New Results on Degree Sequences of Uniform Hypergraphs

Sarah Behrens ${ }^{1,4,5} \quad$ Catherine Erbes ${ }^{2,4,6} \quad$ Michael Ferrara ${ }^{2,4,7}$
Stephen G. Hartke ${ }^{1,4,5}$
Benjamin Reiniger ${ }^{3,4}$ Hannah Spinoza ${ }^{3,4}$
Charles Tomlinson ${ }^{1,4}$

Submitted: May 28, 2013; Accepted: Oct 27, 2013; Published: Nov 8, 2013
Mathematics Subject Classifications: 05C07, 05C65

Abstract

A sequence of nonnegative integers is k-graphic if it is the degree sequence of a k uniform hypergraph. The only known characterization of k-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is k-graphic. In light of this, we present sharp sufficient conditions for k-graphicality based on a sequence's length and degree sum.

Kocay and Li gave a family of edge exchanges (an extension of 2 -switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to k-graphic sequences for all $k \geqslant 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.

Keywords: degree sequence, hypergraph, edge exchange, packing

[^0]
1 Introduction

A hypergraph H is k-uniform, or is a k-graph, if every edge contains k vertices. A k uniform hypergraph is simple if there are no repeated edges. Thus, a simple 2-uniform hypergraph is a simple graph. For a vertex v in a k-graph H, the degree of v, denoted $d_{H}(v)$ (or simply $d(v)$ when H is understood) is the number of edges of H that contain v. As with 2 -graphs, the list of degrees of vertices in a k-graph H is called the degree sequence of H.

Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a nonincreasing sequence of nonnegative integers. We let $\sigma(\pi)$ denote the sum $\sum_{i=1}^{n} d_{i}$, and when it is convenient, we write $\pi=\left(d_{1}^{m_{1}}, \ldots, d_{n}^{m_{n}}\right)$, where exponents denote multiplicity. If π is the degree sequence of a simple k-graph H, we say π is k-graphic, and that H is a k-realization of π. When $k=2$, we will simply say that π is graphic and that H is a realization of π.

Our work in this area is motivated by the following fundamental problems:
Problem 1.1. Determine an efficient characterization of k-graphic sequences for all $k \geqslant 3$.
Problem 1.2. Investigate the properties of the family of k-realizations of a given sequence.

We will present results relating to each of these problems. Our results are motivated by similar work on graphic sequences. When $k=2$, there are many characterizations of graphic sequences, including those of Havel [20] and Hakimi [19], and Erdős and Gallai [15]. Sierksma and Hoogeveen [21] list seven criteria and give a unifying proof. For $k \geqslant 3$, Problem 1.1 appears to be much less tractable.

The following theorem from [12] is the only currently known characterization of k graphic sequences for $k \geqslant 3$.

Theorem 1.3 (Dewdney 1975). Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a nonincreasing sequence of nonnegative integers. π is k-graphic if and only if there exists a nonincreasing sequence $\pi^{\prime}=\left(d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$ of nonnegative integers such that

1. π^{\prime} is $(k-1)$-graphic,
2. $\sum_{i=2}^{n} d_{i}^{\prime}=(k-1) d_{1}$, and
3. $\pi^{\prime \prime}=\left(d_{2}-d_{2}^{\prime}, d_{3}-d_{3}^{\prime}, \ldots, d_{n}-d_{n}^{\prime}\right)$ is k-graphic.

Dewdney's characterization hinges on a relatively simple, yet quite useful, idea that we will utilize in the sequel. Given a vertex v in a hypergraph H, let H_{v} denote the subgraph of H with vertex set $V(H)$ and edge set consisting of the edges of H that contain v. The link of $v, L_{H}(v)$, is then the hypergraph obtained by deleting v from each edge in H_{v}. Thus, if H is k-uniform, then $L_{H}(v)$ is a $(k-1)$-uniform hypergraph, and if H is a graph, then each vertex in $N_{H}(v)$ gives rise to a 1-edge in $L_{H}(v)$.

Suppose that $\pi^{\prime}=\left(x_{1}, \ldots, x_{n}\right)$ is a $(k-1)$-graphic sequence and $\pi^{\prime \prime}=\left(y_{1}, \ldots, y_{n}\right)$ is a k-graphic sequence. It follows that the sequence

$$
\pi=\left(\frac{\sigma\left(\pi^{\prime}\right)}{k-1}, x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)
$$

is also k-graphic. To see this, let H_{1} be a $(k-1)$-realization of π^{\prime} and H_{2} be a k-realization of $\pi^{\prime \prime}$, both with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. Add a new vertex v_{0} to each edge in H_{1} to obtain the k-graph H_{1}^{\prime}. Then $H=H_{1}^{\prime}+H_{2}$ is a realization of π as desired; furthermore, π^{\prime} is the degree sequence of $L_{H}\left(v_{0}\right)$.

Considering this process in reverse, a sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is k-graphic if for some index i there is a $(k-1)$-graphic sequence $\pi^{\prime}=\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)$ such that

$$
\pi^{\prime \prime}=\left(d_{1}-x_{1}, \ldots, d_{i-1}-x_{i-1}, 0, d_{i+1}-x_{i+1}, \ldots, d_{n}-x_{n}\right)
$$

is k-graphic. Here, as above, we would be able to construct a realization H of π in which π^{\prime} is the degree sequence of the link $L_{H}\left(v_{i}\right)$. Again, note that the i 'th term of each sequence is 0 , corresponding to the vertex v_{i} that does not appear in the $(k-1)$-realization of π or the k-realization of π^{\prime}.

This is the crucial idea of the Havel-Hakimi algorithm, wherein it is proved that it is sufficient to select $\pi^{\prime}=\left(0,1^{d_{1}}, 0^{n-d_{1}-1}\right)$ (which is trivially 1 -graphic) and therefore one must only determine the graphicality of the residual sequence $\left(0, d_{2}-1, \ldots, d_{d_{1}+1}-\right.$ $\left.1, d_{d_{1}+2}, \ldots, d_{n}\right)$. In Theorem 1.3, however, there is no standard form of the "link sequence" that is sufficient to determine if π is k-graphic. Were one able to similarly demonstrate that it suffices to check only one $(k-1)$-graphic π^{\prime}, or even a small number, then this would represent significant progress towards Problem 1.1.

In addition to Theorem 1.3, several other authors have studied Problem 1.1. Bhave, Bam and Deshpande [6] gave an Erdős-Gallai-type characterization of degree sequences of loopless linear hypergraphs. While interesting in its own right, their result does not directly generalize to Problem 1.1. Colbourn, Kocay and Stinson [11] proved that several related problems dealing with 3-graphic sequences are NP-complete. Additionally, several necessary conditions for a sequence to be 3-graphic have been found (see Achuthan, Achuthan, and Simanihuruk [1], Billington [7], and Choudum [10] for some).

Unfortunately, Achuthan et al. [1] showed that the necessary conditions of [1], [7], and [10] are not sufficient. In fact, surprisingly few sufficient conditions for a sequence to be k-graphic exist, despite the apparent interest in the general characterization problem. Inspired by sufficient conditions for 2-graphic sequences given by Yin and Li [29], Aigner and Triesch [2], and Barrus, Hartke, Jao and West [3], we present in Section 2 some general sufficient conditions for k-graphicality when $k \geqslant 3$.

A useful tool for studying graphic sequences is the edge exchange, or 2-switch, where two edges in a graph are replaced with two nonedges while maintaining the degree of each vertex. In particular, this is a key tool in the standard proof of the Havel-Hakimi characterization of graphic sequences [28, p. 45-46]. It is our hope that a better understanding of edge exchanges may lead to an efficient Havel-Hakimi-type characterization
of k-graphic sequences. Additionally, edge exchanges have proved vital in approaching a number of problems for graphs in the vein of Problem 1.2 (cf. [4, 8, 9, 16]).

