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N E W  RESULTS ON C O N T R O L  OF M U L T I B O D Y  
S Y S T E M S  W H I C H  CONSERVE A N G U L A R  

M O M E N T U M  

I. KOLMANOVSKY, N.H. McCLAMROCH, V.T.  COPPOLA 

ABSTRACT. A planar system of rigid bodies interconnected by one 
degree of freedom rotational joints is considered. This mult ibody 
system is referred to as a multilink, and the rigid bodies are referred 
to as links. The angular momentum of the multil ink is conserved 
but  is not necessarily zero. We show tha t  if the number  of links 
is a t  least four, then periodic joint motions can make the absolute 
orientat ion of a specified base link track exactly a specified function 
of t ime whose t ime derivative is periodic. This result on the use 
of periodic joint motions for orientation tracking extends previous 
work [15], [20], [22] on using periodic joint motions for rest-to-rest 
reorientation. It  has interesting physical consequences. Specifically, 
in the case of non-zero angular momentum periodic joint  motions can 
mainta in  the orientation of the base link constant.  In the case of zero 
angular momentum periodic joint motions can change the  orientat ion 
of the  base link at  a specified angular rate. We also demonstrate  t ha t  
if the  multilink consists of at  least three links, then for any value 
of the  angular momentum joint motions can reorient the multi l ink 
arbi trar i ly over an arbi t rary  t ime interval. This result extends similar 
results in [15] for zero angular momentum and in [20] tha t  apply for 
nonzero angular momentum but  not for an  arbi t rary t ime interval. In 
terms of their  control-theoretic aspects, the  problems t rea ted  in the  
paper  can be viewed as controllability problems for a class of nonlinear 
control system with t ime-dependent drift. 

1. INTRODUCTION 

We address a motion planning problem for a planar system of N > 1 
r i g i d  b o d i e s  i n t e r c o n n e c t e d  w i t h  o n e  d e g r e e  o f  f r e e d o m  f r i c t i o n l e s s  r o t a t i o n a l  

j o i n t s  i n  t h e  f o r m  of  a n  o p e n  k i n e m a t i c  t r e e  (F ig .  1). T h i s  s y s t e m  o f  r i g i d  
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Fig. 1. The multi[ink 

bodies is referred to as a multi[ink, and the rigid bodies are referred to 
as links. The origin of a reference frame is fixed at the center of mass of 
the multflink. We assume that  the reference frame is an inertial frame and 
that  the angular momentum of the multi[ink about the multilink's center 
of mass ~s conserved. The configuration of the multi[ink is specified by its 
orientation 8 which is defined as the absolute orientation of the base link, 
and by the joint angles r i -- 1 , . . .  , (N - I), which determine the shape 
of the multi[ink (Fig. I). The joints are controlled by internal (angular 
momentum preserving) actuators, e.g., by direct drive motors. 

A number of control problems for a multi[ink with zero angular mo- 
mentum has been considered in the literature; see, e.g., [I]-[3], [ii], [15], 
[17]-[20], [22]. The interest in these problems has been motivated, in part,  
by space robotics applications [1]-[3], springboard diver dynamics [4], [8], 
and the falling cat phenomenon [7], [16]. Previous work concentrated mostly 
on using joint motions for rest-to-rest reconfiguration of the multilink. In 
particular, for a multi[ink consisting of at least three nondegenerate links it 
has been shown that  periodic joint motions (i.e., cyclic shape changes) can 
induce nonzero net orientation changes. 

In the present paper we extend this result on the use of periodic joint 
motions to tracking problems. Specifically, we show that  if the multilink 
consists of at least four nondegenerate links, then periodic joint motions 
can make the orientation track exactly a specified function of time whose 
time derivative is periodic. This result has interesting and, at a first glance, 
counterintuitve consequences. Specifically, in the case of non-zero angular 
momentum of the multi[ink periodic joint motions can maintain the orienta- 
tion of the multilink constant. In the case of zero angular momentum of the 
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multilink periodic joint motions can change the orientation of the multilink 
at a specified angular rate. We also obtain new results for the problem of 
reconfiguring the multilink from a given initial shape and orientation to a 
specified final shape and orientation over a specified time interval. Specifi- 
cally, we prove that  if the multilink consists of at least three nondegenerate 
links, then for any value of the angular momentum joint actuators can re- 
configure the multilink arbitrarily over an arbitrary t ime interval. This 
result extends similar results in [15] for zero angular momentum and in [20] 
tha t  apply for nonzero angular momentum but not for an arbitrary time 
interval. 

