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Abstract. Camellia, a 128–bit block cipher which has been accepted
by ISO/IEC as an international standard, is increasingly being used in
many cryptographic applications. In this paper, using the redundancy in
the key schedule and accelerating the filtration of wrong pairs, we present
a new impossible differential attack to reduced–round Camellia. By this
attack 12–round Camellia–128 without FL/FL−1 functions and whiten-
ing is breakable with a total complexity of about 2116.6 encryptions and
2116.3 chosen plaintexts. In terms of the numbers of the attacked rounds,
our attack is better than any previously known attack on Camellia–128.

1 Introduction

Camellia [1] is a 128–bit block cipher that supports several key lengths. For the
sake of simplicity, Camellia with n–bit keys is denoted by Camellia–n, n=128,
192, 256. Camellia was jointly proposed in 2000 by NTT and Mitsubishi and
then was submitted to several standardization and evaluation projects. It was
selected as a winner of CRYPTREC e-government recommended ciphers in 2002
[5], NESSIE block cipher portfolio in 2003 [17] as well as the standardization
activities at IETF [18]. Finally Camellia was selected as an international stan-
dard by ISO/IEC in 2005 [9]. As one of the most widely used block ciphers,
Camellia has received a significant amount of cryptanalytic attention. The most
efficient cryptanalytic results on Camellia include linear and differential attacks
[19], truncated differential attack [5,10,13,20], higher order differential attack
[7,11], collision attack [14,21], square attack [8,14,24], a square like attack [6]
and impossible differential attack [15,20,22,23].

Impossible differential cryptanalysis, an extension of the differential attack
[4], is one of the most powerful methods used for block cipher cryptanalysis.
This method was first introduced by Biham [3] and Knudsen [12] independently.
Impossible differential attacks use differentials that hold with probability zero
(impossible differentials) to eliminate the wrong keys and leave the right key.
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The most efficient impossible differential attacks, recently proposed to reduced
variants of Camellia, are as follows. The initial analysis of the security of Camellia
to impossible differential cryptanalysis was given in [20]. They presented some
7–round impossible differentials for Camellia. In [23] Wu et al. introduced a
nontrivial 8–round impossible differential that lead to an impossible differential
attack on Camellia–192 and Camellia–256 without the FL/FL−1 functions with
complexity of about 2118 chosen plaintexts and a time complexity of about 2126

memory accesses. Introducing the early abort technique, Lu et al. improved
the impossible differential attack on Camellia in [16]. Later in [22] Wu et al.
found a flaw in [16] and presented an impossible differential attack on 12–round
Camellia–128 and claimed that their attack has a data complexity of 265 chosen
plaintexts and a time complexity of about 2111.5 encryptions. In this paper, we
point out a flaw in their attack and show that its time complexity is more than
exhaustive key search. However, their work is the first impossible differential
attack on Camellia that considers the weakness in its key schedule.

In this paper, using the same 8–round impossible differential of [23], consid-
ering the weakness in the key schedule of Camellia–128, and also exploiting a
hash table to simplify the selection of proper pairs, we present the first successful
12–round attack on Camellia–128. The proposed attack requires 2116.3 chosen
plaintexts and has a total time complexity equivalent to about 2116.6 encryptions.
We summarize our results along with previously known results on Camellia–128
in Table 1. The results of [16] in Table 1 come from its early version reported in
Lu’s PhD thesis [15], so we mark them with ”†”. In this table, time complexity
is measured in encryption units unless MA is mentioned for memory accesses.

The rest of this paper is organized as follows: Section 2 provides a brief descrip-
tion of Camellia. We propose our new impossible differential attack on 12–round
Camellia–128 in Section 3. Section 3 includes the previously known 8–round im-
possible differential (in Subsection 3.1), some observations on the key schedule
of Camellia–128 (in Subsection 3.2), the proposed attack procedure on 12–round

Table 1. Summary of previous attacks and our new attack on Camellia–128

#Rounds FL/FL−1 Data Time Attack type Source

8 no 283.6 255.6 Truncated Diff. [13]
8 no 220 2120 Higher Order Diff. [7]
9 no 292 2111 Higher Order Diff. [7]
9 yes 248 2122 Square. [14]
9 no 2113.6 2121 Collision. [21]
9 no 288 290 Square. [14]
9 no 2105 2105 Differential. [19]
9 no 266 284.8 Square like. [6]
10 no 2120 2121 Linear. [19]
11 no 2118 2126MA&2118 Impossible Diff. [16]†
11 no 2118 2126MA Impossible Diff. [16]†
12 no 2116.3 2116.6 Impossible Diff. This work
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Camellia–128 (in Subsection 3.3), and the analysis of the attack complexity (in
Subsection 3.4). Finally, we conclude the paper in Section 4.

