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Main Contributions

I improve instruction cache analysis techniques,
I mount a lattice attack on OpenSSL’s DSA implementation using

this improved analysis,
I present results of instruction cache analysis in a real-world

attack settings,
I and outline possible countermeasures to prevent instruction

cache attacks and measure their performance impact.
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Micro-Architectural (MA) Attacks

I Standard processor components can be the source of sensitive
information leakage for otherwise secure software

I MA attacks typically observe timing or power variations caused
by processor components

I Processor components that have been targeted by MA attacks
include:

I Different types of caches
I Branch prediction units
I (Shared) functional units

I Difficult to prevent
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Cache Attacks

I Cache is a fast memory block close to the CPU that holds
frequently accessed data and instructions

I Cache Hit Data in the cache⇒low latency
I Cache Miss Data not in the cache⇒ high(er) latency
I Timing difference between these two events is observable

I Time-driven versus Access-driven Attacks

I Parallel application execution on modern CPUs
I Quasi-parallel execution enabled by OS support
I Explicitly-parallel execution enabled by extra hardware
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Previous Work

Hu 1992 - Caches as covert channels
Page 2002 - Theoretical attack via power trace analysis

Percival 2005 - Access-driven attack on RSA
Acıiçmez 2007 - Instruction cache analysis of RSA

Brumley et al. 2009 - Cache template attack on ECDSA

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 5



Digital Signature Algorithm
DSA

r = gk mod p mod q

s = k−1(h(m) + xr) mod q

Sliding Window Exponentation
Input: M, window size w and an l-bit exponent k = (kl−1, kl−2, . . . , k0)
Output: X = Mk

Pre-compute M i for all odd i < 2w ;
X ← 1, i ← l − 1;
while i ≥ 0 do

if ei = 0 then t ← 1, u ← 0;
else Find the largest t ≤ w such that u ← (ki , . . . , ki−t+1) is odd;

X ← X 2t
;

if u > 0 then X ← X ·Mu ;
i ← i − t ;

end
return X
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Instruction Cache Attacks: A Primer

I Probe selectively pollutes cache
regions

I Crypto process executes one iteration
I Probe re-executes the same code
I Execution time reveals cache access

pattern of crypto process
I Theoretical because of synchronisation

issue
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Example: Instruction Cache Timing Data
I Trace produced by probe:

1. Read through all cache lines in a cache set.
2. Measure the time (clock cycles) it took.
3. Repeat for all cache sets.
4. Repeat forever . . .
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I Use framework of Brumley and Hakala (2009) to analyse such
data quickly and automatically
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Framework Overview

Automates cache-timing data analysis to recover algorithm state by:
I Collect exemplar timing vectors (templates) reflecting algorithm

cache access behavior
I With these templates, create codebook vectors for the different

operations we wish to distinguish
I Use Vector Quantisation (VQ) to match incoming cache-timing

data to these codebook vectors
I Use output as observation input to Hidden Markov Model

(HMM) that accurately models the control flow of the algorithm
I Obtain most likely state sequence
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Analysis of Instruction Cache Timing Data

I Data produced by a probe running in parallel with an
OpenSSL/DSA sign operation
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I Top two rows are meta data of the framework analysis:
Bottom metadata VQ classification
Top metadata HMM state guess

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 10



Key Recovery with Lattice Attack

I Attacker collects tuples (ri , si , mi , k̂i)

I We obtain a system of equations of the form:

ki = s−1
i (h(mi) + rix) mod q

I j equations, j + 1 unknowns; but for the ki we know a portion
I Use known results on lattice attacks (Howgrave-Graham and

Smart 01, etc.) to recover private key x
I Use only tuples where LSBs of k̂i are 000000; Probability: 2−6

Results (17K signatures)
I 3200 iterations, 75 tuples (59 guesses correct), less than 1 hour

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 11



Countermeasures

At the kernel and/or compiler level:
I (Partial) cache disabling
I (Partial) instruction cache flushing evicts sensitive data
I Cache-conscious layout ensures that security-critical code

sections map to same regions in the cache

SMT-specific mitigations:
I Disabling SMT functionality
I Security-aware scheduling algorithm
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Performance Impact on the Crypto Process

Throughput analysis of OpenSSL/RSA on an Intel Core Duo

Throughput (Decryptions/s)
Implementation 1024-bit 2048-bit 4096-bit

Baseline OpenSSL/RSA 576.3 104 17.3
...with cache disabled 0.8 0.1 0.02
... with cache flushing 530 89.3 16.5
... with partial flushing 576.8 104.9 17.1

...with cache-conscious layout 570 102.8 17.2

I Cache-conscious memory layout and partial cache flushing
have minimal impact on performance
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Conclusion

I Improved instruction cache analysis by using Vector
Quantisation and Hidden Markov Models

I Demonstrated its practicality by running a key recovery attack
on current version of DSA in OpenSSL

I Cache-conscious memory layout and partial flushing are two
low-cost and generic countermeasures

I Considering security as first-class goal in system design could
simplify the development of such countermeasures
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Fin

Any Questions?
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