A.6) for the functions fai defined in (A.5). δ is a measure
of the quality of the fit and defined in (A.7).

Split formfactors. As discussed in Sec. 4.2, the values of the Gegenbauer moments
a1,2,4 are not very well known. In Sec. 4.4 and Tabs. A, B we have presented results only
for our preferred choice of these parameters, i.e.

aK1 (1 GeV) = 0.17 , aπ,K,η2 (1 GeV) = 0.115 , aπ,K,η4 (1 GeV) = −0.015,

aK1 (2.2 GeV) = 0.135 , aπ,K,η2 (2.2 GeV) = 0.080 , aπ,K,η4 (2.2 GeV) = −0.0089;

for set 4, the ai are scaled up to µIR = 2.6 GeV. In order to allow the inclusion of
future updates of these values, we split the formfactors into contributions from different
Gegenbauer moments. We define14

f(q2) = fas(q2) + a1(µIR)fa1(q2) + a2(µIR)fa2(q2) + a4(µIR)fa4(q2), (A.5)

14Note that this splitting is exact and valid for arbitrarily large ai — there are no nonlinear terms in
ai.
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m2
1 (1−) m2

1∗ (0+) q2
max

π (η) 5.322= 28.4 5.632= 31.7 26.4 (22.8)

K 5.412= 29.3 5.722= 32.7 23.8

Table D: Masses of 1− and 0+ resonances in the bū and bs̄ channels. The 1− masses
are obtained from experiment and heavy-quark relations, the 0+ masses from a potential
model [40]. All numbers in units GeV2.

where fas contains twist-2 contributions from the asymptotic DA and also all higher-twist
contributions not proportional to a1,2,4. The task is now to fit all functions fas,a1,a2,a4 , in
the interval 0 < q2 < 14GeV2, to appropriate parametrizations.

For fas, which gives the dominant contribution to all formfactors, we use the same
parametrisation as for the full formfactors. The results are collected in the lower halves
of Tabs. A and B. Again, the fits are very good and best for the pion and set 2.

The fai turn out to be slowly varying functions of q2, which can be fitted by a poly-
nomial of 3rd degree:

fai(q2) = a + b (q2) + c (q2)2 + d (q2)3 . (A.6)

The measure of the quality of the fit has now to be defined in a slightly different way, as
the fai have zeros in the fit interval. We define the fit-quality δ as

δ = 100

∑
t |f(t) − ffit(t)|∑

t |f(t)|
, t ∈ {0, 1

2
, . . . , 27

2
, 14}GeV2 , (A.7)

i.e. as the average deviation of the fit from the true value, in per cent. The fit parameters
are given in Tab. C. As one can read off from the δ’s, the fits are best for fa1, still good
for fa2 and worst for fa4 . The limited quality of the fits for fa4 is due to a change of sign
of its derivative at the upper end of the fit interval, which cannot be reliably reproduced
by a polynomial of 3rd degree.

We would like to stress that none of the split-formfactor parametrizations must be
used for q2 larger than 14 GeV2. For calculating the full formfactors for arbitrary a1,2,4,
the following procedure should be followed:

• determine a1,2,4 at the scale µ2
IR = m2

B −m2
b ; the scaling factors from µ = 1 GeV up

to 2.2 GeV (i.e. mb = 4.8 GeV) are (0.793, 0.696, 0.590) for (a1, a2, a4);

• choose set 2 (preferred) or set 4;

• calculate fas from the appropriate formula (A.1), (A.2) or (A.3), using the fit pa-
rameters from Tab. A or B;

• calculate fa1,2,4 from (A.6), using the fit parameters from Tab. C;

• calculate the total formfactor from (A.5);

• extend the formfactor to the full kinematical regime by fitting it to (A.1), (A.2) or
(A.3).
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B Distribution Amplitudes

In this appendix we collect explicit expressions for all the DAs that enter the formfactors.
These expressions are well known and have been taken from Ref. [16].