2 Preliminaries

2.1 Notations

In this paper, we will use the following notations:

Lr−1 : the left 64–bit half of the r–th round input,
Rr−1 : the right 64–bit half of the r–th round input,
kr : the subkey used in r–th round,
kr

l : the l–th byte of a subkey kr,
kr

l [i − j] : the i–th to the j–th bits of kr
l , i, j = 1, 2, ..., 8, i ≤ j,

x|y : bit string concatenation of x and y,
⊕ : bit-wise exclusive or operation,
x <<<l : the rotation of x by l bits to the left.

2.2 Description of Camellia

The 128–bit block cipher Camellia [1] has an 18–round (for 128 bit keys) or 24–
round (for 192/256–bit keys) Feistel structure. The FL/FL−1 functions layer is
inserted every 6 rounds. Before the first round and after the last round, there are
pre– and post–whitening layers. In this paper we will consider a reduced vari-
ant of Camellia without FL/FL−1 functions and whitening layers. The Feistel
structure of the r–th round is

Lr = Rr−1 ⊕ F (Lr−1, kr) , Rr = Lr−1,

where function F consists of a key–addition layer, a substitution transformation
S and a diffusion layer P . The S transformation contains 4 types of 8×8 S–boxes
s1, s2, s3 and s4 as follows:

S(x1|x2|x3|x4|x5|x6|x7|x8)
= s1(x1)|s2(x2)|s3(x3)|s4(x4)|s2(x5)|s3(x6)|s4(x7)|s1(x8).

The transformation P : ({0, 1}8)8 → ({0, 1}8)8 maps (z1, ..., z8) to (z′1, ..., z
′
8).

This transformation and its inverse, P−1, are defined as:

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 z1 = z′2 ⊕ z′3 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8 z2 = z′1 ⊕ z′3 ⊕ z′4 ⊕ z′5 ⊕ z′7 ⊕ z′8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 z3 = z′1 ⊕ z′2 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z4 = z′1 ⊕ z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′8
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8 z5 = z′1 ⊕ z′2 ⊕ z′5 ⊕ z′7 ⊕ z′8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8 z6 = z′2 ⊕ z′3 ⊕ z′5 ⊕ z′6 ⊕ z′8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8 z7 = z′3 ⊕ z′4 ⊕ z′5 ⊕ z′6 ⊕ z′7
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z8 = z′1 ⊕ z′4 ⊕ z′6 ⊕ z′7 ⊕ z′8
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Fig. 1. Key schedule of Camellia

Table 2. The first 12 round keys of Camellia–128

Round Subkey Value Round Subkey Value

1 k1 (kA <<<0)L 7 k7 (kL <<<45)L

2 k2 (kA <<<0)R 8 k8 (kL <<<45)R

3 k3 (kL <<<15)L 9 k9 (kA <<<45)L

4 k4 (kL <<<15)R 10 k10 (kL <<<60)R

5 k5 (kA <<<15)L 11 k11 (kA <<<60)L

6 k6 (kA <<<15)R 12 k12 (kA <<<60)R

Fig. 1 shows the key schedule of Camellia. For Camellia–128, two 128–bit
variables kL and kR are defined as follows. The 128–bit user key is used as kL, and
kR is a 128–bit string of 0 bits. Two 128–bit variables kA and kB are generated
from kL and kR as shown in Fig. 1, in which Ci, i = 1, ..., 6 are constants used as
the keys of the Feistel round function. The round keys of Camellia are rotations
of variables kA, kB, kL and kR. Note that kB is used only if the length of the user
key is 192 or 256 bits. Here, we only give the first 12 round keys for Camellia–128
in Table 2.

2.3 Analysis of Wu et al.’s Attack on Camellia–128

In step (3.c.iii) of Section 4.1 in [22], the authors write: ”Furthermore, the prob-
ability that a subkey guess may remain after this test is about (1 − 2−8).” At
the first look, it seems to be true, but we show that this statement and thus
the resulted complexity are not true. We show that the correct value for this
probability is (1 − 2−68), and also we calculate the dominant part of the time
complexity of the attack on Camellia–128 proposed in [22].

