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Abstract

We consider strong uniqueness and thus also existence of strong solutions for the
stochastic heat equation with a multiplicative colored noise term. Here, the noise is
white in time and colored in q dimensional space (q ≥ 1) with a singular correlation
kernel. The noise coefficient is Hölder continuous in the solution. We discuss im-
provements of the sufficient conditions obtained in Mytnik, Perkins and Sturm (2006)
that relate the Hölder coefficient with the singularity of the correlation kernel of the
noise. For this we use new ideas of Mytnik and Perkins (2011) who treat the case of
strong uniqueness for the stochastic heat equation with multiplicative white noise in
one dimension. Our main result on pathwise uniqueness confirms a conjecture that
was put forward in their paper.
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1 Introduction

This work is the third in a series of papers dealing with the pathwise uniqueness of
the stochastic heat equation with Hölder continuous noise coefficients: For t > 0 and
x 2 R

q we set X(0, x) = X0(x) and consider

@X

@t
=

1

2
∆X + �(t, x,X)Ẇ (t, x) + b(t, x,X) a.s. (1.1)

Here, X : R+ ⇥ R
q ! R is random, ∆ denotes the Laplacian, Ẇ a space-time noise on

R+ ⇥R
q, and � and b are real valued functions.

Stochastic partial differential equations (SPDE) of the form (1.1) arise naturally in
the description of the densities of measure valued processes on R

q, that are obtained,
for one, as diffusion limits of spatial branching particle systems. For example, in the
case of super-Brownian motion in dimension q = 1 the measure at any positive time
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t > 0 has a density Xt(x) = X(t, x) a.s., and this density satisfies the above equation
(1.1) with �(t, x,X) =

p
X, b ⌘ 0 and Ẇ space-time white noise ([5], [14]).

Here, we want to focus on equation (1.1) in any dimension q � 1 in the case when
the noise coefficient � is not necessarily Lipschitz but merely Hölder continuous in the
solution X and Ẇ is a noise that is white in time and colored in space. This means
that W is a Gaussian martingale measure on R+ ⇥R

q as introduced in [18] with spatial
correlation kernel k : R2q ! R specified as follows. For � 2 Cc(R

q), the continuous
compactly supported functions on R

q, the real valued process (Wt(�))t�0 is a Brownian
motion with quadratic variation given by

hW (�)it := t

Z

Rq

Z

Rq

�(x)�(y)k(x, y) dxdy. (1.2)

SPDEs with colored noise of this form arise as diffusion limits of branching particle
systems in a random environment, whose spatial correlation is described by the kernel
k, in the case that �(t, x,X) = X, see [17] and also [9]. More general noise coefficients
� should correspond to an additional dependence of the branching on the local particle
density, see [21] for a recent general formulation in the non spatial setting without a
random environment.

In this article we give conditions for pathwise uniqueness of solutions to equation
(1.1) with the correlation kernel k in the following form: There exist constants ↵ 2
(0, 2 ^ q) and c1.3 > 0 such that

k(w, z)  c1.3(|w � z|�α + 1) for all w, z 2 R
q. (1.3)

For noise correlation kernels of this form, existence and pathwise uniqueness of solu-
tions to (1.1) when � is Hölder continuous in the solution was previously considered in
[11], where an equivalent formulations of condition (1.3) can be found as well as fur-
ther conditions that any correlation kernel as in (1.2) must satisfy. The techniques used
in [11] for finding sufficient conditions on pathwise uniqueness were further refined in
[10] albeit for (1.1) in dimension q = 1 with space-time white noise. In this work, we
want to utilize the ideas of [10] in order to improve the results of [11].

In order to rigorously describe our new results as well as the preceding results of
[11] and [10], we introduce some notation. We will impose a growth condition and a
Hölder continuity condition on � as well as the standard Lipschitz condition on b. So
assume that there exists a constant c1.4 such that for all (t, x,X) 2 R+ ⇥R

q+1,

|�(t, x,X)|+ |b(t, x,X)|  c1.4(1 + |X|). (1.4)

Furthermore, for some � 2 (0, 1) there are A1, A2 > 0 and for all T > 0 there is an A0(T )

so that for all t 2 [0, T ] and all (x,X,X 0) 2 R
q+2,

|�(t, x,X)� �(t, x,X 0)|  A0(T )e
A1|x|(1 + |X|+ |X 0|)A2 |X �X 0|γ , (1.5)

and there is a B > 0 such that for all (t, x,X,X 0) 2 R+ ⇥R
q+2,

|b(t, x,X)� b(t, x,X 0)|  B|X �X 0|. (1.6)

We also denote by Cc, C0, Cb the spaces of continuous functions with compact sup-
port, vanishing at infinity or bounded, respectively. By C(E,F ) we denote the con-
tinuous functions from E to F for some topological spaces E and F. If the function
is k-times continuously differentiable for k 2 N [ {1} we write a superscript k. We
also write Bq(x, r) for the open ball with center x and radius r in R

q. Let pt(x) =

(2⇡t)�q/2 exp(� |x|2

2t ) be the q-dimensional heat kernel.