In Section 3, we give a small collection of elementary edge exchanges that can be applied to transform any realization of a k-graphic sequence into any other realization. This extends a result of Kocay and Li on 3 -graphic sequences. As an application of these edge exchanges, we prove a result about packing of k-graphic sequences. Busch et al. [8] proved that graphic sequences pack under certain degree and length conditions. We extend their result to k-graphic sequences.

2 Sufficient conditions on length

2.1 Results

In this section, we give a new sufficient condition for a sequence to be k-graphic, and we give several corollaries that are inspired by previous results on graphic sequences. We say that a nonincreasing sequence is near-regular if the difference between the first and last terms of the sequence is at most 1 . The main result of this section shows that if the beginning of a sequence is near-regular, which will be made more precise later, then the sequence is k-graphic. For graphs, this is a simple consequence of the Erdős-Gallai inequalities (see for example Lemma 2.1 of [29]), but for $k \geqslant 3$ the situation is more complex.

We will state our theorems here, discuss their sharpness in Section 2.2, and present the proofs in Section 2.3.

Theorem 2.1. Let π be a nonincreasing sequence with maximum entry Δ and t entries that are at least $\Delta-1$. If k divides $\sigma(\pi)$ and

$$
\begin{equation*}
\binom{t-1}{k-1} \geqslant \Delta \tag{1}
\end{equation*}
$$

then π is k-graphic.
This result, combined with a variety of classical and new ideas, yields three immediate corollaries. While poset methods had earlier been used for degree sequences, Aigner and Triesch [2] systematized this approach. Bauer et al. [5] also used posets to study degree sequences, but with a different order relation. Using the same poset as Aigner and Triesch, we show that with a large enough degree sum, the near-regular condition is unnecessary.

Corollary 2.2. Let π be a nonincreasing sequence with maximum term Δ, and let p be the minimum integer such that $\Delta \leqslant\binom{ p-1}{k-1}$. If k divides $\sigma(\pi)$ and $\sigma(\pi) \geqslant(\Delta-1) p+1$, then π is k-graphic.

This lower bound on the sum of the sequence immediately gives the following sufficient condition on the length of a sequence, analogous to the result of Zverovich and Zverovich [30] for graphs.

Corollary 2.3. Let π be a nonincreasing sequence with maximum term Δ and minimum term δ, and let p be the minimum integer such that $\Delta \leqslant\binom{ p-1}{k-1}$. If k divides $\sigma(\pi)$ and π has length at least $\frac{(\Delta-1) p-\Delta+\delta+1}{\delta}$, then π is k-graphic.

Finally, if we know a little bit more about the sequence, we can refine the length condition. A sequence is gap-free if it has entries with all values between the largest entry Δ and the smallest entry δ. The graphicality of gap-free sequences was studied by Barrus, Hartke, Jao, and West [3].

Corollary 2.4. Let π be a gap-free sequence with maximum term Δ and minimum term $\delta=1$, and let p be the minimum integer such that $\Delta \leqslant\binom{ p-1}{k-1}$. If $\sigma(\pi)$ is divisible by k and π has length at least $(\Delta-1)(p-\Delta / 2)+1$, then π is k-graphic.

The following lemma gives a simple necessary condition for a sequence to be k-graphic, and additionally gives information about the k-realizations of a sequence. This is used to show the sharpness of Corollaries 2.2 and 2.3, and also in Section 3.

Lemma 2.5. If $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is a k-graphic sequence, then

$$
\sum_{i=1}^{t} d_{i} \leqslant k\binom{t}{k}+(k-1) \sum_{j=t+1}^{n} d_{j}
$$

for $k \leqslant t \leqslant n$. If equality holds, then the t vertices of highest degree in any k-realization of π form a clique, and any edge not contained in the clique contains exactly one vertex outside the clique.

2.2 Sharpness

Theorem 2.1 is sharp, as can by seen by examination of the sequence $\left(\Delta^{M}\right)$, for any Δ.
For Corollary 2.2, consider the sequence

$$
\pi_{j}=\left(\left(\binom{j-1}{k-1}-(k-1)\right)^{j-1},\binom{j-1}{k-1}-k-j+1\right)
$$

where $j \geqslant k+2$. The maximum term Δ_{j} of π_{j} satisfies $\binom{j-2}{k-1}<\Delta_{j} \leqslant\binom{ j-1}{k-1}$, so in the terminology of Corollary 2.2, $p=j$. We also have $\sigma\left(\pi_{j}\right)=\left(\Delta_{j}-1\right) j$, and k divides $\sigma\left(\pi_{j}\right)$. However, π_{j} is not k-graphic, for the inequality in Lemma 2.5 does not hold for π_{j} when $t=j-1$.

To see that Corollary 2.2 is also sharp when $p=k+1$, consider the sequence $\pi=$ $\left(k,(k-1)^{k}\right)$. This is realized by a complete k-graph on $k+1$ vertices with one edge removed, and has degree sum $\sigma(\pi)=k^{2}$. Subtracting one from each of the last k terms yields the sequence $\pi^{\prime}=\left(k,(k-2)^{k}\right)$, with degree sum $k^{2}-k$. This is not k-graphic: suppose H is a k-realization of π^{\prime}. Let S be the set of vertices of degree $k-2$ in H, and let v be the vertex of degree k. Every edge containing v must also contain a $(k-1)$-subset of
S. There are exactly k of these. However, this means each vertex in S must have degree $k-1$.

Corollary 2.3 is best possible up to a factor depending only on k. To see this, first note that $\binom{p-2}{k-1}<\Delta$, so $p<(k-1) e \Delta^{1 /(k-1)}+2$. Then the minimum length required by the corollary is bounded above by

$$
\frac{1}{\delta}\left((\Delta-1)\left((k-1) e \Delta^{1 /(k-1)}+2\right)-\Delta+\delta+1\right)
$$

which, when $\Delta>\delta$, is at most

$$
\frac{\Delta^{1+1 /(k-1)}}{\delta}\left(e(k-1)\left(1-\frac{1}{\Delta}\right)+\frac{2}{\Delta^{1 /(k-1)}}\right) .
$$

Now, as Δ becomes large, this quantity is bounded above by

$$
\frac{C \Delta^{1+1 /(k-1)}}{\delta}
$$

where C depends only on k. Thus, a weaker but simpler form of Corollary 2.3 is: If π is a nonincreasing sequence with maximum term Δ and minimum term δ such that $\delta \neq \Delta$, k divides $\sigma(\pi)$, and the length of π is at least $\frac{C \Delta^{1+1 /(k-1)}}{\delta}$, then π is k-graphic.

Now, consider the sequence $\pi=\left(\Delta^{M}, \delta^{m}\right)$, where $\delta<\Delta$ and $M=c_{1} \Delta^{1 /(k-1)}$ for some $c_{1}<k / e^{2}$. By Lemma 2.5, if π has length less than $\left\lceil\frac{M \Delta-k\binom{M}{k}}{(k-1) \delta}\right\rceil+M$, then it is not k-graphic. A lower bound on this expression is:

$$
\begin{aligned}
\frac{M \Delta-k\binom{M}{k}}{(k-1) \delta}+M & \geqslant \frac{M \Delta-k\left(\frac{M e}{k}\right)^{k}}{(k-1) \delta}+M \\
& =\frac{c_{1} \Delta^{1+1 /(k-1)}-k\left(\frac{c_{1} e \Delta^{1 /(k-1)}}{k}\right)^{k}}{(k-1) \delta}+c_{1} \Delta^{1 /(k-1)} \\
& =\frac{\Delta^{1+1 /(k-1)}}{\delta}\left(\frac{c_{1}-k\left(\frac{c_{1} e}{k}\right)^{k}}{(k-1)}\right)+c_{1} \Delta^{1 /(k-1)} \\
& =c_{2} \frac{\Delta^{1+1 /(k-1)}}{\delta}+c_{1} \Delta^{1 /(k-1)}
\end{aligned}
$$

where $c_{2}=\frac{c_{1}-k\left(\frac{c_{1} e}{k}\right)^{k}}{(k-1)}$. Thus, if the length of π is less than $c_{2} \frac{\Delta^{1+1 /(k-1)}}{\delta}, \pi$ is not k-graphic. Comparing this to the result in the previous paragraph establishes our claim.