The key point is that, to leading order in QCD, DAs can be expressed as a partial wave
expansion in terms of contributions of increasing conformal spin, the so-called conformal
expansion. The coefficients of different partial waves renormalize multiplicatively to LO
in QCD, but mix at NLO, the reason being that the symmetry underlying the confor-
mal expansion, the conformal symmetry of massless QCD, is anomalous and broken by
radiative corrections.

The two-particle twist-2 amplitude (8) is expanded as

φ(u, µ) = φas(u)
∑

n≥0

an(µ)C3/2
n (ζ) (A.8)

with ζ ≡ 2u − 1 and a0 = 1 from normalization:

∫ 1

0

du φ(u, µ) = 1.

The C
3/2
n (ζ) are Gegenbauer polynomials. The conformal spin of the term in C

3/2
n is

j = n + 2. For the π and η one has a2n+1 = 0 due to G-parity, but aK1 ∼ (ms − mq) for
the K [33], which is one source of SU(3) breaking for the formfactors.

As only the first few Gegenbauer moments an are known numerically, we truncate the
series at n = 4; the values of the conformal spins included are listed in Tab. E, whereas the
numerical values of the ai are discussed in Sec. 4. The truncation is justified as long as the
perturbative kernels T with which the DAs are convoluted are slowly varying functions
of u, so that the rapidly oscillating Gegenbauers suppress terms with high n. In our case
the T are nonsingular for all u, including the endpoints u = 0, 1, so the truncation of the
series is justified. The term labeled φas in (A.8) is the asymptotic DA which is reached
for large scales µ → ∞; it is completely determined by perturbation theory and given by

φas(u) = 6u(1 − u);

it is the same for all mesons. The Gegenbauer moments an become relevant at moderate
scales and depend on the hadron in question.

Let us now define the three-particle DAs. To twist-3 accuracy, there is only one:

〈0|ū(x)σµνγ5gGαβ(vx)d(−x)|π−(p)〉 =

= i
fπm

2
π

mu + md
(pαpµgνβ − pαpνgµβ − pβpµgνα + pβpνgαµ) T (v, p · x) + . . . , (A.9)

where the ellipses stand for Lorentz structures of twist-5 and higher and where we used
the following short-hand notation for the integral defining the three particle DA:

T (v, p · x) =

∫
Dα e−ip·x(αu−αd+vαg)T (αd, αu, αg). (A.10)
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Here α is the set of three momentum fractions αd (d quark), αu (u quark) and αg (gluon).
The integration measure is defined as

∫
Dα =

∫ 1

0

dαddαudαgδ(1 − αu − αd − αg).

There are also four three-particle DAs of twist-4, defined as

〈0|ū(x)γµγ5gGαβ(vx)d(−x)|π−(p)〉 =

= pµ(pαxβ − pβxα)
1

p · x
fπm

2
πA‖(v, p · x) + (pβg

⊥
αµ − pαg

⊥
βµ)fπm

2
πA⊥(v, p · x),(A.11)

〈0|ū(x)γµigG̃αβ(vx)d(−x)|π−(p)〉 =

= pµ(pαxβ − pβxα)
1

p · x
fπm

2
πV‖(v, p · x) + (pβg

⊥
αµ − pαg

⊥
βµ)fπm

2
πV⊥(v, p · x);(A.12)

g⊥
µν is defined as

g⊥
µν = gµν −

1

p · x
(pµxν + pνxµ).

To next-to-leading conformal spin (j = 7/2, 9/2), the twist-3 three-particle distribution
amplitude T is given by15

T (αu, αd, αg) = 360η3αuαdα
2
g{1 + ω3

1

2
(7αg − 3)} .

The two-particle twist-3 distribution amplitudes φp and φσ in Eqs. (9) and (10) depend
on T through the equations of motions [16],16 which implies that their coefficients are not
independent from each other. The expansion up to NNL order (j = 3/2, 7/2, 9/2) reads17

φp(u) = 1 + {30η3 −
5

2
ρ2
π}C

1/2
2 (ζ) + {−3η3ω3 −

27

20
ρ2
π −

81

10
ρ2
πa2}C

1/2
4 (ζ),

φσ(u) = 6u(1 − u)
{
1 + {5η3 −

1

2
η3ω3 −

7

20
ρ2
π −

3

5
ρ2
πa2}C

3/2
2 (ζ) .