EJP 18 (2013), paper 77.
Page 2/46

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2506
http://ejp.ejpecp.org/


New results on pathwise uniqueness for the heat equation with colored noise

We say that (X,W ) is a (stochastically weak) solution if there exists a filtered prob-
ability space (Ω,F , (Ft)t�0,P) that supports a colored noise W defined as in (1.2) and
(1.3) such that X and W are adapted and the mild formulation of (1.1) holds, namely

X(t, x) =

Z

pt(x� y)X(0, y)dy +

Z t

0

Z

pt�s(x� y)�(s, x,X(s, y))W (ds dx)

+

Z t

0

Z

pt�s(x� y)b(s, x,X(s, y))dx ds

(1.7)

almost surely for all t � 0 and x 2 R
q, where we used the abbreviation

R

for
R

Rq . (In
the following the integration domain will always be assumed to be R

q if nothing else
is specified.) For more details about these so called mild solutions and the existence
of the stochastic integral with respect to W see [2], for more about the notion of weak
solutions see [3] Def. 5.2(a). Define the space of tempered functions by

Ctem := {f 2 C(Rq,R) : ||f ||λ < 1 8� > 0} , where ||f ||λ := sup
x2Rq

|f(x)|e�λ|x|.

For the existence of solutions we state

Theorem 1.1. Let X0 2 Ctem and let b,� be continuous functions satisfying (1.4).
Assume that (1.3) holds for some ↵ 2 (0, 2 ^ q). Then there exists a stochastically

weak solution to (1.1) with sample paths in C(R+, Ctem). Additionally, any solution

u 2 C(R+, Ctem) satisfies that for all T,�, p > 0,

E( sup
0tT

sup
x2Rq

|X(t, x)|pe�λ|x|) < 1. (1.8)

This theorem is essentially Theorem 1.2 and Theorem 1.8 of [11] combined, except
that we add a drift b and allow space and time dependence of b and �. The full proof
addressing these straightforward generalizations can be found in Chapter 8 of [15].

We say that pathwise uniqueness for (1.1) holds if for any two solutions X1 and
X2 2 Ctem on the same filtered probability space (Ω,F , (Ft)t�0,P) supporting a noise
W and with X1

0 = X2
0 almost surely we have that X1(t, x) = X2(t, x) for all t � 0, x 2 R

q

almost surely. We are now in the position to state our main result regarding pathwise
uniqueness of solutions to (1.1):

Theorem 1.2. Let X0 2 Ctem and assume that b,� : R+⇥R
q⇥R ! R satisfy (1.4), (1.5)

and (1.6). Assume that (1.3) holds for some ↵ 2 (0, 2 ^ q). Then pathwise uniqueness

for solutions of (1.1) holds if
↵ < 2(2� � 1).

Our main result improves the sufficient conditions for pathwise uniqueness given
in [11] in the same setting: There, it was shown that pathwise uniqueness holds if
↵ < (2�� 1). Since it was known already then from [2, 13] that for Lipschitz continuous
noise coefficients � (corresponding to � = 1) pathwise uniqueness holds if ↵ < 2 ^ q

there was an obvious gap for � close to 1 in dimensions q � 2. We close this gap with
the present work. In addition, heuristic arguments can be made -in the Lipschitz as
well as in our Hölder continuous case, see Section 2- that the sufficient conditions
for pathwise uniqueness cannot be further improved, so that we believe that they are
indeed necessary and the result of Theorem 1.2 sharp.

We would like to point out that the statement of Theorem 1.2 was already conjec-
tured in [10]. In that article, pathwise uniqueness to (1.1) with white noise (formally
k = �, the delta measure) is considered in dimension q = 1 for b,� : R+ ⇥ R

2 ! R that
satisfy (1.4), (1.5) and (1.6). By using and significantly improving the techniques of [11]
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it is shown in this setting that pathwise uniqueness holds for � > 3
4 . Recently, it has

been proven in [8] that this result is sharp at least when solutions can be positive and
negative, implying in particular that the white noise equation with � = 1

2 is not pathwise
unique.

The latter question had sparked a lot of interest over the last several decades since
the corresponding equation -albeit with nonnegative solutions- describes the density of
super-Brownian motion on one hand. On the other hand, it is well known that the cor-
responding ordinary stochastic differential equation with respect to Brownian motion
is pathwise unique if and only if � � 1

2 . Finally, we note that it has recently been shown
in [19] that a certain SPDE related to super-Brownian motion (different from (1.1) as it
regards a distribution function valued process) is also pathwise unique.

