
New Results on Instruction Cache Attacks

Onur Acıiçmez Billy Bob Brumley Philipp Grabher

Samsung Electronics, USA

Aalto University School of Science and Technology, Finland

University of Bristol, UK

August 18, 2010

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 1



Main Contributions

I improve instruction cache analysis techniques,
I mount a lattice attack on OpenSSL’s DSA implementation using

this improved analysis,
I present results of instruction cache analysis in a real-world

attack settings,
I and outline possible countermeasures to prevent instruction

cache attacks and measure their performance impact.

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 2



Micro-Architectural (MA) Attacks

I Standard processor components can be the source of sensitive
information leakage for otherwise secure software

I MA attacks typically observe timing or power variations caused
by processor components

I Processor components that have been targeted by MA attacks
include:

I Different types of caches
I Branch prediction units
I (Shared) functional units

I Difficult to prevent

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 3



Cache Attacks

I Cache is a fast memory block close to the CPU that holds
frequently accessed data and instructions

I Cache Hit Data in the cache⇒low latency
I Cache Miss Data not in the cache⇒ high(er) latency
I Timing difference between these two events is observable

I Time-driven versus Access-driven Attacks

I Parallel application execution on modern CPUs
I Quasi-parallel execution enabled by OS support
I Explicitly-parallel execution enabled by extra hardware

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 4



Previous Work

Hu 1992 - Caches as covert channels
Page 2002 - Theoretical attack via power trace analysis

Percival 2005 - Access-driven attack on RSA
Acıiçmez 2007 - Instruction cache analysis of RSA

Brumley et al. 2009 - Cache template attack on ECDSA

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 5



Digital Signature Algorithm
DSA

r = gk mod p mod q

s = k−1(h(m) + xr) mod q

Sliding Window Exponentation
Input: M, window size w and an l-bit exponent k = (kl−1, kl−2, . . . , k0)
Output: X = Mk

Pre-compute M i for all odd i < 2w ;
X ← 1, i ← l − 1;
while i ≥ 0 do

if ei = 0 then t ← 1, u ← 0;
else Find the largest t ≤ w such that u ← (ki , . . . , ki−t+1) is odd;

X ← X 2t
;

if u > 0 then X ← X ·Mu ;
i ← i − t ;

end
return X

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 6



Instruction Cache Attacks: A Primer

I Probe selectively pollutes cache
regions

I Crypto process executes one iteration
I Probe re-executes the same code
I Execution time reveals cache access

pattern of crypto process
I Theoretical because of synchronisation

issue

� � � � � � �� � � 	 
 �
� � 


� � 
� � �� � �

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 7



Example: Instruction Cache Timing Data
I Trace produced by probe:

1. Read through all cache lines in a cache set.
2. Measure the time (clock cycles) it took.
3. Repeat for all cache sets.
4. Repeat forever . . .

Time

 0

 8

 16

 24

 32

C
ac

he
 S

et

 120

 130

 140

 150

 160

 170

I Use framework of Brumley and Hakala (2009) to analyse such
data quickly and automatically

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 8



Framework Overview

Automates cache-timing data analysis to recover algorithm state by:
I Collect exemplar timing vectors (templates) reflecting algorithm

cache access behavior
I With these templates, create codebook vectors for the different

operations we wish to distinguish
I Use Vector Quantisation (VQ) to match incoming cache-timing

data to these codebook vectors
I Use output as observation input to Hidden Markov Model

(HMM) that accurately models the control flow of the algorithm
I Obtain most likely state sequence

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 9



Analysis of Instruction Cache Timing Data

I Data produced by a probe running in parallel with an
OpenSSL/DSA sign operation

Time
 0

 8

 16

C
ac

he
 S

et

 30

 60

 90

 120

I Top two rows are meta data of the framework analysis:
Bottom metadata VQ classification
Top metadata HMM state guess

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 10



Key Recovery with Lattice Attack

I Attacker collects tuples (ri , si , mi , k̂i)

I We obtain a system of equations of the form:

ki = s−1
i (h(mi) + rix) mod q

I j equations, j + 1 unknowns; but for the ki we know a portion
I Use known results on lattice attacks (Howgrave-Graham and

Smart 01, etc.) to recover private key x
I Use only tuples where LSBs of k̂i are 000000; Probability: 2−6

Results (17K signatures)
I 3200 iterations, 75 tuples (59 guesses correct), less than 1 hour

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 11



Countermeasures

At the kernel and/or compiler level:
I (Partial) cache disabling
I (Partial) instruction cache flushing evicts sensitive data
I Cache-conscious layout ensures that security-critical code

sections map to same regions in the cache

SMT-specific mitigations:
I Disabling SMT functionality
I Security-aware scheduling algorithm

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 12



Performance Impact on the Crypto Process

Throughput analysis of OpenSSL/RSA on an Intel Core Duo

Throughput (Decryptions/s)
Implementation 1024-bit 2048-bit 4096-bit

Baseline OpenSSL/RSA 576.3 104 17.3
...with cache disabled 0.8 0.1 0.02
... with cache flushing 530 89.3 16.5
... with partial flushing 576.8 104.9 17.1

...with cache-conscious layout 570 102.8 17.2

I Cache-conscious memory layout and partial cache flushing
have minimal impact on performance

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 13



Conclusion

I Improved instruction cache analysis by using Vector
Quantisation and Hidden Markov Models

I Demonstrated its practicality by running a key recovery attack
on current version of DSA in OpenSSL

I Cache-conscious memory layout and partial flushing are two
low-cost and generic countermeasures

I Considering security as first-class goal in system design could
simplify the development of such countermeasures

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 14



Fin

Any Questions?

Onur Acıiçmez Billy Bob Brumley Philipp Grabher
New Results on Instruction Cache Attacks Slide 15