At the end of step (3.b) there remain 25+m pairs. Below, we specify the list
and the number of subkeys that are determined for each of these pairs:
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1. Only one value for subkey bytes (k1
1 , k

1
2 , k

1
3 , k

1
5 , k

1
8) and (k12

1 , k12
2 , k12

3 , k12
5 , k12

8 )
that satisfy the required differences in Round 1 and 12, and the 28–bit con-
dition suggested by Property 1–1,

2. 216 guesses of the 16 unknown bits (k1
4 [1 − 4], k1

6, k
1
7 [1 − 4]),

3. according to Property 1-3, only one value for the (k12
4 , k12

6 , k12
7 ),

4. only one value for k2
1 which is obtained from the difference distribution table

of S-boxes, and
5. 2−8 value for k11

1 , because the only value obtained for (k11
1 in step (c.ii) must

also satisfy the 8–bit condition k11
1 = (k1

8 [5 − 8]|k2
1[1 − 4]).

Thus, the number of 76–bit target subkeys that satisfy the impossible differential
for each of the 25+m remaining pairs is 1× 1× 216 × 1× 1× 2−8 = 28. Thus, the
probability that a 76–bit target subkey guess be discarded by each of these 25+m

pairs is 28

276 = 2−68. Hence the number of 76–bit wrong subkeys remained at the
end of the attack procedure is (276 − 1).(1 − 2−68)2

m+5
. If we choose m = 9, as

[22] proposes, the number of remaining wrong subkeys becomes:

(276 − 1).(1 − 2−68)2
14 ≈ 276.e−2−54 ≈ 276

If we accept that only one wrong subkey remains, m can be obtained as below:

(276 − 1).(1 − 2−68)2
m+5

= 1 ⇒ m ≈ −5 + 68 + log2(
76

log2 e
) ≈ 68.7

Thus, the number of the required chosen plaintexts is about 2m+56 = 2124.7.
Also the dominant part of time complexity which is related to step 2, will be
about 250 × 2124.7 = 2174.7 memory accesses. Hence, this attack is infeasible. It
seems that there is a similar mistake in computing the complexity of the attack
on Camellia-256 proposed in [22].

3 Impossible Differential Cryptanalysis of Reduced
Camellia–128

In this section, we first present the 8–round impossible differential of Camellia
introduced in [23], then we propose an impossible differential attack on 12–
round Camellia–128 without the FL/FL−1 functions. Finally, we analyze the
complexity of our attack in Section 3.4.

3.1 8–Round Impossible Differentials of Camellia

In 2007, Wu et al. [23] found the following 8–round impossible differentials
of Camellia: (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0)→8(h|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0),
wherea and h are any twonon–zerobytes. Fig. 2 illustratesmore details. A detailed
explanation of these 8–round impossible differentials is given in [23].
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Fig. 2. 8–round impossible differentials of Camellia

3.2 Some Observations on the Key Schedule of Camellia–128

Redundancy in the Key Schedule: We first consider the relation between
the target subkeys in our attack. The 18–byte target subkeys include the 8 bytes
of k1, the byte k2

1 , the byte k11
1 and 8 bytes of the last round key, k12. Considering

the key schedule of Camellia–128, we immediately observe that these 144 target
bits are not distinct. From Table 2 we know that the four additional round keys
k1, k2, k11, k12 are rotations of the intermediate value kA, as below:

k1 = (kA <<<0)L , k2 = (kA <<<0)R,

k11 = (kA <<<60)L and k12 = (kA <<<60)R
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Table 3. Target subkeys in the attack represented in Fig. 4