In this paper, we use the refined techniques put forward in [10] in order to arrive
at our main result, Theorem 1.2. A heuristic and proof outline for the rather technical
and lengthy parts of the arguments will be given in Section 2. The idea is to use a
Yamada-Watanabe type of proof. Here, points (t, x) 2 R+ ⇥R

q where X1(t, x) ⇡ X2(t, x)

equivalently X1(t, x) � X2(t, x) ⇡ 0 are crucial. Because of the dependence on x 2 R
q

we require smoothness of X1(t, x) � X2(t, x) at such points (t, x). However, X1 � X2

is smoother at these points than one can expect in general. This is due to the noise
coefficient of X1 �X2 which is �(X1(t, x)) � �(X2(t, x)) ⇡ 0 by Hölder regularity of �.
More precisely, by an iterative procedure we prove that an approximate derivative of
the function x 7! X1(t, x)�X2(t, x) is almost Lipschitz continuous at points (t, x) where
X1(t, x) ⇡ X2(t, x), see equation (2.21).

Since in the following sections many arguments are analogous to those provided in
[10] we do not present those parts in complete detail but refer the interested reader to
[15], where all calculations are carried out explicitly.

Here, we would like to emphasize that the main differences and additional difficul-
ties to [10] lie in the fact that we are considering a multi-dimensional setting and that
we need to take care of correlations stemming from the kernel k. Thus, numerous ad-
justments and some refinements to the results in [10] are necessary (see for example
Lemma 6.8 and the accompanying remark).

At the end of this section, we want to stress the significance of pathwise uniqueness
by pointing out that existence of stochastically weak solutions combined with pathwise
uniqueness generally implies the existence of strong solutions. This is a classic result
for ordinary stochastic differential equations (see Proposition 1 and Corollary 1 of [20]).
For the more general setting of stochastic partial differential equations used here we
appeal to recent results of [6] in order to obtain:

Theorem 1.3. Assume that the assumptions of Theorem 1.2 and therefore also of The-

orem 1.1 hold. Let (Ω,F , (Ft)t�0,P) be a filtered probability space with adapted colored

noise W and let X0 2 Ctem be F0-measurable. Then there exists a strong adapted solu-

tion X to (1.1) with respect to the prescribed X0 and W.

Proof. We want to use the terminology of [6]. One can show, see Lemma 3.3.14 of [15],
that the colored noise Ẇt can be realized on the Sobolev-space H�q�1(Rq), which is
well-known to be Polish, see e.g. Theorem 3.12 in [1]. Now set S1 = C(R+, H

�q�1(Rq))

and S2 = C(R+, Ctem), which is the sample path space of the solutions, and formulate
the SPDE (1.1) as in Example 3.9 of [6]. By Theorem 1.1 we know that there exist com-
patible solutions (see Lemma 3.2 of [6] for a compatibility criterion which is applicable
for weak solutions) and by Theorem 1.2 we have pointwise uniqueness for compatible
solutions. So we can apply Theorem 3.14 a) ) b) of [6]. More details can be found in
the proof of Lemma 5.1.1 of [15].
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We want to conclude this section with a number of remarks regarding the Hölder
continuity condition on � stated in (1.5):

(a) When (1.4) holds, it suffices to assume (1.5) for |X �X 0|  1. Indeed, (1.5) (with
any � > 0) is immediate from (1.4) for |X � X 0| � 1 with A0(T ) = 2c4, A1 = 0,
A2 = 1.

(b) Condition (1.5) implies the following local Hölder condition: For all K > 1 there is
an LK so that for all t 2 [0,K] and x 2 Bq(0,K), X,X 0 2 [�K,K],

|�(t, x,X)� �(t, x,X 0)|  LK |X �X 0|γ . (1.9)

2 Proof of Theorem 1.2

The proof of Theorem 1.2 is inspired by the idea of Yamada and Watanabe [20] that
was already used in [11] and [10]. We closely follow Section 2 in [10] as most of the
ideas can be transferred from white to colored noise and also to the multi-dimensional
setting.

Now consider Theorem 1.2 and assume its hypotheses throughout. Let X1 and X2

be two solutions of (1.1) on (Ω,F , (Ft)t�0,P) with sample paths in C(R+, Ctem) a.s., with
the same initial condition, X1

0 = X2
0 = X0 2 Ctem, and of course the same noise W. We

start by observing that Xi for i = 1, 2 satisfy the weak form of (1.1): For Φ 2 C1
c (R) we

have that

Z

Xi(t, x)Φ(x) dx =

Z

Xi
0(x)Φ(x) dx+

Z t

0

Z

Xi(s, x)
1

2
∆Φ(x) dxds

+

Z t

0

Z

�(s, x,Xi(s, x))Φ(x)W (ds dx) (2.1)

+

Z t

0

Z

b(s, x,Xi(s, x))Φ(x) dxds 8t � 0 a.s.