2.3 Proofs

Proof of Theorem 2.1. We will show that π is k-graphic by constructing an appropriate ($k-1$)-graphic link sequence and k-graphic residual sequence, as described in the introduction following Theorem 1.3.

First, note that if $\Delta=1$, then $\pi=\left(1^{m k}, 0^{n-m k}\right)$ for some integer m. This sequence is realized by a set of m disjoint edges and $n-m k$ isolated vertices. Thus, we can assume that $\Delta>1$, and in particular, $t>k$. When $k=2$, the result follows from the Erdős-Gallai inequalities, so we assume $k \geqslant 3$.

Consider the least k for which the theorem does not hold. Among all nonincreasing sequences that do not satisfy the theorem for this k, consider those that have the smallest maximum term, and let $\pi=\left(d_{0}, \ldots, d_{n-1}\right)$ be one such sequence that minimizes the multiplicity of the largest term, Δ.

Let

$$
c=\max \left\{i \in \mathbb{Z}: \sum_{j=1}^{n-1} \max \left\{0, d_{j}-i\right\} \geqslant(k-1) \Delta\right\}
$$

Note that $c \leqslant \Delta-1$, and we further claim that $c \geqslant 0$. Indeed, if $\Delta \geqslant k$, then $\sum_{j=1}^{n-1} d_{j} \geqslant$ $(t-1)(\Delta-1) \geqslant k(\Delta-1) \geqslant(k-1) \Delta$. If $\Delta<k$, then since $t>k$ there are k terms in the set $\left\{d_{2}, \ldots, d_{t}\right\}$ that are at least $\Delta-1$. Their sum is at least $k(\Delta-1)$. Let $A=\sigma(\pi)-\Delta-k(\Delta-1)$. Since k divides $\sigma(\pi), k$ must also divide $A+\Delta$, so $A \geqslant k-\Delta$. Then $\sum_{i=1}^{n-1} d_{j}=A+k(\Delta-1) \geqslant k-\Delta+k(\Delta-1)=(k-1) \Delta$. Thus, $c \geqslant 0$.

Define the sequence $L^{\prime}=\left(l_{1}^{\prime}, \ldots, l_{n-1}^{\prime}\right)$ by $l_{j}^{\prime}=\max \left\{0, d_{j}-c\right\}$, and let $s=\sigma\left(L^{\prime}\right)-$ $(k-1) \Delta$. Create the link sequence L by subtracting 1 from each of the first s terms of L^{\prime}. That is, $L=\left(l_{1}, \ldots, l_{n-1}\right)$, where

$$
l_{i}= \begin{cases}l_{i}^{\prime}-1 & \text { if } 1 \leqslant i \leqslant s \\ l_{i}^{\prime} & \text { if } i>s\end{cases}
$$

Finally, let $R=\left(r_{1}, \ldots, r_{n-1}\right)$ be the residual sequence, given by $r_{j}=d_{j}-l_{j}$ for $j=$ $1, \ldots, n-1$. It suffices to show that L is $(k-1)$-graphic and R is k-graphic, as adding a new vertex v_{0} to each edge of a $(k-1)$-realization of L and then combining the resulting k-graph with a k-realization of R gives a k-realization of π.

Let m be the number of nonzero entries of L^{\prime}. First suppose $m \geqslant t-1$. Since $\left(d_{0}, \ldots, d_{t-1}\right)$ is near-regular, the construction of L^{\prime} implies that $\left(l_{1}^{\prime}, \ldots, l_{t-1}^{\prime}\right)$ is nearregular, and so $\left(l_{1}, \ldots, l_{t-1}\right)$ is near-regular. Let Δ_{L} be the largest term in $\left(l_{1}, \ldots, l_{t-1}\right)$. We now bound Δ_{L} in order to show that L meets the conditions of the theorem and thus is $(k-1)$-graphic by the minimality of π. Since $\sigma(L)=(k-1) \Delta$ and $m \geqslant t-1$, we have

$$
\Delta_{L}=\left\lceil\frac{\sum_{i=1}^{t-1} l_{i}}{t-1}\right\rceil \leqslant\left\lceil\frac{(k-1) \Delta}{t-1}\right\rceil \leqslant\left\lceil\frac{k-1}{t-1}\binom{t-1}{k-1}\right\rceil=\left\lceil\binom{ t-2}{k-2}\right\rceil=\binom{t-2}{k-2}
$$

Therefore, L satisfies the conditions of the theorem, and by the minimality of π, it is $(k-1)$-graphic. If $m<t-1$, then we must have $c=\Delta-1$, which means $L^{\prime}=\left(1^{m}, 0^{n-1-m}\right)$ and $L=\left(1^{(k-1) \Delta}, 0^{n-1-(k-1) \Delta}\right)$. This sequence has a $(k-1)$-realization consisting of Δ disjoint edges and $n-1-(k-1) \Delta$ isolated vertices.

Now we turn our attention to R. Since $r_{i}=d_{i}-l_{i}$ and $l_{i}=d_{i}-c$ or $l_{i}=d_{i}-c-1$ for $i \leqslant m$, we see that $r_{i}=c$ or $r_{i}=c+1$ for $i \leqslant m$. Thus, $R=\left((c+1)^{s}, c^{m-s}, d_{m+1}, \ldots, d_{n-1}\right)$. Note that $\sigma(R)=s+m c+\sum_{i=m+1}^{n-1} d_{i}=\sum_{i=1}^{n-1} d_{i}-(k-1) \Delta=\sigma(\pi)-k \Delta$, so k divides
$\sigma(R)$. If $\Delta_{R} \leqslant\binom{ m-1}{k-1}$, then the minimality of π implies that R is k-graphic, so showing this inequality is our goal.

Note that $c+1 \leqslant \Delta$. Suppose first that $c+1<\Delta$. If $m>t-1$, then

$$
c+1<\Delta \leqslant\binom{ t-1}{k-1} \leqslant\binom{ m-1}{k-1}
$$

and we have our result. Since $c<\Delta-1$, we have $m \geqslant t-1$, and so we may assume that $m=t-1$. In this case,

$$
L=\left(\left\lceil\frac{k-1}{t-1} \Delta\right\rceil^{s},\left\lfloor\frac{k-1}{t-1} \Delta\right\rfloor^{m-s}, 0^{n-1-m}\right)
$$