The two-particle twist-4 corrections gπ and A in Eq. (8) are given to NNL conformal spin

15In the literature the notation f3π = fπη3 is also widely used.
16An explicit expression for φp in terms of T is given in Ref. [41], Eq. (16).
17At first glance it seems that φp is taken to a higher order in conformal expansion than φσ, but as

discussed in the first reference of [16], φp and φσ are not pure spin projections, which means that the
coefficients of a given Gegenbauer polynomial contain contributions from different partial waves.
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(j = 1, 3, 5) by18

gπ(u) = 1 + {1 +
18

7
a2 + 60η3 +

20

3
η4}C

1/2
2 (ζ) + {−

9

28
a2 − 6η3ω3}C

1/2
4 (ζ),

A(u) = 6uū

{
16

15
+

24

35
a2 + 20η3 +

20

9
η4

+

(
−

1

15
+

1

16
−

7

27
η3ω3 −

10

27
η4

)
C

3/2
2 (ξ) +

(
−

11

210
a2 −

4

135
η3ω3

)
C

3/2
4 (ξ)

}

+

(
−

18

5
a2 + 21η4ω4

){
2u3(10 − 15u + 6u2) ln u + 2ū3(10 − 15ū + 6ū2) ln ū

+uū(2 + 13uū)} .

Finally the three-particle twist-4 DAs are to NL spin (j = 3, 5) given by

A‖(α) = 120αuαdαg(a10(αd − αu)},

V‖(α) = 120αuαdαg(v00 + v10(3αg − 1)},

A⊥(α) = 30α2
g(αu − αd)[h00 + h01αg + h10(5αg − 3)/2},

V⊥(α) = − 30α2
g{h00αg + h01[αgαg − 6αuαd] + h10[αgαg − 3/2(α2

u + α2
d)]} ,

where α = 1 − α and the aij , vij and hij are related to hadronic matrix elements η4, ω4

and a2 as

a10 = 21
8
η4ω4 −

9
20

a2 , v10 = 21
8
η4ω4 , v00 = −1

3
η4 ,

h01 = 7
4
η4ω4 −

3
20

a2 , h10 = 7
2
η4ω4 + 3

20
a2 , v00 = −1

3
η4 .

Taking everything together, we have 7 hadronic parameters {ci} = {a1, a2, a4, η3, ω3, η4, ω4}
which parametrize all DAs to twist-4 and NLO in conformal spin. The ci are scale-
dependent and are usually given at the scale 1 GeV. To LO in QCD, they do not mix
under renormalisation, so that the scaling up to µIR =

√
m2
B − m2

b is given by

ci(µIR) = Lγci
/β0ci(1 GeV),

with L = αs(µIR)/αs(1 GeV), β0 = 11 − 2/3Nf . The one-loop anomalous dimensions
γci are given in Tab. F. Note that the anomalous dimension increases with increasing
conformal spin, γ ∼ log j, which implies that the truncation of the conformal expansion
becomes the better the high the scale. The numerical values for all these parameters at
the scale µ = 1 GeV are collected in Tab. G, taken from Ref. [16].

18Note that, contrary to appearances, the contributions of gπ and A to (8) do not vanish for zero meson
mass: η4 implicitly contains a factor 1/m2

π and survives in the limit m2
π → 0.
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tree O(αs)
twist 2 3 4 2 3 4
x-particle 2 2 3 2 3 2 2 3 2 3
jL 2 3

2
7
2

1 3 2 3
2

- - -
jNL 4 7

2
9
2

3 5 4 7
2

- - -
jNNL 6 9

2
- 5 - 6 - - - -

Table E: Overview of the contributions included in the calculations. For the K we also
include conformal spin j = 3 for twist-2 which explicitly parametrizes SU(3) flavor break-
ing.

γan
γη3 γω3 γη4 γω4

CF

(
1 −

2

(n + 1)(n + 2)
−

n+1∑

m=2

1

m

)
16

3
CF + CA −

25

6
CF +

7

3
CA

8

3
CF −

8

3
CF +

10

3
CA

Table F: One-loop anomalous dimensions of hadronic parameters in DAs.