The  paper is organized as follows. In Sec. 2 we summarize the equations 
of motion. In Sec. 3 we present the results for the exact tracking problem. 
In Sec. 4 we t reat  the reconfiguration problem. The proofs in Secs. 3-  
4 are constructive and rely on averaging theory [6], [13, [14]. In Sec. 5 we 
discuss implications of our results for mult ibody spacecraft at t i tude tracking 
maneuvers, where the spacecraft is modeled as a multilink in orbit. Section 6 
contains concluding remarks. Some of these results were reported in an 
earlier conference paper [10]. 

Our notation is standard: R is the set of real numbers, Z + is the set 
of nonnegative integers, a function f is C n if f is n times continuously 
differentiable. 

2. EQUATIONS OF MOTION AND PRELIMINARIES 

The angular momentum of the planar multilink about  the center of mass 
of the multilink is constant but not necessarily zero. Conservation of angular 
momentum relates the joint angle velocities to the time rate of change of 
the orientation as [15], [20] 

N - 1  

mee(r .= mee(r 

where H denotes the constant value of the angular momentum. Th e  func- 
tions moo and mo~, i = 1,- . .  , N -  1, are real analytic and 2r-periodic in 
each of their arguments. The function moo satisfies meo(r > 0 for all r 

Assuming that  every joint is actuated, equations relating the joint angles 
and the joint torques can be written in the form 

F1 (r162 + F2(r q~)q~ % H F 3 ( r1 6 2  q- H2Fa(r  --- ~', (2) 

where ~ --- (~'1," "" ,vlv-1) is an ( N -  1)-vector of joint torques. The matr ix 
functions FI,F3, F4 : ]R N- I  --+ ]R N-I ,  F2 : R N- I  x ~ N - I  _.+ R(N--I)x(N-I) 
are 2~r-periodic in each of their arguments. Equations (2) can be obtained 
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either by substituting (1) into Lagrange's equations of motion for the mul- 
tilink or, equivalently, by Routhian reduction; see [15], [20] for details. The 
triple (0, r r is referred to as the s ta te  of the multi[ink. 

Let p, r, s be three integers, 1 <_ p, r, s < (N - 1), which identify three 
specific joints. To state our assumptions and results, it is convenient to 
introduce two functions of the joint angles 

Pprs : ~, (N-I) _.+ R and 

They are defined as 

pp~,(r  = 

+ 

~ ( r  = 

/]pr : R (N-1 )  ~ R. 

\ mop ] + 
OCp \ mop / oCp \ mop } 

o ( m~ ~ o ( m~ ~ 
\ mop / \ mop } 
0r 0r  ' 

moe ] \ moo ] 
0r 0r 

0 

3. EXACT TRACKING 

Throughout this section the following assumptions hold: (A1) N > 4; 
(A2) there exist r  E R 1v-1 and three integers p, r, s, 1 < p, r, s < (N  - 
1),p # r # s, such that m@(r ~ # 0 and prcs(r ~ ~ 0; (A3) the scalar 
tracking objective function Or(t), t > t', is C 2 and its time derivative 0d is T- 
periodic for some T > 0. With the exception of some degenerate situations 
(e.g., when masses or inertias of some of the links are zero), a multilink 
with at least four links satisfies (A2). Moreover, in the usual case almost 
all shapes r e R N-1 satisfy map(r ~ ~ 0, pprs(r ~ ~ 0. Assumption 
(A3) implies that  On(t), t _> t', can be represented as a sum of a linear 
function of time and a periodic function of time which is twice continuously 
differentiable. If (A1)-(A3) hold, the orientation of the multilink can track 
exactly 0a(t), t > t', while the joint motions are periodic and joint tangle 
deviations are as small as desired. 