In fact, for adapted processes with sample paths in C(R+, Ctem), the mild formulation
(1.7) is equivalent to the weak formulation (2.1) of solutions to (1.1), see page 1917 of
[11]. For any K > 1, let

TK = inf

⇢

s � 0 : sup
y2Rq

�

|X1(s, y)| _ |X2(s, y)|
�

e�|y| > K

�

^K. (2.2)

Note that TK is a stopping time due to the continuity of the two solutions. Since Xi 2
C(R+, Ctem) we have TK ! 1 for K ! 1. Up to time TK condition (1.5) implies that

|�(t, x,X)� �(t, x,X 0)|  R0e
R1|x||X �X 0|γ (2.3)

for some R0, R1 > 0. Thus, a stopping time argument allows us to prove Theorem 1.2
for � where (1.5) is replaced by (2.3) (see the text after (2.30) in [10] for more on the
sufficiency of this argument).

In order to apply an argument similar to that of Yamada and Watanabe we set for
any n 2 N as in [10]

an = exp{�n(n+ 1)/2},

fix a non-negative function  n 2 C1(R,R+) with supp n ⇢ (an, an�1), n(x)  2
nx and

Z an�1

an

 n(x) dx = 1.
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As this function approximates a �-function at zero for n ! 1, we define

�n(x) :=

Z |x|

0

dy

Z y

0

dz  n(z), x 2 R, (2.4)

which then approximates |x|. More precisely, we have

�n(x) ! |x| uniformly in x 2 R, (2.5)

|�0n(x)|  1 for all x 2 R and (2.6)

|�00n(x)| 
2

nx
for all x 6= 0. (2.7)

Next we fix a point x 2 R
q and t0 > 0 and a non-negative function Φ 2 C1

c (Rq,R+) such
that suppΦ ⇢ Bq(0, 1) and

R

Φ(y)dy = 1. Let Φm
x (y) = mq

Φ(m(y � x)) for m > 0.

Define the difference of the solutions

u := X1 �X2

and note that we can write down an equation of the form (2.1) for u. Let h·, ·i denote
the scalar product on L2(Rq) and assume t 2 [0, t0]. We apply the Itô Formula for the
semimartingale hut(·),Φ

m
x (·)i, which is the difference of the two semimartingales given

in (2.1), with �n as in (2.4) in order to obtain

�n(hut,Φ
m
x i)

=

Z t

0

Z

�0n (hus,Φ
m
x i)

�

�(s, y,X1(s, y))� �(s, y,X2(s, y))
�

Φ
m
x (y)W (ds dy)

+

Z t

0

�0n (hus,Φ
m
x i) hus,

1

2
∆Φ

m
x i ds

+
1

2

Z t

0

ds

Z

dw

Z

dz  n (|hus,Φ
m
x i|)Φm

x (w)Φm
x (z)k(w, z)

⇥
�

�(s, w,X1(s, w))� �(s, w,X2(s, w))
� �

�(s, z,X1(s, z))� �(s, z,X2(s, z))
�

+

Z t

0

Z

�0n (hus,Φ
m
x i)

�

b(s, y,X1(s, y))� b(s, y,X2(s, y))
�

Φ
m
x (y) dyds.

Integrate this function of x against another non-negative test function Ψ 2 C1
c ([0, t0]⇥

R
q). Choose K1 2 N so large that for � = 1,

kX0kλ < K1 and Γ ⌘ {x : 9s  t0 with Ψs(x) > 0} ⇢ Bq(0,K1). (2.8)

We then apply the classical and stochastic versions of Fubini’s Theorem, see Theo-
rem 2.6 of [18]. The expectation condition in Walsh’s Theorem 2.6 may be realized by
localization, using the stopping times TK defined in (2.2) for K ! 1. Arguing as in the
proof of Proposition II.5.7 of [12] to handle the time dependence in Ψ we then obtain
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that for any t 2 [0, t0],
⌦

�n(hut,Φ
m
· i),Ψt(·)

↵

(2.9)

=

Z t

0

Z

⌦

�0n(hus,Φ
m
· i)Φm

· (y),Ψs

↵�

�(s, y,X1(s, y))� �(s, y,X2(s, y))
�

W (ds dy)

+

Z t

0

⌦

�0n(hus,Φ
m
· i)hus,

1

2
∆Φ

m
· i,Ψs

↵

ds

+
1

2

Z t

0

ds

Z

R3q

dxdwdzΨs(x) n(|hus,Φ
m
x i|)Φm

x (w)Φm
x (z)k(w, z)

⇥
�

�(s, w,X1(s, w))� �(s, w,X2(s, w))
��

�(s, z,X1(s, z))� �(s, z,X2(s, z))
�

+

Z t

0

⌦

�n(hus,Φ
m
· i), Ψ̇s

↵

ds

+

Z t

0

Z

⌦

�0n(hus,Φ
m
· i)Φm

· (y),Ψs

↵�

b(s, y,X1(s, y))� b(s, y,X2(s, y))
�

dyds

⌘ Im,n
1 (t) + Im,n

2 (t) + Im,n
3 (t) + Im,n

4 (t) + Im,n
5 (t).