π K η
η3 0.015 0.015 0.013
ω3 −3 −3 −3
η4 10 0.6 0.5
ω4 0.2 0.2 0.2

Table G: Input parameters for twist-3 and 4 DAs, calculated from QCD sum rules. The
accuracy is about 50%. Renormalization scale is 1 GeV.

C Spectral Densities for f+

The total spectral density of Π+ is obtained as sum of all the contributions listed below,
i.e.

ρΠ+ = ρT2 + ρT3 + ρσ + ρp + ρ2p
T4 + ρ3p

T4.

ρT2 is the contribution from the twist-2 DA, ρT3 from the twist-3 three-particle DA, ρσ(p)

from the twist-3 two-particle DA φσ(p) and ρ
2(3)p
T4 from the two(three)-particle DAs of

twist-4. There is also one constant term, T4c, which is due to twist-4 corrections that
cannot be expressed via a dispersion relation, so that the total Borel-transformed Π+ is
given as

B̂Π+ =

∫ ∞

m2
b

ds ρΠ+(s) e−s/M
2

+ T4c.
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ρT2 =
3 fπ mb

(q2 − s)
7
(m2

b − q2) (m2
b − s) (15 a4 (42 m8

b + q8 + 10 q6 s + 20 q4 s2 + 10 q2 s3 + s4

− 84 m6
b (q2 + s) + 28 m4

b (2 q2 + s) (q2 + 2 s) − 14 m2
b (q2 + s) (q4 + 4 q2 s + s2)) + (q2 − s)

2

× (6 a2 (5 m4
b + q4 + 3 q2 s + s2 − 5 m2

b (q2 + s)) + (q2 − s) (a0 (q2 − s) + 3 a1 (−2 m2
b + q2 + s))))

+ as

{3 a0 fπ mb

s(q2 − s)
3
((m2

b − s) (−2 m2
b q2 + 2 q4 + m2

b (4 + π2) s − (1 + π2) q2 s − 3 s2) + (m2
b − q2)

× (s (s − m2
b) log(1 −

q2

m2
b

)
2

+ s log(
s

m2
b

) (−2 s + (m2
b − s) log(

s

m2
b

)) + 2 (m2
b − s) (2 m2

b − 5 s

+ 2 s log(
s

m2
b

)) log(
s

m2
b

− 1) + 2 s (s − m2
b) log(

s

m2
b

− 1)
2

− 2 (m2
b − s) log(1 −

q2

m2
b

) (m2
b

+ s + s log(
s

m2
b

) − 2 s log(
s

m2
b

− 1))) + 2 (m2
b − q2) (m2

b − s) (Li2(
q2

q2 − m2
b

) + Li2(1 −
m2

b

s
)

+ 4 Li2(1 −
s

m2
b

))) +
a1 fπ mb

s(q2 − s)
4
((m2

b − s) (6 q2 (6 m4
b − 6 m2

b q2 + q4) + (−2 m4
b (95 + 9 π2)

+ 27 m2
b (6 + π2) q2 + (3 − 9 π2) q4) s + (m2

b (158 + 9 π2) − 3 (50 + 3 π2) q2)s2 − 13 s3) + 3 (8 (m2
b − s)

× (q2 − m2
b) (2 m2

b − q2 − s) s log(
µ2

m2
b

) + 3 (m2
b − q2) (m2

b − s) (2 m2
b − q2 − s) s log(1 −

q2

m2
b

)
2

+ s log(
s

m2
b

) (12 m4
b (q2 + s) + 14 q2 s (q2 + s) − 2 m2

b (4 q4 + 19 q2 s + 7 s2) − 3 (m2
b − q2) (m2

b − s)

× (2 m2
b − q2 − s) log(

s

m2
b

)) − 2 (m2
b − q2) (s − m2

b) (−2 m2
b + q2 + s) (6 m2

b − 23 s + 6 s log(
s

m2
b

))