Target Byte Equivalent 8 bits of kA Target Byte Equivalent 8 bits of kA

k1
1 k1|k2...|k8 k11

1 k61|k62...|k68

k1
2 k9|k10...|k16 k12

1 k125|...|k128 |k1|...|k4

k1
3 k17|k18...|k24 k12

2 k5|k6...|k12

k1
4 k25|k26...|k32 k12

3 k13|k14...|k20

k1
5 k33|k34...|k40 k12

4 k21|k22...|k28

k1
6 k41|k42...|k48 k12

5 k29|k30...|k36

k1
7 k49|k50...|k56 k12

6 k37|k38...|k44

k1
8 k57|k58...|k64 k12

7 k45|k46...|k52

k2
1 k65|k66...|k72 k12

8 k53|k54...|k60

Let us denote the intermediate value kA by its bits as kA = k1|k2|...|k128. Then we
can distinguish 18 target subkey bytes in bit strings of kA in
Table 3. It is obvious that the 18 target bytes are composed of only 76 dis-
tinct bits. This fact will help us to reduce the complexity of our attack. These
distinct 76 bits include k1|k2|...|k72 in Rounds 1, 2 and the four bits k125|...|k128

in the last round. This fact has previously been considered in [22].

Relation between kL and kA: Since in our attack some bits of kA are recov-
ered, here we investigate the relation between the master key of Camellia–128,
kL = kL

L |kR
L and the intermediate key value kA = kL

A|kR
A . In other words, we

will show that kL can be extracted from kA. According to the key schedule of
Camellia–128, kR is zero. Let the outputs of round functions F in first and sec-
ond rounds of the key schedule be denoted by x and y, respectively. According
to Fig. 1, we can obtain x and y as functions of only kA as below:

y = (kL
A ⊕ FC4(k

R
A) ⊕ kL

L) ⊕ kL
L = kL

A ⊕ FC4(k
R
A)

x = (kR
A ⊕ FC3(k

L
A ⊕ FC4(k

R
A)) ⊕ kR

L ) ⊕ kR
L = kR

A ⊕ FC3(k
L
A ⊕ FC4(k

R
A))

= kR
A ⊕ FC3(y)

In a same way kL can be represented in terms of x and y as below:

kR
L = F−1

C2
(y) ⊕ x kL

L = F−1
C1

(x)

So according to above equations we can obtain the master key of Camellia–128,
kL = kL

L |kR
L in terms of kA as below:

kR
L = F−1

C2
(kL

A ⊕ FC4(kR
A)) ⊕ kR

A ⊕ FC3(kL
A ⊕ FC4(kR

A))

kL
L = F−1

C1
(kR

A ⊕ FC3(k
L
A ⊕ FC4(k

R
A)))

Hence, the complexity of obtaining kL from kA is about four 1–round Camellia
encryptions.

3.3 Impossible Differential Attack on 12–Round Camellia–128

In this section, we present the first successful impossible differential attack on
12 rounds of Camellia–128 without the FL/FL−1 functions and whitening. We
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Fig. 3. Equivalent structure for one round of Camellia

attack Rounds 1 to 12, and use the 8–round impossible differential in Rounds 3
to 10. The attack is illustrated in Fig. 4. For the sake of simplicity, in Fig. 4 we
use the equivalent round functions of Camellia in the Rounds 1, 2 and 12. The
equivalent round function, which is shown in Fig. 3, is obtained by moving the P
function to the output of the XOR operation and applying a transformation P−1

to the data line entering the XOR operation. According to Fig. 3, the equivalence
of this modified structure to the original version can be verified easily as below:

Ri = Li−1,

Li = P (S(ki ⊕ Li−1) ⊕ P−1(Ri−1))
= P (S(ki ⊕ Li−1)) ⊕ Ri−1

= F (Li−1, ki) ⊕ Ri−1

In a traditional impossible differential attack where there exist additional rounds
on both sides of the impossible differential, the attacker first checks a series of
conditions in one side and choose pairs (or keys) that satisfy these conditions.
She moves to the other side when she finishes checking all the conditions in the
first side. When analyzing the Camellia, we observed that its structure allows
us to change the side before finishing the investigation of all the conditions of
one side. Thus we can check the condition that filters a greater number of pairs
(or keys) before the other conditions. This strategy reduces the time complexity
without any effect on the data complexity. So in the proposed attack, we first
check some conditions in Round 1, then we conduct the attack in Rounds 12
and 11, and then we return to Rounds 1 and 2.

The attack procedure is as follows:

1. Take 2n structures of plaintexts such that each structure contains 256

plaintexts Pi = L0
i |R0

i with:

L0
i = (a′|a′|a′|α4|a′|α6|α7|a′),

R0
i = P (y′

1|y′
2|y′

3|β4|y′
5|β6|β7|y′

8) ⊕ (y′|γ2|γ3|γ4|γ5|γ6|γ7|γ8)

where the 7 bytes (a′, y′, y′
1, y

′
2, y

′
3, y

′
5, y

′
8) take all the possible values, and

the bytes with the forms α×, β× and γ× are fixed values in each structure.