T h e o r e m  3.1. Suppose .(A1)-(A3) hold and let ~ > 0 be given. Then 
8* R 2N'~1 there exists a state ( , r r e and continuous joint torques v~ ( t ) , 

i = 1 , . . - , . ( N  - -  1), defined for t > t', such that if (8(t'), r162 = 
(Od(t'), r r then the solution of (1)-(2) satisfies: (i) O(t) = Od(t) for 
t > t'; (ii) r t > t',, i = 1 , . . . ,  (N  - 1), are C 2 and T-periodic; (iii) 
Ir - q~~ < ~, for all t > t', i = 1 , . - . ,  ( N  - 1). 
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Proof. The theorem is proved by constructing a twice continuously dif- 
ferentiable T-periodic joint motion r t >_ t', wMch satisfies (iii) and 
which guarantees that  if O(t') = Od(t'), then the solution of Eq. (1) saris- 
ties O(t) = Od(t) for all t >_ t'. The joint torques can be then obtained by 
substituting r t >_ t', into (2). 

Without  loss of generality, assume that  p = 1,r = 2,s = 3, and 
P123(r ~ > 0. If N > 4 define 

r - r i = 4,- . .  , (Y - 1), t >_ t', (3) 

and assume, without loss of generality, that  N -- 4. 
Let 

Ur -~- {(~1,~2,~3) �9 R3: [~i -- r < 6, i = 1,2,3} 

be a neighborhood of r Since Pt23(r ~ > 0, m o t ( r  ~ ~= O, and the functions 
P123 and mot  are continuous, there exist scalars 6, 7, b, and B satisfying 
0 < 6 < e / 4 ,  q, > 0, B > b >  0, 

Im0t(r > ~ > 0, for ~I r �9 U,o, 

and 

7r 7r 

If 8(t) ---- 0d(t), t _> t', Eq. (1) implies 

H moo (r 
Ct = m01(r - m01(r d 

Let It and/2  be such that 

H moo(r  ,,~ 

Select M �9 Z + sufficiently large so that  

8 B > p 1 2 3 ( r  8 b > 0 ,  for a l l r 1 4 9 1 6 2  

m~162 r m~162 r (4) 
mot(C) 

for all r �9 Ur and ~' < t < t' + T. 

8T l 8T M > max  I412T~ -~ ' 411T~ , ( 1 2 B - l l b ) - ~ , ( 1 2 b -  1B)~-} .  

The outline of the proof is now given. Let t~ = t' + T i / M ,  i = 0 , . . .  , M .  
We shall show that  there exists a C 2 joint motion (r (t), r r �9 U~o, 
t' < t < t' + T, satisfying (4) and such that  

r = r  i - -  0,-- .  ,M, (5) 

and 

r = r r = r r = r = o, 
{----- 0,..- ,M. (6) 
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The construction of the joint motion satisfying (5) and (6) is accomplished 
separately in each interval tl _< t ~ ti+l. We then extend (r r r 
constructed for t ~ < t < t' + T periodically with period T for t > g + T. 
Since 8d(t), t >_ t', is T-periodic, (4) implies that r + T) = Cx(t) for 
t > g. Therefore, (r r r is C 2, T-periodic, and contained in 
U~o for all t > t'. 

We now construct the desired joint motion (r r r for t~ < 
t _< ti+l. The selection of M guarantees the existence of a > 0 and/~ > 0 
such that 

5M/(4T) - 12 bhM/(8BT) - 11 > ~2 > (r) 
B b 

and 

5M/(4T) + ll 12 + bMh/(8BT) > a s > ( s )  
B b 

Consider a family of joint motions r k, n) and Ca(t, k, n) parametrized 
for t E [ti, ti+l] in terms of a real parameter k E [-fl ,  a] and a positive 
integer n as 

-1/2 t 
( ti+ l - ti ) / 

r = r + k, ~ n  (k+vl(r + (-k)+v2(a,n))d~, 
t, (9) 

r 1 6 2  + 21rn ] 
~,: (10) 

where (k)+ = k if k > 0 and is zero otherwise. 