× log(
s

m2
b

− 1) + 6 (m2
b − q2) s (s − m2

b) (−2 m2
b + q2 + s) log(

s

m2
b

− 1)
2

+ 6 (m2
b − q2)

× (m2
b − s) (2 m2

b − q2 − s) log(1 −
q2

m2
b

) (m2
b − s + s log(

s

m2
b

) − 2 s log(
s

m2
b

− 1))) − 18 (m2
b − q2)

× (m2
b − s) (2 m2

b − q2 − s) (Li2(
q2

q2 − m2
b

) + Li2(1 −
m2

b

s
) + 4 Li2(1 −

s

m2
b

)))

+
a2 fπ mb

4 s(q2 − s)
5
((m2

b − s) (−24 (m2
b − q2) q2 (30 m4

b − 15 m2
b q2 + q4) + (5 m6

b (1183 + 72 π2)

− 20 m4
b (407 + 36 π2) q2 + 12 (5 − 6 π2) q6 + 216 m2

b (11 + 2 π2) q4) s − (5 m4
b (1525 + 72 π2)

− 16 m2
b (575 + 36 π2) q2 + 36 (73 + 6 π2) q4 ) s2 + (m2

b (2083 + 72 π2) − 8 (260 + 9 π2) q2) s3 − 61 s4)
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+12 (25 (m2
b − q2) (m2

b − s) s (5 m4
b + q4 + 3 q2 s + s2 − 5 m2

b (q2 + s)) log(
µ2

m2
b

) − 6 (m2
b − q2)

× (m2
b − s) s (5 m4

b + q4 + 3 q2 s + s2 − 5 m2
b (q2 + s)) log(1 −

q2

m2
b

)

2

+ s log(
s

m2
b

) (−60 m6
b (q2 + s)

+37 q2 s (q4 + 3 q2 s + s2) + 30 m4
b (3 q4 + 8 q2 s + 3 s2) − m2

b (25 q6 + 237 q4 s + 261 q2 s2 + 37 s3)

+6 (m2
b − q2) (m2

b − s) (5 m4
b + q4 + 3 q2 s + s2 − 5 m2

b (q2 + s)) log(
s

m2
b

)) + 2 (m2
b − q2) (m2

b − s)

× (5 m4
b + q4 + 3 q2 s + s2 − 5 m2

b (q2 + s)) (12 m2
b − 55 s + 12 s log(

s

m2
b

)) log(
s

m2
b

− 1) + 12 s

× (m2
b − q2) (s − m2

b) (5 m4
b + q4 + 3 q2 s + s2 − 5 m2

b (q2 + s)) log(
s

m2
b

− 1)
2

− 12 (m2
b − q2)

× (m2
b − s) (5 m4

b + q4 + 3 q2 s + s2 − 5 m2
b (q2 + s)) log(1 −

q2

m2
b

) (m2
b − s + s log(

s

m2
b

) − 2 s

× log(
s

m2
b

− 1))) + 144 (m2
b − q2) (m2

b − s) (5 m4
b + q4 + 3 q2 s + s2 − 5 m2

b (q2 + s))

× (Li2(
q2

q2 − m2
b

) + Li2(1 −
m2

b

s
) + 4 Li2(1 −

s

m2
b

)))

+
a4 fπ mb

10 s(q2 − s)
7
(−((m2

b − s) (30 (m2
b − q2) q2 (1260 m8

b − 1890 m6
b q2 − 105 m2

b q6 + 2 q8

+840 m4
b q4) − (21 m10

b (23207 + 900 π2) − 63 m8
b (18827 + 900 π2) q2 − 700 m4

b (439 + 45 π2) q6

+150 m2
b (176 + 45 π2) q8 + 30 (19− 15 π2) q10 + 175 m6

b (5603 + 360 π2) q4) s + 84 (m8
b

× (13051 + 450 π2) − 112 m6
b (22157 + 900 π2) q2 − 800 m2

b (616 + 45 π2) q6 + 150 (283 + 30 π2) q8

+525 m4
b (3523 + 180 π2) q4) s2(−7 m6

b (119363 + 3600 π2) + 756 m4
b (2131 + 75 π2) q2 + 200 (848

+45 π2) q6 − 10125 m2
b (89 + 4 π2) q4) s3 + (7 m4

b (34967 + 900 π2) − 6 m2
b (57989 + 1800 π2) q2

+125 (1075 + 36 π2) q4) s4 + (−2 m2
b (10553 + 225 π2) + (21461 + 450 π2) q2) s5 + 181 s6)) + 30