Now set mn = a
�1/2
n�1 = exp{(n� 1)n/4} for n 2 N. This choice of mn differs from that in

[11] and is essential for the improvements that are made here to the results in [11], in
particular to their Lemma 4.3.

We quote essentially Lemma 2.2 from [11] (where mn is used for m) and add a last
point treating Imn,n

5 (t):

Lemma 2.1. For any stopping time T and constant t � 0 we have:

(a)
E
�

Imn,n
1 (t ^ T )

�

= 0 for all n. (2.10)

(b)

lim sup
n!1

E
�

Imn,n
2 (t ^ T )

�

 E

⇣

Z t^T

0

Z

|u(s, x)|
1

2
∆Ψs(x) dxds

⌘

. (2.11)

(c)

lim
n!1

E
�

Imn,n
4 (t ^ T )

�

= E

⇣

Z t^T

0

|u(s, x)|Ψ̇s(x) ds
⌘

. (2.12)

(d)

lim
n!1

E
�

Imn,n
5 (t ^ T )

�

 BE

⇣

Z t^T

0

|u(s, x)|Ψs(x) ds
⌘

with B as in (1.6). (2.13)

Proof. The points (a), (b) and (c) are proven in Lemma 2.2 of [11]. We only need to show
the last point (d), for which we follow (2.48) of [10]. Since |�0n(x)|  1 for all x 2 R

q by
(2.6), (1.6) implies that for a stopping time T ,

Imn,n
5 (t ^ T )  B

Z t^T

0

Z

R2q

|u(s, y)|Φmn
x (y)Ψs(x) dydxds =: BĨn5 (t ^ T ). (2.14)

The integral over y converges pointwise in x and s due to continuity. Using (1.8) we can
obtain an integrable bound for this integrand and Lebesgue’s Dominated Convergence
Theorem thus implies for n ! 1,

Ĩn5 (t ^ T ) !
Z t^T

0

Z

|u(s, x)|Ψs(x) dxds a.s. (2.15)

and hence in L1 since, again by (1.8), (Ĩn5 (t))n2N is L2-bounded.
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We have just treated the limiting behavior of all processes on the right hand side
of (2.9) with the exception of I

mn+1,n+1
3 . Showing that there are appropriate stopping

times such that the stopped process I
mn+1,n+1
3 converges to zero in expectation will

mostly concern us for the rest of this work. The rest of the proof of Theorem 1.2 is then
relatively straightforward and follows in the same way as in [11] and [10]: By taking
expectations and the limit as n ! 1 in (2.9) one obtains that (t, x) 7! E[u(t, x)] is a
non-negative subsolution of the heat equation with Lipschitz drift started in 0. Hence,
two solutions coincide pointwise and so by continuity of paths we have X1 = X2.

In order to make a precise statement let us consider the remaining term I
mn+1,n+1
3 .

In its integral definition we may assume |x|  K1 by (2.8) and so |w| _ |z|  K1 + 1. If
K � K1, s  TK and |w|  K1 + 1 we have by (2.2)

|Xi(s, w)|  Ke|w|  Ke(K1+1) =: K 0 for i = 1, 2.

Therefore (1.3), (1.9) and the fact that  n(x)  2
nx1{an < x < an�1} show that since

K 0 � K1 + 1 for all t 2 [0, t0],

I
mn+1,n+1
3 (t ^ TK)  c1.3

2

Z t^TK

0

Z

R3q

2

n+ 1
|hus,Φ

mn+1
x i|�1

1{an+1 < |hus,Φ
mn+1
x i| < an}

⇥ L2
K0 |u(s, w)|γ |u(s, z)|γΦmn+1

x (w)Φmn+1
x (z)(|w � z|�α + 1)Ψs(x) dwdzdxds

 c1.3L
2
K0a�1

n+1

Z t^TK

0

Z

R3q

1{an+1 < |hus,Φ
mn+1
x i| < an}|u(s, w)|

γ |u(s, z)|γ (2.16)

⇥ Φ
mn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1)Ψs(x) dwdzdxds.