1 - cos (27 r (h -  t~)) , 

0, 

h ' 
O, 

0, 

0 

- 1  + cos ,, , 

(ti+ 1 - t~) / (4n), 

( 

(t, ~ )  = Vl 

v 2 ( t , - )  = 

Here, in terms of h = 

ti _< t_< ti + h ,  

ti +h_<  t_< ti + 2h, 

ti + 2 h  < t < t~ + 3 h ,  

ti + 3h_< t < ti + 4 h ,  

ti _< t < ti + h ,  

ti + h  < t < ti + 2h, 

t~ + 2 h  < t < ti + 3 h ,  

t~ + 3 h  < t < t~ + 4 h ,  
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and 

vl( t ,n)  = vl(t  - 4h, n), v2(t,n) = v 2 ( t -  4h, n), ti + 4h < t <_ t~+l. 

Note that  for arbitrary values of the parameters k and n the joint motions 
r k,n)  and r k,n) are C 2 for ti < t < ti+l and satisfy 

r = ej ( t~+l ,k ,~)  = r 

4~(t~, k, ~) = r k, ~) = ~j(t~, k, ~) = 4;j(t~+l, k, ~) = 0, 

where j = 2, 3. 
Let r  denote the solution of Eq. (4), where 42(t ,k ,n)  and 

43(t ,k ,n) ,  t~ G t <_ ti+i, axe defined by Eqs. (9) and (10), and 4i(ti,  k ,n)  = 
4~- We want to show that  there exists a choice of parameters k = k and 
n = ~ such that  4i(t i+i,  f:, f~) = 4 ~ 1" 

By applying the averaging technique developed in [6], [14] to Eq. (4), 
where 42(t, k, n) and 43(t, k, n) are defined by Eqs. (9) and (10), it can be 
shown that  there exists Mi E Z + such that  for all n > Mi and for all 
k e [ -~ ,  ~l, 

I[pj( t ,k)-  4 j ( t ,k ,n) l  < bS/(16B), ti _< t_< ti+l, j = 1,2,3, (11) 

where ~bj(t, k), t~ <_ t < ti+l, j = 1, 2, 3, solve the averaged equations 

g me0(~)~ . ~ - 
$1 = mei(r  + ~ d -  mgn(k)k ~P123(r r  4~, 
_ mei(4)  
42 4~, 
~3 41- 

Inequalities (7) and (8) guarantee that  the solution of the averaged equations 
exists for ti _< t _< t~+i and 

tr  - 4~1 < 6/4, for all t~ <_ t _< ti+i and all k e [-fd, a], 

~ (t,+~, - ~ )  - 41 > b~/(88) > 0, 

~1 (t,+l, ~) - 41 < - b ~ / ( s B )  < 0. 
Let ~ > M1 be selected. The estimate (11) implies that  

r k, ~) E Ur for all ti <_ t <_ ti+l and for all k E [-fl, a], 

and 

r  fi) - r  > b6/(16B) > O, 

r ~,~)  - r < -b6/(16B)  < O. 

Since the solution r  of Eq. (4), where r and ea( t ,k ,~) ,  
ti <_ t < ti+l, are defined by Eqs. (9) and (10) and r  Cz) = r 
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depends continuously on the parameter k it follows that  there exists a value 
of the parameter k -- k E [-/3, a] such that  

k,  = 

This completes the proof of Theorem 3.1. [] 

To summarize, the proof shows that  appropriately constructed small am- 
plitude high frequency periodic joint motions result in O(t) = ~d( t ) ,  t ~ ~. 
The two main ingredients of the proof are an averaging estimate and a fixed 
point argument. 