× (91 (m2
b − q2) (m2

b − s) s (42 m8
b + q8 + 10 q6 s + 20 q4 s2 + 10 q2 s3 + s4 − 84 m6

b (q2 + s)

+28 m4
b (2 q2 + s) (q2 + 2 s) − 14 m2

b (q2 + s) (q4 + 4 q2 s + s2)) log(
µ2

m2
b

) − 15 (m2
b − q2) (m2

b − s) s

× (42 m8
b + q8 + 10 q6 s + 20 q4 s2 + 10 q2 s3 + s4 − 84 m6

b) (q2 + s) + 28 m4
b (2 q2 + s) (q2 + 2 s) − 14 m2

b

× (q2 + s) (q4 + 4 q2 s + s2)) log(1 −
q2

m2
b

)
2

+ s log(
s

m2
b

) (−1260 m10
b (q2 + s) + 630 m8

b (5 q4
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+12 q2 s + 5 s2) − 210 m6
b (q2 + s) (13 q4 + 48 q2 s + 13 s2) + 121 q2 s (q8 + 10 q6 s + 20 q4 s2

+10 q2 s3 + s4) + 105 m4
b (9 q8 + 82 q6 s + 160 q4 s2 + 82 q2 s3 + 9 s4) − m2

b (91 q10

+2305 q8 s + 9400 q6 s2 + 9700 q4 s3 + 2575 q2 s4 + 121 s5) + 15 (m2
b − q2) (m2

b − s)

× (42 m8
b + q8 + 10 q6 s + 20 q4 s2 + 10 q2 s3 + s4 − 84 m6

b (q2 + s) + 28 m4
b (2 q2 + s) (q2 + 2 s)

− 14 m2
b (q2 + s) (q4 + 4 q2 s + s2)) log(

s

m2
b

)) + 4 (m2
b − q2) (m2

b − s) (42 m8
b + q8 + 10 q6 s

+20 q4 s2 + 10 q2 s3 + s4 − 84 m6
b (q2 + s) + 28 m4

b (2 q2 + s) (q2 + 2 s) − 14 m2
b (q2 + s)

× (q4 + 4 q2 s + s2)) (15 m2
b − 83 s + 15 s log(

s

m2
b

)) log(
s

m2
b

− 1) + 30 (m2
b − q2) s (s − m2

b)

× (42 m8
b + q8 + 10 q6 s + 20 q4 s2 + 10 q2 s3 + s4 − 84 m6

b (q2 + s) + 28 m4
b (2 q2 + s) (q2 + 2 s)

− 14 m2
b (q2 + s) (q4 + 4 q2 s + s2)) log(

s

m2
b

− 1)
2

− 30 (m2
b − q2) (m2

b − s) (42 m8
b + q8

+10 q6 s + 20 q4 s2 + 10 q2 s3 + s4 − 84 m6
b (q2 + s) + 28 m4

b (2 q2 + s) (q2 + 2 s) − 14 m2
b

× (q2 + s) (q4 + 4 q2 s + s2)) log(1 −
q2

m2
b

) (m2
b − s + s log(

s

m2
b

) − 2 s log(
s

m2
b

− 1)))

+900s (m2
b − q2) (m2

b − s) (42 m8
b + q8 + 10 q6 s + 20 q4 s2 + 10 q2 s3 + s4 − 84 m6

b (q2 + s)

+28 m4
b (2 q2 + s) (q2 + 2 s) − 14 m2

b (q2 + s) (q4 + 4 q2 s + s2)) (Li2(
q2

q2 − m2
b

) + Li2(1 −
m2

b

s
)