Hence

$$
\begin{aligned}
\Delta_{R} \leqslant \Delta-\left\lfloor\frac{k-1}{t-1} \Delta\right\rfloor & <\Delta-\frac{k-1}{t-1} \Delta+1 \\
& =\left(1-\frac{k-1}{t-1}\right) \Delta+1 \\
& \leqslant \frac{t-k}{t-1}\binom{t-1}{k-1}+1=\binom{t-2}{k-1}+1
\end{aligned}
$$

so $\Delta_{R} \leqslant\binom{ t-2}{k-1}=\binom{m-1}{k-1}$. Thus, R is k-graphic.
If $c+1=\Delta$, then $m \leqslant t-1$. In this case, any terms of π that are equal to $\Delta-1$ become 0 in L^{\prime}. So $\pi=\left(\Delta^{m+1},(\Delta-1)^{t-1-m}, d_{t}, \ldots, d_{n-1}\right)$, and if $m=t-1$, there are no terms in π equal to $\Delta-1$. Then, $R=\left(\Delta^{s},(\Delta-1)^{t-1-s}, d_{t}, \ldots, d_{n}\right)$, and we need to show that $\Delta \leqslant\binom{ t-2}{k-1}$. Since $L^{\prime}=\left(1^{m}, 0^{n-1-m}\right)$ and $L=\left(1^{(k-1) \Delta}, 0^{n-1-(k-1) \Delta}\right)$, we have $(k-1) \Delta \leqslant m \leqslant t-1$. Thus, $(k-1) \Delta \leqslant t-1$, so $\Delta \leqslant \frac{t-1}{k-1}$. When $t>k+1$, we have $\frac{t-1}{k-1} \leqslant\binom{ t-2}{k-1}$. If $t=k+1$, then $\Delta \leqslant \frac{k}{k-1}$, and since Δ is an integer, $\Delta \leqslant 1=\binom{t-2}{k-1}$. Thus, $\Delta \leqslant\binom{ t-2}{k-1}$, and by the minimality of π, R is k-graphic.

To prove the first corollary, we require some additional terminology. The dominance order, \preceq, is defined on the set $D(n, \sigma)$ of nonnegative nonincreasing sequences with length n and sum σ. For two elements $\pi=\left(d_{1}, \ldots, d_{n}\right)$ and $\pi^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ of $D(n, \sigma)$, we say $\pi \preceq \pi^{\prime}$ if $\sum_{i=1}^{m} d_{i} \leqslant \sum_{i=1}^{m} d_{i}^{\prime}$ for all $1 \leqslant m \leqslant n$. In this poset the set of k-graphic sequences forms an ideal (a downward-closed set) (see [2] for $k=2$ and [14] or [22] for $k \geqslant 3$).

We are now prepared to give our proofs.
Proof of Corollary 2.2. Suppose $\sigma(\pi)=m \geqslant(\Delta-1) p+1$. Then there is a sequence π^{\prime} that has the same sum and maximum degree such that $\pi \preceq \pi^{\prime}$ in the dominance order, but the first p terms of π^{\prime} form a near-regular sequence. By Theorem 2.1, π^{\prime} is k-graphic, and since k-graphic sequences form an ideal, π is also k-graphic.

Proof of Corollary 2.4. A gap-free sequence of length n with minimum term 1 has degree sum at least $\sum_{i=1}^{\Delta} i+(n-\Delta)=\binom{\Delta+1}{2}+(n-\Delta)$. Using this sum in Corollary 2.2 and solving for n yields the result.

Proof of Lemma 2.5. Choose a set S of t vertices in a k-realization H of π. The subgraph induced by S has degree sum at most $k\binom{t}{k}$. A vertex w in $V(H) \backslash S$ contributes at most $(k-1) d_{H}(w)$ to the degree sum of vertices in S. Thus, $\sum_{i=1}^{t} d_{i} \leqslant k\binom{t}{k}+(k-1) \sum_{j=t+1}^{n} d_{j}$. If equality holds, each vertex w outside S contributes exactly $(k-1) d_{H}(w)$ to $\sum_{i=1}^{t} d_{i}$. Thus, every edge containing w consists of w as the only vertex outside S and $k-1$ vertices from S. Any edge whose vertex set is not contained in S thus consists of only one vertex outside S, as claimed.

3 Edge exchanges

3.1 Edge exchanges in graphs and hypergraphs

An edge exchange is any operation that deletes a set of edges in a k-realization of π and replaces them with another set of edges, while preserving the original vertex degrees. When i edges are exchanged, we call this an i-switch. The 2 -switch operation has been used to prove many results about graphic sequences; for examples see $[4,8,9,16]$.

For completeness, we now formally define edge exchanges in hypergraphs. Let F_{1} and F_{2} be k-graphs on the same vertex set S such that for every $x \in S, d_{F_{1}}(x)=d_{F_{2}}(x)$. Let H be a k-multihypergraph containing a subgraph F_{1}^{\prime} on vertex set T such that $F_{1}^{\prime} \cong F_{1}$ via the isomorphism $\phi: T \rightarrow S$. The edge exchange $\epsilon\left(F_{1}, F_{2}\right)$ applied to H replaces the edges of F_{1}^{\prime} with the edges of a subgraph F_{2}^{\prime} that is isomorphic to F_{2} by the same map ϕ.

Define $\mathcal{M}_{k}(\pi)$ to be the set of k-uniform multihypergraphs that realize a sequence π, and $\mathcal{S}_{k}(\pi) \subseteq \mathcal{M}_{k}(\pi)$ be the set of simple k-realizations of π. Let $\mathcal{F} \subseteq \mathcal{M}_{k}(\pi)$ and \mathcal{Q} be a collection of edge exchanges such that $\epsilon\left(F_{1}, F_{2}\right) \in \mathcal{Q}$ if and only if $\epsilon\left(F_{2}, F_{1}\right) \in \mathcal{Q}$. Then $G(\mathcal{F}, \mathcal{Q})$ is the graph whose vertices are the elements of \mathcal{F}, with an edge between vertices H_{1} and H_{2} if and only if H_{1} can be obtained from H_{2} by an edge exchange in \mathcal{Q}. Note that the symmetry condition imposed on \mathcal{Q} permits us to define $G(\mathcal{F}, \mathcal{Q})$ as an undirected graph.

3.2 Navigating the space of k-realizations

Let e and e^{\prime} be distinct edges in a k-graph G, and choose vertices $u \in e \backslash e^{\prime}$ and $v \in e^{\prime} \backslash e$. The operation $e \underset{v}{\stackrel{u}{\rightleftharpoons}} e^{\prime}$ deletes the edges e and e^{\prime} and adds the edges $e-u+v$ and $e^{\prime}-v+u$ (where $e-u+v$ denotes the set $e-\{u\} \cup\{v\}$); see Figure 1. Denote this family of edge exchanges by \mathcal{Q}_{k}^{*}.

Petersen [25] showed that given any pair of realizations of a graphic sequence, one can be obtained from the other by a sequence of 2 -switches. This result simply says that $G\left(\mathcal{S}_{2}(\pi), \mathcal{Q}_{2}^{*}\right)$ is connected. Kocay and $\mathrm{Li}[23]$ proved a similar result for 3-graphs, namely that any pair of 3 -graphs with the same degree sequence can be transformed into each other using edge exchanges from \mathcal{Q}_{3}^{*}. However, unlike in the graph case, intermediate
hypergraphs obtained while applying edge exchanges from \mathcal{Q}_{3}^{*} may have multiple edges. In other words, $G\left(\mathcal{M}_{3}(\pi), \mathcal{Q}_{3}^{*}\right)$ is connected.

We extend Kocay and Li's result to arbitrary $k \geqslant 3$.
Theorem 3.1. If π is any sequence of nonnegative integers with a k-multihypergraph realization, then $G\left(\mathcal{M}_{k}(\pi), \mathcal{Q}_{k}^{*}\right)$ is connected.