We now comment on some interesting implications of Theorem 3.1. First, 
for any value of the angular momentum, the orientation of the multilink can 
track an arbitrary tracking objective satisfying (A3), while the joint motions 
are periodic and joint angle deviations are as small as desired. In fact, for 
sufficiently small e in (riO, it would appear to an external observer that  
the multilink behaves as a rigid body with fixed shape r acted on by 
an "external" torque that  causes the orientation of the multilink to track 
exactly the tracking objective. Furthermore, Theorem 3.1 implies that  in 
the case of non-zero angular momentum the orientation of the base link can 
be maintained constant while at the same time the links do not rotate on 
"average" relative to one another. In the case of zero angular momentum it 
is possible that  the base link rotates at a non-zero angular rate relative to 
an inertial frame while the links do not rotate on "average" relative to one 
another. These conclusions should be contrasted with possible solutions o f  
the problem using a momentum wheel to control the absolute orientation 
8(t) of the base link. Specifically, to guarantee 8(t) = O, t > t', for nonzero 
angular momentum or to guarantee 8(t) -- f ~ ( t -  t '), t 3> t', ~ ~ 0, for 
zero angular momentum a momentum wheel must necessarily have nonzero 
"average" rotation. 

Our next remark concerns the conclusion in (iii). Assume the shape 
r is collision-free, i.e., the links do not intersect and do not touch each 
other. Then, exact tracking can be accomplished without link collisions. 
For that,  it is necessary to select joint motions according to the construction 
procedure in the proof of Theorem 3.1 for e sufficiently small. 

While the proof of Theorem 3.1 is constructive, the construction proce- 
dure is rather complex. In terms of computations, simpler approaches may 
be desirable. Such approaches are available. One approach is sketched be- 
low. Suppose that  ~(t) = ~d(.t) for all ~ > t'.. Assuming reel(C) ~ 0 we can 
solve (1) for r in terms of ~4 and r  , r  as 

U (12) 
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The approach relies on the assumption that the joint motions r  
CN-l( t ) ,  t _> t', can be parametrized as 

= 79r i i = 2 , . . - , ( N - 1 ) ,  (13) 
j=0 

where r j = 0 , . . .  , n, are specified twice continuously differentiable func- 
tions that  are T-periodic for t _> t'. The constants ~. E R, j = 1,-- .  , n, 
i = 2 , . . .  , (N - 1), are determined from the condition 

r  + T) - r = 0, (14) 

The difference r (t' + T ) - r  (t') is a function of 7} and r (t'). Thus Eq. (14) 

is a finite-dimensional root-finding problem.  If the set of functions r is 
sufficiently rich, a solution to (14) exists and can be determined numerically. 
If multiple solutions are available, a specific solution can be determined by 
solving a constrained optimization problem. It is also possible to incorporate 
link collision constraints and m01 (r # 0 into the above formulation using 
the interior penalty function method [5]. Since r , r and ~}~ are 
T-periodic, (12) and (14) imply that  r  + T) =- e l ( t )  for all t >_ t'. After 
r t > t', has been obtained, the joint torques can be computed from (2). 

4. RECONFIGURATION 

Suppose an initial state (80, r r E R 2N-1 at a time instant to, and a 
final state (0",r162 E R 2 g - t  at a time instant t ' are given. The recon- 
figuration problem is to determine joint torques v~(t), i -- 1 , - . . ,  (N  - 1), 
to _< t _< t', such that the solution of Eqs. (1) and (2) with 8(t0) = 
0o, r = r r = r satisfies 

~(t') = 0", r = r and r = r i = 1 , . . . , ( N -  1).(15) 

Our use of (0", r162 and t' in formulations of both the exact tracking 
problem and the reconfiguration problem is not accidental, It is motivated 
by the fact that  a reconfiguration of the multilink is typically required prior 
to exact tracking to match the orientation and the shape with the required 
at t = t' for the exact tracking. This combination of reconfiguration and 
exact tracking is illustrated in Sec. 5 by a spacecraft example. 