New Results on Impossible Differential Cryptanalysis 289

k1 S

k2 S

8-round ID

k11 S P

k12 S

0 ( | | | 0 | | 0 | 0 | )L a a a a a 0
1 2 3 5 8( | | | 0 | | 0 | 0 | )

( | 0 | 0 | 0 | 0 | 0 | 0 | 0 )
R P y y y y y

y

1 ( | 0 | 0 | 0 | 0 | 0 | 0 | 0 )L y

P-1

P

2 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 )L

P-1

P

10 ( | 0 | 0 | 0 | 0 | 0 | 0 | 0 )L h 10 (0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 )R

11 ( | | | 0 | | 0 | 0 | )L g g g g g

12 ( | | | 0 | | 0 | 0 | )R g g g g g12
1 2 3 4 5 8( | | | | | 0 | 0 | )L P z z z z h z z

P-1

P

2 ( | 0 | 0 | 0 | 0 | 0 | 0 | 0 )R y

1 ( | 0 | 0 | 0 | 0 | 0 | 0 | 0 )R a

1 0 1

1 2 3 5 8

1 2 3 5 8

( )
(( | | | 0 | | 0 | 0 | )
(0 | | | | | 0 | 0 | ))
( | | | 0 | | 0 | 0 | )

W P R S
y y y y y
y y y y y

a a a a a

1 12 12

1 2 3 5 8

1 2 3 5 8

( )
( | | | | | 0 | 0 | )
( | | | 0 | | 0 | 0 | )

V P L S
z z z h z z
g g g g g

1S

2S

12S

11S

 

Fig. 4. 12–round impossible differential attack on reduced-round Camellia–128

It is obvious that each structure proposes about 256 plaintexts, and 2111

plaintext pairs can be obtained from each structure. Totally, we can collect
about 2n+56 plaintexts and 2n+111 plaintext pairs with the difference ∆L0 =
(a|a|a|0|a|0|0|a) and ∆R0 = P (y1|y2|y3|0|y5|0|0|y8) ⊕ (y|0|0|0|0|0|0|0).

2. Obtain the ciphertexts of each structure and keep only the pairs that satisfy
the following ciphertext difference:

∆L12 = P (z1|z2|z3|h|z5|0|0|z8) and ∆R12 = (g|g|g|0|g|0|0|g)

where h, g and z× are any non–zero byte values. The probability of this
condition is 2−16 × 2−56 = 2−72.

Thus the expected number of the remaining pairs is 2n+111×2−72 = 2n+39.
3. Perform the following substeps:

(a) Guess the 8–bit value of k1
1 and partially encrypt every remaining plain-

text pair to get ∆W1 in the output of the XOR of Round 1 (see Fig. 4).
Keep only the pairs whose ∆W1 is zero. The probability of this event is
2−8, thus we expect about 2n+39 × 2−8 = 2n+31 pairs remain.
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(b) For l = 2, 3, 5, 8 guess the 8–bit value of k1
l and partially encrypt every

remaining plaintext pair to get ∆Wl. Keep only the pairs whose ∆Wl

is equal to y (consider that y is already determined by ∆R0 for each
plaintext pair). The probability of this event for each l is 2−8, thus the
expected number of remaining pairs is 2n+31 × 2−8×4 = 2n−1.

4. In this step consider the corresponding ciphertext pairs (C, C∗) of the re-
maining pairs then perform the following substeps:

(a) Guess the 8-bit value of k12
1 . Notice that according to Table 3, four bits

of k12
1 is already fixed by k1

1 previously guessed in step 3.a. Partially
decrypt every remaining ciphertext pair (C, C∗) to get the first byte of
the intermediate value ∆V in the output of the XOR of Round 12 (see
Fig. 4). Keep only the pairs whose ∆V1 is equal to zero. The probability
of this condition is 2−8, thus we expect about 2n−1 × 2−8 = 2n−9 pairs
remain.