Proof. Suppose there exists a sequence π with a k-multihypergraph realization for which $G\left(\mathcal{M}_{k}(\pi), \mathcal{Q}_{k}^{*}\right)$ is not connected. For two k-multihypergraphs H and F in $G\left(\mathcal{M}_{k}(\pi), \mathcal{Q}_{k}^{*}\right)$, let $R(H, F)$ be the subgraph of H with $E(R(H, F))=E(H) \backslash E(F)$ and $B(H, F)$ be the subgraph of F with $E(B(H, F))=E(F) \backslash E(H)$. Since $G\left(\mathcal{M}_{k}(\pi), \mathcal{Q}_{k}^{*}\right)$ is not connected, there are two k-multihypergraphs realizing π that are in different components of this graph. Now, among all such pairs of k-multihypergraphs, choose the pair H_{1} and H_{2} that minimize $\left|E\left(H_{1}\right) \triangle E\left(H_{2}\right)\right|$, and subject to this, that maximize $\left|e_{r} \cap e_{b}\right|$ for edges $e_{r} \in E\left(R\left(H_{1}, H_{2}\right)\right)$ and $e_{b} \in E\left(B\left(H_{1}, H_{2}\right)\right)$. Let $i=\left|e_{r} \cap e_{b}\right|$, and let $R=R\left(H_{1}, H_{2}\right)$ and $B=B\left(H_{1}, H_{2}\right)$. We refer to the edges of R as red and the edges of B as blue.

Since $e_{r} \neq e_{b}$, there are vertices $u \in e_{r} \backslash e_{b}$ and $v \in e_{b} \backslash e_{r}$. As H_{1} and H_{2} are realizations of $\pi, d_{H_{1}}(x)=d_{H_{2}}(x)$ for any vertex x. Note, if we let $d_{P}(x)$ equal the number of edges incident to x that appear in both H_{1} and H_{2}, then $d_{R}(x)=d_{H_{1}}(x)-d_{P}(x)$ and $d_{B}(x)=d_{H_{2}}(x)-d_{P}(x)$. Thus $d_{R}(x)=d_{B}(x)$, and we may assume without loss of generality that $d_{B}(u) \geqslant d_{B}(v)$; otherwise $d_{R}(v) \geqslant d_{R}(u)$, and the roles of u and v, and red and blue, may be switched in the remainder of the proof.

We claim that u must be in some blue edge e^{\prime} such that $v \notin e^{\prime}$ and such that $e^{\prime}+v-u$ is not a blue edge. Note that $e_{b}^{\prime}=e_{b}+u-v$ is not a blue edge, for otherwise e_{r} and e_{b}^{\prime} are red and blue edges, respectively, and intersect in $i+1$ vertices. Since $d_{B}(u) \geqslant d_{B}(v)$ and $v \in e_{b}$ while $u \notin e_{b}$, we know u is in at least one blue edge that does not contain v. If $e+v-u$ is a blue edge for every blue edge e containing u but not v, then $d_{B}(u)$ is less than $d_{B}(v)$, a contradiction. Thus the edge e^{\prime} exists.

Now we apply $e^{\prime} \underset{v}{\stackrel{u}{\rightleftharpoons}} e_{b}$ to H_{2} to obtain the k-multihypergraph H_{2}^{\prime}. Let B^{\prime} be the subgraph of H_{2}^{\prime} such that $E\left(B^{\prime}\right)=E\left(H_{2}^{\prime}\right) \backslash E\left(H_{1}\right)$. Note that H_{2} and H_{2}^{\prime} are adjacent in $G\left(\mathcal{M}_{k}(\pi), \mathcal{Q}_{k}^{*}\right)$, so H_{1} and H_{2}^{\prime} must be in different components. However, there is a red edge $e_{r} \in E(R)$ and a blue edge $e_{b}^{\prime} \in E\left(B^{\prime}\right)$ that intersect in $i+1$ places. If $i+1<k$,

Figure 1: The operation $e \underset{v}{\stackrel{u}{\rightleftharpoons}} e^{\prime}$.
this contradicts our choice of H_{1} and H_{2} maximizing edge intersections. If $i+1=k$, then $e_{b}^{\prime}=e_{r}$ and $\left|E\left(H_{1}\right) \triangle E\left(H_{2}^{\prime}\right)\right|<\left|E\left(H_{1}\right) \triangle E\left(H_{2}\right)\right|$, again contradicting our choice of H_{1} and H_{2}.

We have shown that for a k-graphic sequence π, there is a path between simple k realizations of π in $G\left(\mathcal{M}_{k}(\pi), \mathcal{Q}_{k}^{*}\right)$. This path may go through multihypergraph realizations, unlike in the result of Petersen. In the proof of Theorem 3.1, we argue that $e_{b}+u-v$ and $e^{\prime}+v-u$ are not blue edges, but either edge may still be an edge of H_{2}. Hence performing the edge exchange may in fact result in duplicating an edge of H_{2}. It is unknown whether $G\left(\mathcal{S}_{k}(\pi), \mathcal{Q}\right)$ is connected for some small collection \mathcal{Q} of edge exchanges.

For a positive integer i, let \mathcal{E}_{i} be the collection containing all j-switches for $j \leqslant i$. Gabelman [18] gave an example of a 3-graphic sequence π whose simple realizations cannot be transformed into each other using only 2 -switches, without creating multiple edges. That is, $G\left(\mathcal{S}_{3}(\pi), \mathcal{E}_{2}\right)$ is not connected. We extend his example to $k \geqslant 3$, which shows we cannot replace \mathcal{M}_{k} with \mathcal{S}_{k} in Theorem 3.1.

Proposition 3.2. For each $k \geqslant 3$ there is a k-graphic sequence π such that $G\left(\mathcal{S}_{k}(\pi), \mathcal{E}_{k-1}\right)$ is not connected.

Proof. Consider the following matrix A of real numbers:

$$
A=\left[\begin{array}{ccccc}
x_{1,1} & x_{1,2} & \ldots & x_{1, k-1} & -y_{1} \\
x_{2,1} & x_{2,2} & \ldots & x_{2, k-1} & -y_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{k-1,1} & x_{k-1,2} & \ldots & x_{k-1, k-1} & -y_{k-1} \\
-z_{1} & -z_{2} & \ldots & -z_{k-1} & w
\end{array}\right]
$$

where

$$
y_{j}=\sum_{i=1}^{k-1} x_{j, i}, \quad z_{j}=\sum_{i=1}^{k-1} x_{i, j}, \quad \text { and } \quad w=\sum_{i, j} x_{i, j} .
$$

We choose the terms $x_{i, j}$ so that if a set of k entries of the matrix sums to zero, then those entries must be from a single row or column. This can be done by choosing the $x_{i, j}$'s to be linearly independent over \mathbb{Q}, or by choosing them to be powers of some sufficiently small ϵ.

We form a hypergraph H on a set V of k^{2} vertices as follows: weight each vertex with a different entry of the matrix. The edges of H are the k-sets whose total weight is positive, and the k-sets corresponding to the rows of A. By construction of the matrix A, the only k-sets that have zero weight correspond to rows and columns. Thus the only k-sets that are non-edges either have negative weight or correspond to columns.

The degree sequence of H is not uniquely realizable, as the k-switch that adds the k sets corresponding to columns of A to the edge set while removing the edges corresponding to rows gives another realization. However, we show that we cannot apply an i-switch to H for any $i<k$.

Note that in any edge exchange that replaces a set F_{1} of edges with a set F_{2} of nonedges,

$$
\sum_{e \in F_{1}} \sum_{v \in e} w t(v)=\sum_{v \in V}\left(\operatorname{deg}_{F_{1}}(v)\right) w t(v)=\sum_{v \in V}\left(\operatorname{deg}_{F_{2}}(v)\right) w t(v)=\sum_{e \in F_{2}} \sum_{v \in e} w t(v) .
$$

Since edges of F_{1} have nonnegative weight and nonedges of F_{2} have nonpositive weight, we conclude that the edges of F_{1} must have zero weight and thus correspond to rows of A, and the nonedges of F_{2} have zero weight and correspond to columns of A. But no proper subset of edges corresponding to rows can be swapped for a proper subset of nonedges corresponding to columns, because this does not maintain the degree of every vertex.