Throughout this section we assume: (S1) N >_ 3; ($2) there exist two 
fixed integers p and r, 1 _< p , r  <_ ( N -  1), p ~ r, and r E R (N-l)  such 
that  Upr(r 0. The assumption" ($2) can be interpreted as the angular 
momentum nonintegrability condition [15], [20]. It is satisfied for a multilink 
with at least three links, unless the multilink is degenerate (e.g., masses or 
inertias of some of the links are zero) [15]. In the usual case almost all 
shapes r satisfy upr(r c) ~ 0. 
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The reconfiguration problem was solved in [11], [15] for the case of zero 
angular momentum and r = r = 0. In the present paper we provide a 
reconfiguration procedure for the general case when the angular momentum 
is not necessarily zero. While the proposed procedure can be viewed as an 
extension to the case H # 0 of a similar procedure in [15], the arguments 
which we justify it with are different. They are based on the averaging 
theory used to obtain an estimate of the orientation drift induced by small 
amplitude high frequency periodic joint motions. A related work on using 
averaging for at t i tude control includes reference [12]. However, the results 
in [12] do not apply to the problem at hand because of the different form of 
the equations. 

A specific reconfiguration procedure is now described. Let to < t l  < t2 < 
tl be a partition of the interval [to, tl]. The desired joint motion is defined 
in terms of n E Z +, k E R, and # E {-1 ,  +1} as 

r  if to _< t < tl ,  
r k, #, t) = r k, #, t), if t l  < t < t2, 

r if t2 < t _< t', 
(16) 

The function r  to < t < t ~, is C 2 and satisfies 

r  = r r  = r r  = r r  = 0. (17) 

The function r to < t < t ~, is C 2 and satisfies 

r = r $+(t2)  = 0, r  = r $ + ( r  = $*. f l s )  

There exist multiple choices of r  and r One obvious choice is to use 
cubic polynomials. Other choices can be made based on optimality or link 
collision-avoidance considerations. 

Let h = (t2 -tl)/(4n). The function r k,/z,~) is defined for t l  _< t < t2 
in terms of parameters n E Z +, k E R, and # E {-1,  +1} as 

t 

Cr(n, k, #, t) = r + ~ (#+vl(a, n) + (-/l)+v2(cr, n))do', 
t l  

t l  
Cj(n,k,t)=r i f j = l , . . . , ( N - 1 ) , j C r ,  p,  

(19) 
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where (/z)+ -- # 

, ~ ( t , ~ )  = 

if/z > 0 and is zero otherwise. Here, 

1 - cos , t l  _< t _< t l  -t- h, 

O, tl + h < t < tl +2h, 

- 1  + cos h , t t  + 2h < t < Q + 3h, 

0, t~ + 3h < t < t~ + 4h, 

f 
( 

and 

v l ( t ,  n )  = v l ( t  - 4h,  n ) ,  

By construction, 

O, tl <_ t <_ tl ~- h, 

1 -  cos h- , t l  + h  < t < t l  + 2 h ,  

0, t~ + 2h < t < t~ + 3h, 

- l + c o s  h , t l + 3 h < t < t ~ + 4 h ,  

v 2 ( t , n ) = v 2 ( t - 4 h ,  n), t l J r 4 h < _ t < t 2 .  

r  = r  = 0~ 4 ( ~ , k , . , t l )  = r  = 0. 

Let O(n, k, #, t), to < t < t', denote the solution to equation (1), where 
r = r  k,/~, t) is defined by equation (16) aad O(n, k, #, to) = 0o. 

L e m m a  4.1. For all ~ E Z + suO~ciently large there exists a choice of 
parameters k = k E R and # = /5  E { -1 ,  +1} such that 0(~, k, f4 t ') = 0". 