(b) For l = 2, 3 obtain the 8–bit value of k12
l . Notice that according to Table

3, all bits of k12
l is already fixed by k1

1,2,3 previously guessed in step 3.
Partially decrypt every remaining ciphertext pair (C, C∗) to get the l–
th byte of the intermediate value ∆V . Keep only the pairs whose ∆Vl

is equal to h (consider that h is already determined by ∆L12 for each
remaining ciphertext pair). The probability of this event for each l is 2−8,
thus the expected number of remaining pairs is 2n−9 × 2−8×2 = 2n−25.

(c) For l = 5, 8 guess the 8–bit value of k12
l . Notice that according to Table 3,

four bits of k12
5 and four bits of k12

8 are already fixed by previously guessed
k1
5 and k1

8 , respectively. Partially decrypt every remaining ciphertext pair
(C, C∗) to get the l–th byte of the intermediate value ∆V . Keep only
the pairs whose ∆Vl is equal to h (consider that h is already determined
by ∆L12 for each of the remaining ciphertext pairs). The probability of
this event for each l is 2−8, thus the expected number of remaining pairs
is 2n−25 × 2−8×2 = 2n−41.

(d) Guess the 24-bit value of k12
4,6,7. Notice that according to Table 3, four

bits of k12
4 and four bits of k12

6 are already fixed by previously guessed k1
3

and k1
5 , respectively. Partially decrypt every remaining ciphertext pair

(C, C∗) to get the exact value of intermediate pairs (L10
1 , L∗10

1 ). Consider
that with probability 1, ∆V4,6,7 = h|0|0. So this step does not affect the
number of the remaining pairs.

5. Guess the 8-bit value of k11
1 . Notice that according to Table 3, four bits of

k11
1 is already fixed by k1

8 previously guessed in step 3. For every remaining
pair, partially decrypt the (L10

1 , L∗10
1 ) through the first s-box of Round 11 to

obtain ∆S11
1 and check if ∆S11

1 is equal to g, where g is already determined
by ∆R12 for each ciphertext pair (see Fig. 4). The probability of this event
is 2−8, thus the expected number of remaining pairs is 2n−41 ×2−8 = 2n−49.

In this stage of the attack, for every 72–bit guess of the subkeys
k1
1,2,3,5,8, k

12
7 , 4 bits of k12

1,4,5,6,8, and 4 bits of k11
1 we expect to obtain about

2n−49 pairs that satisfy the output difference of the 8–round impossible dif-
ferential and also satisfy the difference ∆L1 = ∆R2 = (y|0|0|0|0|0|0|0).



New Results on Impossible Differential Cryptanalysis 291

6. In this step, consider the corresponding plaintext pairs (P, P ∗) of the re-
maining pairs then obtain the 24–bit value of k1

4,6,7 (Notice that according
to Table 3, all these 24 bits are already fixed by k12

4,5,6,7,8). Now all bytes
of k1 are known, so partially encrypt every remaining pair to get the ex-
act value of intermediate pairs (L1

1, L
∗1
1 ). Consider that with probability 1,

∆W4,6,7 = y|0|0. So this step does not affect the number of the remaining
pairs.

7. Guess the 8–bit value of k2
1 . Notice that according to Table 3, four bits of k2

1

is already fixed by k11
1 previously guessed in step 5. Then partially encrypt

the (L1
1, L

∗1
1 ) through the first s–box of Round 2 to obtain ∆S2

1 and check if
∆S2

1 is equal to a, where a is already determined by ∆L0 (see Fig. 4). If there
exists a pair that passes this test, i.e. a pair that meets the input difference
of the 8–round impossible differential, then discard the 76–bit subkey guess,
and try another; otherwise for every 76-bit subkey guess, exhaustively search
for the remaining 52 bits to recover the whole of kA. Considering the relation
between kL and kA, described in Section 3.2, this will lead to recovering the
master key kL.

3.4 Complexity of the Attack

In step 7, the probability that the difference ∆S2
1 is equal to a fixed value a, is

about 2−8. So we expect only about ε = 276(1 − 2−8)2
n−49

guesses for 76–bit
target subkey remain. If we accept the ε be equal to 1, then n will be 62.7. Thus
the attack requires 2n+56 = 2118.7 chosen plaintexts.