This result immediately suggests the following problem:
Problem 3.3. Determine the smallest cardinality of a collection \mathcal{Q} such that $G\left(\mathcal{S}_{k}(\pi), \mathcal{Q}\right)$ is connected for every k-graphic sequence π.

Results for graphs suggest several different possible approaches. Is there a finite collection that works? Would it be sufficient to add all possible k-switches? Or would it suffice to add just the k-switch suggested by Proposition 3.2 to \mathcal{E}_{k-1} ?

3.3 Applications

3.3.1 Obtaining a "good" realization

One consequence of the Havel-Hakimi characterization of 2-graphic sequences is that any graphic sequence has a realization in which a specified vertex v is adjacent to vertices whose degrees are the highest-degree vertices in the graph. This elementary fact has been proved in several places, for instance [17]. Motivated by this, we prove the following.

Theorem 3.4. Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a nonincreasing k-graphic sequence, and let H be $a k$-realization of π on vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ such that $d\left(v_{i}\right)=d_{i}$ for each $i, 1 \leqslant i \leqslant n$. Let $i<j$ and suppose there is an edge e in H such that v_{j} is in e but v_{i} is not in e. Then there is a realization H^{\prime} of π such that $e-v_{j}+v_{i}$ is an edge in H^{\prime}.

Proof. If $e-v_{j}+v_{i}$ is already an edge in H, we are done. So we can assume this edge does not exist. Since $d_{i} \geqslant d_{j}$, there is an edge f such that v_{i} is in f but v_{j} is not. Additionally, some such f has the property that $f-v_{i}+v_{j}$ is not an edge in H. Perform the exchange $e \underset{v_{i}}{v_{j}} f$. This does not create any multi-edges, so we have the desired realization.

An immediate corollary of this result is that for any vertex v of positive degree, there is a k-realization of π such that v is in an edge with the $k-1$ remaining vertices of highest degree. Thus, there is always a realization of π in which the k vertices of highest degree are in a single edge. If we could prove the existence of a k-realization in which the link of a vertex contains only the highest degree vertices, then we would be able to obtain a Havel-Hakimi-type characterization of k-graphic sequences.

3.3.2 Packing k-graphic sequences

Two n-vertex graphs G_{1} and G_{2} pack if they can be expressed as edge-disjoint subgraphs of the complete graph K_{n}. Kostochka, Stocker, and Hamburger [24], and Pilśniak and Woźniak [26, 27] recently studied packing of hypergraphs. Busch et al. [8] extended the idea of graph packing to graphic sequences. We utilize edge exchanges to examine related questions for hypergraphic sequences.

Let π_{1} and π_{2} be k-graphic sequences with $\pi_{1}=\left(d_{1}^{(1)}, \ldots, d_{n}^{(1)}\right)$ and $\pi_{2}=\left(d_{1}^{(2)}, \ldots, d_{n}^{(2)}\right)$. We say that π_{1} and π_{2} pack if there exist edge-disjoint k-graphs G_{1} and G_{2} on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ such that $d_{G_{1}}\left(v_{i}\right)=d_{i}^{(1)}$ and $d_{G_{2}}\left(v_{i}\right)=d_{i}^{(2)}$ for all i. When we discuss packing of graphic sequences, the sequences need not be nonincreasing; however, no reordering of the indices is allowed.

Dürr, Guiñez, and Matamala [13] showed that the problem of packing two graphic sequences is NP-complete, and we show that the same conclusion holds when considering k-graphic sequences for $k \geqslant 3$.

Theorem 3.5. The degree-sequence packing problem for k-graphs is $N P$-complete for all $k \geqslant 2$.

Proof. The degree-sequence packing problem for $k \geqslant 2$ is in NP since the certificate giving realizations that pack can easily be checked in polynomial time. NP-hardness for $k=2$ is shown in [13]. For $k \geqslant 3$ we show that any instance of the degree-sequence packing problem for 2-graphs can be reduced to an instance of the degree-sequence packing problem for k-graphs. Given 2 -graphic sequences π_{1} and π_{2}, add $k-2$ new entries to each sequence to create sequences π_{1}^{k} and π_{2}^{k}, with each new entry of π_{i}^{k} equal to $\frac{1}{2} \sigma\left(\pi_{i}\right)$. Then, any k-realization of π_{i}^{k} has the same number of edges as a 2 -realization of π_{i}, and each of the $k-2$ vertices associated with the new entries must appear in every edge. Hence there is a one-to-one correspondence between 2-realizations of the original sequences and k-realizations of the new sequences.

Given the computational complexity of the overarching problem, it is natural to seek sufficient conditions that ensure a pair of k-graphic sequences pack. Busch et al. showed that if π_{1} and π_{2} are graphic sequences and $\Delta \leqslant \sqrt{2 \delta n}-(\delta-1)$, where Δ and δ are the largest and smallest entries in $\pi_{1}+\pi_{2}$, then π_{1} and π_{2} pack. We prove a similar result for k-graphic sequences when $k \geqslant 3$.

For a vertex v in a k-graph H, we define the neighborhood of $v, N_{H}(v)$, to be the set of vertices that are in at least one edge with v. Similarly, for a set $S=\left\{v_{1}, \ldots, v_{m}\right\}$ of vertices in H, the neighborhood of S is $N_{H}(S)=\cup_{i=1}^{m} N_{H}\left(v_{i}\right)$. When H is understood, we write $N(v)$. Also, let $H[S]$ denote the subgraph of H induced by the vertices in S.

Theorem 3.6. Fix an integer $k \geqslant 2$. There exist constants c_{1}, c_{2} (depending only on k) such that if π_{1} and π_{2} are k-graphic sequences each with length n that satisfy

$$
\begin{equation*}
n>c_{1} \frac{\Delta^{k /(k-1)}}{\delta}+c_{2} \Delta \tag{2}
\end{equation*}
$$

where Δ and δ are the maximum and minimum entries of $\pi_{1}+\pi_{2}$, then π_{1} and π_{2} pack.

Proof. Among all k-realizations of π_{1} and π_{2}, let H_{1} and H_{2} be k-realizations such that the number of double edges in $H_{1} \cup H_{2}$ is minimized. We may assume that $H_{1} \cup H_{2}$ has at least one multiple edge, lest H_{1} and H_{2} give rise to a packing. Let $H=H_{1} \cup H_{2}$, $e=\left\{v_{1}, \ldots, v_{k}\right\}$ be a double edge in H, and $I=V(H) \backslash \bigcup_{i=1}^{k} N_{H}\left(v_{i}\right)$. Taking $c_{2}>k^{2}-k$, inequality (2) implies that $I \neq \emptyset$. Let $Q=N_{H}(I)$.

If there is some edge f that contains more than one vertex of I, say i_{1} and i_{2}, then the 2-switch $e \underset{i_{1}}{\stackrel{v_{1}}{\rightleftharpoons}} f$ reduces the number of double edges, contradicting the choice of H_{1} and H_{2}. Hence, each edge including a vertex of I consists of that vertex and $k-1$ vertices of Q.