Proof. Since t - ( t ) ,  to <_ t _< t l  and r t2 < t < f are hounded and do 
not depend on n, k, and # and since moo(C) > 0 for all r the differences 
A~ = O(n ,k ,~ , t~ ) -  O(n,k,~,to) and A2 = O ( n , k , # , f ) -  O(n,k,~,t2) are  
bounded and do not depend on the values of n, k, and ~. Let  0(A,#, t ) ,  
t l  ~ t <__ t2, k E R, # E { -1 ,  +1}, denote the solution to 

~= H ~2~p~(r ~(~,~,t~)=O(n,k,~,t~). (20) 
moo(r ~ 

Let e > 0 be given and, without loss of generality, assume that  up~(r ~) > O. 
Equation (20) implies that  we can select A = A1 < 0 so that  

A1 -[" 0(~1, --1, t2) -- 0(~1, - 1 ,  t l )  + 52  > 0* + r 

and A = :ks > 0 so that  

A1 -t- 0()~2, 1, t2) -- 0(k2, 1, t l )  + A2 < 0 " . -  e. 
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r k 'p ..... r ke  r + k 'p 

D ' ' "  

Fig. 2. Reconfiguration maneuver. 

Let :~(A,n) -- A~/(t2 - t i )~ .  By applying the method  of averaging [6], 
Y 8n 

[14] to Eq. (1), where r = r x(A, n), #, t), it can be shown that  for any 
6 > 0 there exists M E Z + such that  for any n > M, 

J0(n, x(A1, n), - 1 ,  t) - 8(A1, - 1 ,  t) J < 6, 

[0(n, x(A2, n), 1, t) - ~(A2, 1, t)[ < 6, (21) 

t l  _< t < t2. 

Select 6 < ~/4 and fi > M. Then, 

O(fi, >r fi), sign(g(A1, fi)), t ') > 0* 

and 
8(~, x(A2, fi), sign(~(A2, ~)), t') < 8*. 

By continuous dependence, there exists a value of the parameter  k = ]~ such 
tha t  8(fi, k, sign(]c),E) = 8*. This completes the proof of the lemma. [] 

The  lemma leads to a two-step procedure for the reconfiguration ma- 
neuver. First, we select n -- fi E Z + sufficiently large so that  together 
the orientation differences 8(~, k, 1, t2) - 8(~, k, 1, t l)  and 8(~, k, - 1 ,  t2) - 
8(fi, k, - 1 ,  t l )  range from 0 to 27r (mod 21r) as the parameter  k varies. Then,  
we solve the nonlinear root finding problem 0(fi, k, #, t ' )  = 8" (mod 2r)  for 
the parameters k = k E R and/z  = / 2  E { -1 ,  1}. The joint torques which 
accomplish the reconfiguration are computed by substi tut ing r t), 
to <_ t _< t', into Eq. (2). 
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The reconfiguration maneuver is accomplished in three steps (Fig. 2). In 
the first step (time duration to <_ t < tl), the multilink is transferred from 
the initial shape and initial joint angle velocities to the shape r and zero 
angle velocities. In the second step (time duration tl _< t ~ t2), joint angles 
Cp and r are forced to trace a square path with side size [k[, fi times. 
The direction in which the square path is traced is determined by/2 -- 1 
or/2 ---- -1 .  In the third step (time duration t2 < t < V), the multilink 
is transferred from the shape r and zero joint angle velocities to the final 
shape and final joint angle velocities. 

The orientation difference 9(n, k, #, t2) - 8(n, k, #, tl) has a number of 
properties which can be exploited. For example, Eq. (1) implies that 

e(n, k, - o(n, k, = (0(1, k,. ,  - 0(1, k , . , t l ) )  

If the angular momentum is zero, then by writing 8(n, k, #, t2) -9 (n ,  k,/~, tl) 
from (1) as a line integral along the path of joint angles, it can be shown 
that 8(n, k, #, t2) -O(n ,  k, I~,tl) does not depend on tl and t2 and 

8(i, k, I, ti)). 
In the literature the orientation differences resulting from periodic joint 

motions (or cyclic shape changes) are referred to as phases [11], [16], [19], 
[20], and are, typically, represented as a sum of two terms. The first term 
is called the geometric phase [20] and it can be written as a line integral 
along the path of joint angles. The geometric phase depends only on the 
path of the joint angles and is independent of how fast or slowly the joint 
angles are changed along this path. The second term is called the dynamic 
phase [20] and it can be nonzero only if the angular momentum is nonzero. 
For the multilink with at least three linl<s the geometric phase term can be 
made arbitrary large by periodic joint motions of sufficiently high frequency. 
The dynamic phase term remains bounded on bounded time intervals, in- 
dependently of the joint motions. Thus periodic joint motions can reorient 
the multilink arbitrarily. This observation is made precise in the proof of 
Lemma 4.1 using an averaging estimate, and a fixed point argument. 