We note that a�1
n+1 = a

�1�2/n
n . Thus, as the quantity of interest we define

In(t) = a�1�2/n
n

Z t

0

Z

R3q

1{|hus,Φ
mn+1
x i| < an}|u(s, w)|

γ |u(s, z)|γ (2.17)

Φ
mn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1)Ψs(x) dwdzdxds.

Proposition 2.2. Suppose {UM,n,K : M,n,K 2 N,K � K1} are Ft-stopping times such

that for each K 2 N
�K1 ,

UM,n,K  TK for all M,n 2 N,

(H1) UM,n,K % TK as M ! 1 for all n 2 N,

lim
M!1

sup
n2N

P(UM,n,K < TK) = 0,

and

(H2) lim
n!1

E(In(t0 ^ UM,n,K)) = 0 for all M 2 N

are satisfied. Then the conclusion of Theorem 1.2 holds.

As mentioned previously, the proof of this proposition involving subsolutions is the
same as the proof of Proposition 2.1 in [10], respectively Lemma 2.2 in [11], here using
Lemma 2.1. We omit the detail.

Observe that all that is left for the proof of our main result, Theorem 1.2, is the
construction of the stopping times UM,n,K and the verification of (H1) and (H2). As these
steps are extremely long we want to give a heuristic explanation for the sufficiency of
↵ < 2(2� � 1) leading to (H2) even if we will not yet discuss the construction of the
stopping times, which is done in Section 6.
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Notation. For t, t0 � 0 and x, x0 2 R
q let d((t, x), (t0, x0)) =

p

|t0 � t|+ |x0 � x|, where | · |

always denotes the Euclidean norm on the corresponding space.

Note that the indicator function in the definition of In in (2.17) implies that there
is an x̂0 2 Bq(x,

p
an) such that |u(s, x̂0)|  an. If we could take x̂0 = w = z we could

bound In(t) by C(t)a
�1�2/n�α/2+2γ
n using that for C = C(q)

Z

R2q

dwdzΦmn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1)  Cmα
n+1, (2.18)

see page 1929 of [11]. Thus, (H1) and (H2) would follow immediately with UM,n,K = TK .
(The criticality of ↵ < 2(2� � 1) in this argument is deceptive as it follows from our
choice of mn.) Thus, in order to satisfy the hypotheses of Proposition 2.2 we now turn
to obtaining good bounds on |u(s, w) � u(s, x̂0)| with |x̂0 � w|  2

p
an. The standard

1 � ↵/2 � "-Hölder modulus of u (see Theorem 2.1 in [16]) will not give a sufficient
result. In [11], provided that ↵ < 2� � 1, the Hölder modulus near points where u is

small was refined to 1� " for any " > 0. More precisely, let

Z(N,K)(!) =
�

(t, x) 2 [0, TK ]⇥Bq(0,K) : there is a (t̂0, x̂0) 2 [0, TK ]⇥R
q such that

|u(t̂0, x̂0)|  2�N and d((t̂0, x̂0), (t, x))  2�N
 

.

Theorem 4.1 of [11] then states (see Theorem 2.2 in [10] for the formulation used here):

Theorem 2.3. For each K 2 N and 0 < ⇠ <
1�α

2

1�γ
^ 1 there is an N0 = N0(⇠,K,!) 2 N

a.s. such that for all natural numbers N � N0 and all (t, x) 2 Z(N,K),

d((t0, x0), (t, x))  2�N and t0  TK implies |u(t0, x0)� u(t, x)|  2�Nξ.

Theorem 4.1 of [11] is stated and proved for equation (1.1) without a drift. For the
necessary changes to include the drift we refer to Section 9.9 in [15].

We now argue how this locally improved Hölder regularity can be used. As already
mentioned after (2.18) the choice of mn is crucial. It is related to the locally improved
Hölder regularity and so for the moment set mn = a�λ0

n�1 for some �0 > 0. We will take
the liberty to use the approximation mn ⇡ a�λ0

n in the following heuristic argument.
Then for (H2) it suffices to show that

In(t) ⇡ a�1
n

Z t

0

Z

R3q

1{|hus,Φ
mn+1
x i| < an}|u(s, w)|

γ |u(s, z)|γ (2.19)

Φ
mn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1)Ψs(x) dwdzdxds ! 0 as n ! 1.