Let $Q_{i}=N_{H_{i}}(I)$ for $i \in\{1,2\}$. Suppose Q_{1} is not a clique in H. That is, let $A=\left\{y_{1}, \ldots, y_{k}\right\}$ be a set of vertices in Q_{1} that is not an edge in H. Since each y_{j} is in Q_{1}, for each j with $1 \leqslant j \leqslant k$ there is an edge $f_{j} \in H_{1}$ that contains both y_{j} and some vertex of I. Let $\mathcal{E}=\left\{f_{1}, \ldots, f_{k}\right\}$ be a set of such edges in H_{1}, where it is possible that some f_{j} 's are equal. Now we can repeatedly perform 2 -switches of the form $e \underset{y_{j}}{v_{j}} f_{j}$ until one copy of e is replaced by the new edge $\left\{y_{1}, \ldots, y_{k}\right\}$, in the following way. First, do the exchange $S_{1}=e \underset{y_{1}}{\stackrel{v_{1}}{\rightleftharpoons}} f_{1}$ to obtain edges $e_{1}=e-v_{1}+y_{1}$ and $f_{1}^{\prime}=f_{1}-y_{1}+v_{1}$. The edge e_{1} may already exist in H, but it will be removed in the next step. The edge f_{1}^{\prime} cannot exist in H, as it contains both a vertex of e and a vertex of I. Having performed edge exchanges S_{1} through S_{j}, the next exchange is $S_{j+1}=e_{j+1} \underset{y_{j+1}}{\stackrel{v_{j+1}}{\rightleftharpoons}} f_{j+1}$, unless $f_{j+1}=f_{p}$ for some $p \leqslant j$. In that case, $f_{j+1}=f_{p}$ is no longer an edge, but has been transformed into the edge $f_{p}^{\prime}=f_{p}-y_{p}+v_{p}$. Then $S_{j+1}=e_{j+1} \underset{y_{j+1}}{\stackrel{v_{j+1}}{\rightleftharpoons}} f_{p}^{\prime}$, and the new edges created in this exchange are $e_{j+1}=e_{j}-v_{j}+y_{j}$ and $f_{j}^{\prime}=f_{p}^{\prime}-y_{j}+v_{j}$. After the $k^{\text {th }}$ iteration of this process, we have created the edge consisting of the vertices in A, and removed one of the copies of e, while no new double edges have been created. Since this contradicts our choice of H_{1} and H_{2}, the vertices of A must already form an edge, so Q_{1} is a clique. The same argument shows that Q_{2} is a clique.

Let $v_{i} \in e$ and $x \in Q$, and suppose that $e-v_{i}+x$ is not an edge in H. Let f be an edge containing x and a vertex of I. Then the switch $e \underset{x}{\stackrel{v_{i}}{\rightleftharpoons} f \text { reduces the number of double }}$ edges in H. Hence every vertex of Q is in an edge with each of the $(k-1)$-subsets of e.

Let $q=|Q|$ and $r=|E(H[Q])|$. Since Q_{1} and Q_{2} are cliques, $r \geqslant 2\binom{q / 2}{k}$. Counting the degrees of vertices in Q, we have

$$
\begin{aligned}
\Delta q & \geqslant k q+(k-1) \delta|I|+k r \\
& \geqslant k q+(k-1) \delta|I|+2 k\binom{q / 2}{k}
\end{aligned}
$$

Rearranging gives

$$
\begin{equation*}
|I| \leqslant \frac{(\Delta-k) q-2 k\binom{q / 2}{k}}{(k-1) \delta} \tag{3}
\end{equation*}
$$

By the principle of inclusion-exclusion, we also know that

$$
\begin{align*}
|I| & =n-\left|\bigcup_{i=1}^{k} N_{H}\left(v_{i}\right)\right| \tag{4}\\
& =n+\sum_{s=1}^{k}(-1)^{s} \sum_{\substack{B \subseteq e \\
|B|=s}}\left|\bigcap_{v \in B} N_{H}(v)\right| .
\end{align*}
$$

For any subset B of e, we have that all of Q and $e \backslash B$ are in the common neighborhood of B in H; thus

$$
q+k-|B| \leqslant\left|\bigcap_{v \in B} N_{H}(v)\right| .
$$

On the other hand, the size of this common neighborhood is maximized when all vertices in B have the same neighborhood; hence

$$
\left|\bigcap_{v \in B} N_{H}(v)\right| \leqslant(k-1)(\Delta-2)+k-|B| .
$$

Using these inequalities in (4), we have

$$
\begin{aligned}
|I| & \geqslant n-\sum_{s \text { odd }}\binom{k}{s}((k-1)(\Delta-2)+k-s)+\sum_{s \text { even }}\binom{k}{s}(q+k-s) \\
& =n+\sum_{s=1}^{k}(-1)^{s}(k-s)\binom{k}{s}-(k-1)(\Delta-2) \sum_{s \text { odd }}\binom{k}{s}+q \sum_{s \text { even }}\binom{k}{s} .
\end{aligned}
$$

Applying the binomial theorem, this becomes

$$
\begin{align*}
|I| & \geqslant n-k-(\Delta-2)(k-1)\left(2^{k-1}\right)+q\left(2^{k-1}-1\right) \tag{5}\\
& =n-\Delta(k-1)\left(2^{k-1}\right)+q\left(2^{k-1}-1\right)+(k-1)\left(2^{k}-1\right)-1 .
\end{align*}
$$

Combining equations (3) and (5) yields

$$
\begin{gather*}
(k-1) \delta\left(n-\Delta(k-1)\left(2^{k-1}\right)+(k-1)\left(2^{k}-1\right)-1\right) \\
\leqslant(\Delta-k) q-(k-1) \delta\left(2^{k-1}-1\right) q-2 k\binom{q / 2}{k} \tag{6}\\
\leqslant \Delta q-2 k \frac{q^{k}}{(2 k)^{k}} .
\end{gather*}
$$

Without loss of generality, suppose $\left|Q_{1}\right| \geqslant\left|Q_{2}\right|$, and let $q_{1}=\left|Q_{1}\right|$. Since Q_{1} is a clique, $\binom{q_{1}-1}{k-1} \leqslant \Delta$, so $q_{1} \leqslant c^{\prime} \Delta^{1 /(k-1)}$ for some constant c^{\prime} depending only on k. Then, since $Q=Q_{1} \cup Q_{2}$, we have $q \leqslant 2 q_{1} \leqslant 2 c^{\prime} \Delta^{1 /(k-1)}=c \Delta^{1 /(1-k)}$. Inequality (6) now becomes

$$
n \leqslant\left(c-\frac{c^{k}}{(2 k)^{k-1}}\right) \frac{\Delta^{k /(k-1)}}{\delta}+\left((k-1) 2^{k-1}\right) \Delta
$$

This establishes the theorem, with $c_{1}=\left(c-\frac{c^{k}}{(2 k)^{k-1}}\right)$ and $c_{2}=\left((k-1) 2^{k-1}\right)$.
When $\delta=o\left(\Delta^{1 /(k-1)}\right)$, the bound in Theorem 3.6 reduces to

$$
n>c \frac{\Delta^{k /(k-1)}}{\delta}
$$

for $c=c_{1}+c_{2}$. We show that for δ in this range, Theorem 3.6 is best possible up to the choice of c.

Fix k and δ and choose an integer $x \gg \delta$ such that $\frac{x-k}{\delta(k-1)}$ is an integer. Form a complete k-graph on x vertices; set aside k of these vertices to form the set B, and let T be the set of remaining vertices. Add an independent set I of order

$$
\frac{(x-k)}{\rho(k-1) \delta}\binom{x-1}{k-1}
$$

where $\rho>1$ is chosen such that $\frac{1}{\rho}\binom{x-1}{k-1}$ is an integer. Partition T into sets T_{1}, \ldots, T_{r}, each of size $\delta(k-1)$, where $r=\frac{x-k}{\delta(k-1)}$, and partition I into sets I_{1}, \ldots, I_{r} of size $\frac{1}{\rho}\binom{x-1}{k-1}$. For each vertex $v \in I_{j}$, create edges $e_{1}, \ldots, e_{\delta}$, where each edge consists of v and $k-1$ distinct vertices of T_{j}. Thus, $N(v)=T_{j}$ and each vertex in T_{j} is in exactly one edge with each vertex of I_{j}. Finally, add an independent set of size $x-k+|I|$.