In step 2, to get the qualified pairs, we first store the ciphertexts of each
structure in a hash table indexed by the 4–th, 6–th and 7–th bytes of R12, the
XOR of the 1–st and 2–nd bytes of R12, the XOR of the 1–st and 3–rd bytes of
R12, the XOR of the 1–st and 5–th bytes of R12, the XOR of the 1–st and 8–th
bytes of R12, the 6–th and 7–th bytes of P−1(L12) . Thus, every 2 ciphertexts
with the same index in this table have the proper difference:

∆C = ∆L12|∆R12 = P (z1|z2|z3|h|z5|0|0|z8)|(g|g|g|0|g|0|0|g).

Computing the 6–th and 7–th bytes of P−1(L12), requires 8 XOR operations,
while each round of Camellia requires 24 XOR operations and 8 substitutions
[2]. Thus, the total time complexity of computing the 6–th and 7–th bytes of
P−1(L12) is less than about 8×2118.7× 1

24 × 1
12 ≈ 2113.5 encryptions. Considering

the complexity of obtaining the ciphertexts, step 2 requires about 2118.7+2113.5 ≈
2118.7 encryptions. At the end of this step, we expect about 2n+39 = 2101.7 proper
pairs to be accessible.

According to procedure described in section 3.3 the time complexity (in terms
of encryption units) of steps 3–7 for recovering 76 bits of kA is as follows:

Step 3(a) : 2 × 1
8
× 1

12
× 2n+39 × 28 =

1
12

× 2n+45

Step 3(b) : 2 × 1
8
× 1

12
×

3∑

i=0

(2n+31−8i × 28+8×(i+1)) =
1
12

× 2n+47
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Step 4(a) : 2 × 1
8
× 1

12
× 2n−1 × 240+4 =

1
12

× 2n+41

Step 4(b) : 2 × 1
8
× 1

12
×

1∑

i=0

(2n−9−8i × 244) ≈ 1
12

× 2n+33

Step 4(c) : 2 × 1
8
× 1

12
×

1∑

i=0

(2n−25−8i × 244+4×(i+1)) =
1
12

× (2n+21 + 2n+19)

Step 4(d) : 2 × 3
8
× 1

12
× 2n−41 × 252+4+4+8 = 2n+23

Step 5 : 2 × 1
8
× 1

12
× 2n−41 × 268+4 =

1
12

× 2n+29

Step 6 : 2 × 3
8
× 1

12
× 2n−49 × 272+0 = 2n+19

Step 7 : 2 × 1
8
× 1

12
× 272+4 ×

2n−49−1∑

i=0

(1 − 2−8)i ≈ 1
12

× 282 × (1 − e−2n−57
)

Thus the dominant part of time complexity to recover 76 bits of kA is related
to steps 2, 3(a) and 3(b) which is about 1

12 × (2n+45 + 2n+47) + 2118.7 ≈ 2118.7

encryptions. In order to recover the whole of master key (kL), for each of the
76-bit candidates (outputs of the procedure described in Section 3.3 which is
expected to be about ε) we have to exhaustively search the remaining 52 bits
of kA. Then using the second result of Section 3.2, we can obtain kL for each of
these 52–bit guesses. As we described in Section 3.2, this operation requires about
ε× 4× 252 × 1

12 encryptions. Also one additional encryption is required to check
the key with a plaintext/ciphertext pair. Finally, the overall time complexity
to recover the master key is about 2118.7 + ε × 252 × ( 4

12 + 1) . For ε = 1, the
complexity will be about 2118.7 encryptions.

If we let the ε be about 262, then n will be equal to 60.3. Thus, data com-
plexity of the proposed attack reduces to 2n+56 = 2116.3 and the dominant time
complexity is composed of the time complexity of steps 2, 3(a), 3(b) and the
exhaustive search in step 7, as below

2n+56 +
1
12

× (2n+45 + 2n+47) + ε × 252 × (
4
12

+ 1) ≈ 2116.6.

4 Conclusion

In this paper, we proposed a new impossible differential attack on 12–round
Camellia–128 without the FL/FL−1 functions. The attack uses a previously
known 8–round impossible differential to retrieve the whole of the master key.
The proposed attack exploits the redundancy in the key schedule of Camellia–
128 to reduce the complexity. In this attack also we use the strategy of moving
between the additional rounds in a zigzag path to accelerate the filtration of
wrong pairs for each key guesses. Using these techniques along with a hash table
to simplify the selection of proper pairs, the proposed attack requires about 2116.3
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plaintexts, and has a time complexity equivalent to about 2116.6 encryptions.
Our attack is the first successful impossible differential attack on 12 rounds of
Camellia–128.
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