For x fixed, the point x̂0 mentioned before (2.18) will now lie in Bq(x,m�1
n ) and on the

other hand only those w and z with |w � x| _ |z � x|  m�1
n will appear in the integral

(2.19). So w, z 2 Bq(x̂0, 2a
λ0
n ). Theorem 2.3 implies that for ↵ < 2� � 1

u(t, ·) is ⇠-Hölder continuous near its zero set for ⇠ < 1, (2.20)

which allows us to bound |u(s, w) � u(s, x̂0)| by (2aλ0
n )ξ, and therefore |u(s, w)| by an +

2aλ0ξ
n which in turn is bounded by 3aλ0ξ

n if �0  1. We can use this and (2.18) in (2.19) to
bound In(t) for 0 < �0  1 by a constant times the following

a�1�αλ0
n

Z t

0

Z

aλ0ξ2γ
n Ψs(x) dxds  ta�1+λ0(ξ2γ�α)

n ! 0 as n ! 1
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if 2� � 1 > ↵ and if we choose �0, ⇠ sufficiently close to one. This was just the result
of Theorem 1.2 in [11]. However, in Theorem 2.3 the restriction by 1 in the condition
⇠ <

1�α
2

1�γ
^ 1 seems unnatural and not optimal.

To obtain an improved result we need to extend the range of ⇠ beyond 1. We will
obtain a statement close to the following one:

ru(s, ·) is ⇠-Hölder on {x : u(s, x) ⇡ r(s, x) ⇡ 0} for ⇠ < 1, (2.21)

where ru denotes the spatial derivative (in a loose sense as u is not differentiable).
Actually, we cannot really write down (2.21) formally, but some statements come close
to it, e.g. Corollary 5.10 for m = m̄+ 1.

At this point we would like to note that a similar argument as on page 17 in [10]
shows that, using the techniques for ↵ > 2(2��1), we will not be able to improve (2.21)
to

u(s, ·) is C2 on {x : u(s, x) ⇡ ru(s, x) ⇡ 0}. (2.22)

So we can extend the range of ⇠ up to 2� ", but not beyond with this technique.
Assuming ↵ < 2(2� � 1) and (2.21), we outline the idea of how we will be able to

derive (2.19). We choose 0 = �0 < �1 < · · · < �L = �̄ < 1, a finite grid, and define

În,i(t) := a
�1� 2

n
n

Z t

0

Z

R3q

1Ĵn,i(s)
(x)|u(s, w)|γ |u(s, z)|γ (2.23)

Φ
mn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1) dwdzΨs(x) dxds,

for all i = 0, . . . , L, where

Ĵn,i(s) =
�

x 2 R
q : |hus,Φ

mn+1
x i| < an, |ru(s, x)| 2 (aβi+1

n , aβi
n ]
 

for 0 < i < L and for i = 0,

Ĵn,0(s) =
�

x 2 R
q : |hus,Φ

mn+1
x i| < an, |ru(s, x)| > aβ1

n

 

and for i = L,

Ĵn,L(s) =
�

x 2 R
q : |hus,Φ

mn+1
x i| < an, |ru(s, x)| 2 [0, aβL

n ]
 

.

Since

In(t) =
L
X

i=0

În,i(t), (2.24)

our goal of proving In(t) ! 0 will be attained, if we can show that

În,i(t) ! 0 for all i = 0, . . . , L. (2.25)

For a grid of �i fine enough we will be able to replace the condition that the abso-
lute value of the gradient is contained in (a

βi+1
n , aβi

n ] in the definition of Ĵn,i(s) by the
condition that it is approximately equal to aβi

n for i = 1, . . . , L. Note that due to the
boundedness of the support of Φn

x , for x 2 Ĵn,i(s) there must be x̂n(s) 2 Bq(x, aλ0
n ) such

that |u(s, x̂n(s))| < an. By (2.22) we have for w 2 Bq(x, aλ0
n ) and [x̂n(s), w] the Euclidean

geodesic between the two points:

|u(s, w)|  an + sup
w̃2[x̂n(s),w]

|ru(s, w̃)| · |x̂n(s)� w|

 an + sup
w̃2[x̂n(s),w]

�

|ru(s, x)|+ |w̃ � x|ξ
�

|x̂n(s)� w|

 an +
�

aβi
n + 2aλ0ξ

n

�

aλ0
n

 7
⇣

an _ a
βi+

1
2

n

⌘

, (2.26)
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if we choose �0 = 1
2 , which is the smallest possible value for balancing the terms.

Similarly, �i  1
2 is optimal in (2.26). If we put this estimate into (2.23), then we can

bound În,i(t) by

a
�1� 2

n
n

�

a2γn _ a2γβi+γ
n

�

Z t

0

Z

1Ĵn,i(s)
(x)Φmn+1

x (w)Φmn+1
x (z)(|w � z|�α + 1)Ψs(x) dwdzdxds

and (2.18) leads to the bound

a
�1� 2

n�α
2

n

�

a2γn _ a2γβi+γ
n

�

Z t

0

Z

Bq(0,K1)

1Ĵn,i(s)
(x) dxds, (2.27)

for some K1 > 0, since Ψ is compactly supported. If �i is rather small, we find ourselves
in the situation that the Hölder estimate (2.26) is not that strong. With a choice of
�0 = 1 we would have gotten back to the case ↵ < 2� � 1, since small �i corresponds to
neglecting the estimate on derivatives. However, particularly in that case we can give
a good estimate on |Ĵn,i(s)|, the q-dimensional Lebesgue measure of Ĵn,i(s).