+4 Li2(1 −
s

m2
b

))
}

ρT3 =
−15 η3 µπ

2

(q2 − s)
6

(m2
b − q2)

2
(m2

b − s) (2 (q2 − s) (−5 m2
b + 2 q2 + 3 s) + (7 m4

b − 6 m2
b q2 + q4 − 8 m2

b s

+4 q2 s + 2 s2)ω3)

35



ρp =
a0µπ

2 (3 m2
b s − 3 q2 s)

6 (q2 − s)
2
s

+
5η3µ

2
π

(q2 − s)
4
s
(18 m6

b s − 36 m4
b q2 s − 3 q6 s + 21 m2

b q4 s − 18 m4
b s2

+30 m2
b q2 s2 − 12 q4 s2 + 3 m2

b s3 − 3 q2 s3) + as

{ a0 µπ
2

6 (q2 − s)
2
s
((q2 + s) (s − 3 m2

b)

− 3 (m2
b − 4 q2) s log(

q2

m2
b

)
2

− 18 s (3 m2
b − 3 q2 + s) log(1 −

q2

m2
b

)
2

(m2
b − 4 q2) s log(
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b

)

× (log(1 −
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m2
b

) − log(
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b

)) + 6 log(1 −
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b

) (m2
b q2 + 3 m2

b s − q2 s + s ((2 m2
b − 3 q2)

× log(
µ2

m2
b

) + q2 log(
s
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b

)(m2
b + q2 + s) log(
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m2
b

) − (m2
b − 2 q2) log(

s
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b s

× log(
s
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b

)
2

− log(
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m2
b

)
2

s (5 q2 + s) + log(
s
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) (2 m2
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s
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+2 log(
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b
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b − 2 q2 + 2 s)

× log(
s

m2
b

− 1)) + 2 log(
s

m2
b

− 1) (2 q2 s − m2
b (q2 + 4 s) + s (s log(

µ2

m2
b

) − (m2
b + 2 s) log(

s

m2
b

− 1))))

+6 s (m2
b Li2(

q2

q2 − m2
b

) + (2 m2
b − 3 q2 + s) Li2(1 −

q2

m2
b

) + m2
b Li2(1 −

m2
b

s
) − (m2

b + q2 + s)

×Li2(1 −
q2

s
) − (5 q2 + s)Li2(

m2
b − s

m2
b − q2

) − (m2
b + q2 + s) Li2(

m2
b − s

q2 − s
) − (m2

b + q2 + s)

×Li2(
(q2 − m2

b) s

m2
b (q2 − s)

) + (2 m2
b − 3 q2 + s) Li2(

m2
b − q2

s − q2
) + 2 (m2

b − q2) Li2(1 −
s

m2
b

) + (m2
b − 4 q2)

×Li2(1 −
s
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s
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2
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q2 − s
) (−(m2

b (q2 + 2 s)) + s (m2
b + q2 + s) log(

s − q2

m2
b

)) + (q2 − s) s ((m2
b

+ q2 + s) log(
m2

b − q2

s − q2
)
2

− (m2
b + q2 + s) log(

(m2
b − q2) s

m2
b (s − q2)

)
2

− 2 (m2
b + q2 + s) log(

(m2
b − q2) s

m2
b (s − q2)

)

× log(
s − q2

m2
b

) + 2 (2 m2
b − 3 q2 + s) log(

s − q2

m2
b

)
2

+ 2 log(
m2

b − q2

s − q2
) (−3 m2

b + 6 q2 + (2 m2
b

− 3 q2 + s) log(
s − q2

m2
b

))) − 2 (4 m4
b (q2 + s) + 2 q2 s (q2 + 3 s) − 2 m2

b q2 (q2 + 7 s) + (q2 − s) s

× (5 m2
b − 5 q2 + 3 s) log(

s − q2

m2
b

)) log(
s

m2
b

− 1) + 2 s (−2 s (q2 + s) + m2
b (3 q2 + s)) log(

s

m2
b

− 1)
2

+ log(
s

m2
b

) (q2 s (3 q2 + s) − m2
b (q2 − s) (2 q2 + 5 s) − 2 (q2 − s) s (m2
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