We now have a k-graph H where each vertex in T has degree

$$
\binom{x-1}{k-1}+\frac{1}{\rho}\binom{x-1}{k-1}=\left(1+\frac{1}{\rho}\right)\binom{x-1}{k-1}
$$

each vertex in B has degree $\binom{x-1}{k-1}$, and each vertex in I has degree δ.
Consider two orderings of the degree sequence of H :

$$
\begin{aligned}
& \pi_{1}=\left(\binom{x-1}{k-1}^{k},\left(\left(1+\frac{1}{\rho}\right)\binom{x-1}{k-1}\right)^{x-k}, 0^{x-k}, \delta^{|I|}, 0^{|I|}\right) \\
& \pi_{2}=\left(\binom{x-1}{k-1}^{k}, 0^{x-k},\left(\left(1+\frac{1}{\rho}\right)\binom{x-1}{k-1}\right)^{x-k}, 0^{|I|}, \delta^{|I|}\right) .
\end{aligned}
$$

Note that n, the length of sequences π_{1} and π_{2}, is

$$
\begin{aligned}
n & =2 x-k+2|I| \\
& =2 x-k+\frac{2(x-k)}{\rho(k-1) \delta}\binom{x-1}{k-1} \\
& =\Theta\left(x^{k} / \delta\right) .
\end{aligned}
$$

In $\pi_{1}+\pi_{2}$ the minimum degree is δ and the maximum degree is $\Delta=2\binom{x-1}{k-1}=\Theta\left(x^{k-1}\right)$. Hence $\Delta=\Theta\left((\delta n)^{(k-1) / k}\right)$.

In any realization of π_{1}, Lemma 2.5 implies that the vertices of degree greater than δ must form a clique. Since the k vertices of B must be in this clique, those vertices must form an edge in any realization of π_{1}. The same argument applies to π_{2}, hence the sequences do not pack.

References

[1] N. Achuthan, N. Achuthan, and M. Simanihuruk. On 3-uniform hypergraphic sequences. J. Combin. Math. Combin. Comput., 14:3-13, 1993.
[2] M. Aigner and E. Triesch. Realizability and uniqueness in graphs. Discrete Math., 136(1-3):3-20, 1994. Trends in discrete mathematics.
[3] M. Barrus, S. Hartke, K. Jao, and D. West. Length thresholds for graphic lists given fixed largest and smallest entries and bounded gaps. Discrete Math., 312(9):14941501, 2012.
[4] M. Barrus, S. Hartke, and M. Kumbhat. Graph classes characterized both by forbidden subgraphs and degree sequences. J. Graph Theory, 57(2):131-148, 2008.
[5] D. Bauer, H. Broersma, J. van den Heuvel, N. Kahl, and E. Schmeichel. Toughness and vertex degrees. J. Graph Theory, 2012. doi: 10.1002/jgt.21639.
[6] N. Bhave, B. Bam, and C. Deshpande. A characterization of degree sequences of linear hypergraphs. J. Indian Math. Soc. (N.S.), 75(1-4):151-160 (2009), 2008.
[7] D. Billington. Conditions for degree sequences to be realizable by 3-uniform hypergraphs. J. Combin. Math. Combin. Comput., 3:71-91, 1988.
[8] A. Busch, M. Ferrara, S. Hartke, M. Jacobson, H. Kaul, and D. West. Packing of graphic n-tuples. J. Graph Theory, 70(1):29-39, 2012.
[9] Y. C. Chen. A short proof of Kundu's k-factor theorem. Discrete Math., 71(2):177179, 1988.
[10] S. Choudum. On graphic and 3-hypergraphic sequences. Discrete Math., 87(1):91-95, 1991.
[11] C. Colbourn, W. Kocay, and D. Stinson. Some NP-complete problems for hypergraph degree sequences. Discrete Appl. Math., 14(3):239-254, 1986.
[12] A. Dewdney. Degree sequences in complexes and hypergraphs. Proc. Amer. Math. Soc., 53(2):535-540, 1975.
[13] C. Dürr, F. Guiñez, and M. Matamala. Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard. In Algorithms-ESA 2009, volume 5757 of Lecture Notes in Comput. Sci., pages 776-787. Springer, Berlin, 2009.
[14] A. Duval and V. Reiner. Shifted simplicial complexes are Laplacian integral. Trans. Amer. Math. Soc., 354(11):4313-4344 (electronic), 2002.
[15] P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices (hungarian). Mat. Lapok, 11:264-274, 1960.
[16] M. Ferrara, T. LeSaulnier, C. Moffatt, and P. Wenger. On the sum necessary to ensure a degree sequence is potentially H-graphic. Arxiv preprint arXiv:1203.4611, 2012.
[17] D. Fulkerson, A. Hoffman, and M. McAndrew. Some properties of graphs with multiple edges. Canad. J. Math., 17:166-177, 1965.
[18] I. Gabelman. The functional behavior of majority (threshold) elements. PhD thesis, Syracuse U, 1961.
[19] S. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Indust. Appl. Math., 10:496-506, 1962.
[20] V. Havel. A remark on the existence of finite graphs (czech). Časopis Pěst. Mat., 80:477-480, 1955.
[21] H. Hoogeveen and G. Sierksma. Seven criteria for integer sequences being graphic. J. Graph Theory, 15:223-231, 1991.
[22] C. Klivans and V. Reiner. Shifted set families, degree sequences, and plethysm. Electron. J. Combin., 15(1):Research Paper 14, 35, 2008.
[23] W. Kocay and P. C. Li. On 3-hypergraphs with equal degree sequences. Ars Combin., 82:145-157, 2007.
[24] A. Kostochka, C. Stocker, and P. Hamburger. A hypergraph version of a graph packing theorem by bollobás and eldridge. J. Graph Theory, 2012. doi: 10.1002/jgt.21706.
[25] J. Petersen. Die Theorie der regularen Graphen, Acta Math. 15 (1891),193-220.
[26] M. Pilśniak and M. Woźniak. A note on packing of two copies of a hypergraph. Discuss. Math. Graph Theory, 27(1):45-49, 2007.
[27] M. Pilśniak and M. Woźniak. On packing of two copies of a hypergraph. Discrete Math. Theor. Comput. Sci., 13(3):67-74, 2011.
[28] D. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ, second edition, 2001.
[29] J.-H. Yin and J.-S. Li. Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size. Disc. Math., 301:218-227, 2005.
[30] I. Zverovich and V. Zverovich. Contributions to the theory of graphic sequences. Discrete Math., 105(1-3):293-303, 1992.

[^0]: ${ }^{1}$ Department of Mathematics, University of Nebraska-Lincoln, s-sbehren7@math.unl.edu, hartke@math.unl.edu, ctomlinson@math.unl.edu
 ${ }^{2}$ Department of Mathematical and Statistical Sciences, University of Colorado Denver, catherine.erbes@ucdenver.edu, michael.ferrara@ucdenver.edu
 ${ }^{3}$ Department of Mathematics, University of Illinois Urbana-Champaign, hkolb2@illinois.edu, reinige1@illinois.edu
 ${ }^{4}$ Research supported in part by NSF grant DMS 08-38434, "EMSW21-MCTP: Research Experience for Graduate Students".
 ${ }^{5}$ Research supported in part by National Science Foundation Grant DMS-0914815.
 ${ }^{6}$ Research supported in part by UCD GK12 project, National Science Foundation Grant DGE-0742434.
 ${ }^{7}$ Research supported in part by Simons Foundation Collaboration Grant \#206692.