We formally summarize the main result of this section. 

T h e o r e m  4.2. Suppose (S1), (S2) hold. Then, for an arbitrary initial 
state (80, r r and an arbit~ry/~nal state (8", r ~*), for arbitrary time 
instants to and t ~ satisfying t' > .to, there exist jo in t  torques. "ri(t), i = 
1 , . . .  , N - 1, such that if O(to) = 8o, r = r and r = r then the 
solution of Eqs. (1) ar~d (2) satisfies 8(t') = 8", r = r ~(t') = q~*. 

Actually, by modifying slightly the construction of r  and r the con- 
clusion of Theorem 4.2 can be strengthened. Specifically, the joint torques 



460 I. KOLMANOVSKY, N.H. McCLAMROCH, V.T. COPPOLA 

which accomplish the reconfiguration can be made continuous. Suppose 
the shapes Co, r r are collision-free, i.e., the links do not intersect or 
touch each other. Then, the reconfiguration maneuver can be accomplished 
without link collisions. 

5. APPLICATION TO MULTIBODY SPACECRAFT ATTITUDE CONTROL 

PROBLEMS 

In this section we briefly comment on applicability of our results to multi- 
body spacecraft exact orientation tracking maneuvers. A frequent attitude 
control objective for spacecraft in orbit is to ensure that it remains pointed 
in the direction of a specified target, e.g., a fixed star, the center of the 
Earth, or another satellite, as may be required for space observations and 
communications. A traditional approach to such problems is to use exter- 
nal actuation, gas jets or momentum wheels, to produce external moments 
on the spacecraft. Even without such external actuation it is still possi- 
ble to accomplish a variety of pointing maneuvers by cyclicly changing the 
shape of the spacecraft, e.g., by moving an appendage or a robotic arm in 
a periodic fashion relative to the spacecraft body. 

For the case of zero angular momentum it has been known for some time 
that cyclic shape changes are capable of inducing net orientation drift. In 
the present paper we showed that cyclic shape changes can be used for 
exact orientation tracking. A typical spacecraft exact orientation tracking 
maneuver would consist of two phases. During the first phase the spacecraft 
is reconfigured so as to match its orientation and shape with those required 
for exact tracking. During the second phase cyclic shape changes make the 
orientation follow exactly a specified tracking objective whose time deriva- 
tive is periodic. Details of several such spacecraft maneuvers are reported 
in [101. 

6. CONCLUDING REMARKS 

In this paper we developed new results on control of multibody systems 
which conserve angular momentum. Prior results in the literature on the 
use of periodic joint motions are extended to exact tracking problems and to 
reconfiguration problems for the case of nonzero angular momentum. Fur- 
ther extensions are available. For example, the assumption that the angular 
momentum of the multilink is constant can be relaxed. It is sufficient to as- 
sume that the angular momentum is prescribed as a function of joint angles 
and time that is periodic in time. 

In terms of their control-theoretic aspects, the problems addressed in 
this paper can be viewed as controllability problems for a class of nonlinear 
control systems with time-varying drift. The control systems may have no 
equilibria, and state constraints may be imposed. It appears that in these 



NEW RESULTS ON CONTROL OF MULTIBODY SYSTEMS 461 

controllability problems standard Lie-algebraic tools [9], [21] do not apply. 
However, the direct approach of this paper, based on explicit control input 
para.metrization, averaging, and a fixed point argument, has been shown to 
be effective in addressing these controllability problems. 
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