But, let us first consider �L = �̄. Then, by the estimate in (2.27) we have

În,L(t)  Ct
⇣

a
2γ�1� 2

n�α/2
n _ a

(2βL+1)γ�1� 2
n�α/2

n

⌘

! 0

as n ! 1 as long as we require �L = �̄ � 1/2. From this and the considerations
just after (2.26), we know that it should suffice to choose �̄ = 1/2, or more precisely,
choosing �̄ smaller will not lead to an optimal result, whereas �̄ > 1

2 will not improve
the result.

We still need to check the convergence for i = 0, . . . , L � 1 and write in order to
simplify notation � = �i and Jn = Ĵn,i(s). From (2.22) we see that if x 2 Jn, then there

is a direction �x 2 Sq�1 := {x 2 R
q : |x| = 1} with �x ·ru(s, y) � 1

2a
β
n if |y � x|  La

β/ξ
n

for an appropriate constant L and (y � x) k �x, meaning that (y � x) is parallel to �x.
Assuming for the heuristic that u(s, x) > �an (which we only know precisely for a point

x̂n(s) 2 Bq(x, a
1/2
n ) due to |hus,Φ

a1/2
n

x i| < an) we obtain because of the positive gradient
for y 2 x+R+�x by the Fundamental Theorem of Calculus:

u(s, y) > an if 4a1�β
n < |y � x|  Laβ/ξn .

Similarly, one can also show (but we will not go into details here) that, by adapting L

appropriately, if x, z 2 Jn and |x� z|  La
β/ξ
n , we also have for z0 2 z+�x · [4a

1�β
n , La

β/ξ
n ]

that u(s, z0) > an and thus z0 /2 Jn. So for x 2 Jn, denoting by {x + �ortho
x } the plane

through x orthogonal to �x, we have

|Bq(x, Laβ/ξn ) \ Jn| 
Z

{x+σortho
x }\Bq(x,La

β/ξ
n )

dz

Z Laβ/ξ
n

�La
β/ξ
n

dz01{z + �xz
0 2 Jn}

 C(aβ/ξn )q�1a1�β
n .

(2.28)

Covering the box [�K1,K1]
q with finitely many balls of radius L

2 a
β/ξ
n and using (2.28)

we obtain |Jn|  C(L,K1)a
1�β
n a

�β/ξ
n . We can use this in (2.27) to get

În,i(t)  Cta
�1� 2

n�α
2 +2γ(1^(βi+

1
2 ))+1�βi�βi/ξ

n  Cta
�1� 2

n�α
2 +2γ(1^(βi+

1
2 ))+1�βi(1+1/ξ)

n

(2.29)
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for all �i  �̄. The right hand side of (2.29) tends to zero for all �i  �̄ if �α
2 + 2�(1 ^

(�i +
1
2 ))� 2�i > 0 for all �i  �̄, i.e.

� >
1

2
(1 ^ (�̄ +

1

2
))�1(

↵

2
+ 2�̄)

since the right hand side is increasing as a function in �̄. Therefore, it attains its mini-
mum value on the interval [ 12 ,1) for �̄ = 1/2 at 1

2 (1 +
α
2 ). Then the estimate shows that

În,i(t) tends to zero for all 0  �i  �̄ if

↵ < 2(2� � 1).

This is what we wanted to show and ends the heuristic outline of the proof (some more
details in the case of white noise can be found in Section 2 of [10]).

Remark 2.4. In the previous heuristics it suffices to consider one direction of the gra-

dient. This will be sufficient to obtain uniqueness for ↵ < 2(2��1) rigorously. However,

it is tempting to include further information on the gradient, e.g. ru ⇡ (aβ
1

n , aβ
2

n , . . . ).

We believe that no further improvement can be achieved, since (2.26) only requires the
size of the principal component of the gradient.

3 Verification of the hypotheses of Proposition 2.2

In this section we make the heuristics of the previous section rigorous in the sense
that we derive hypothesis (H2). This proof relies on the definition of sets similar to the
ones defined before (2.24) and on Proposition 3.2, whose proof is given in Section 6 and
contains the verification of hypothesis (H1).

We follow the arguments of Section 3 in [10] and will also restrict our attention to the
case b ⌘ 0 for notational convenience. All of the results can be extended to nontrivial b
satisfying the Lipschitz condition (1.6), for more details we refer to Section 8 of [10] or
Section 9.10 of [15]. Otherwise, we assume the setting of the beginning of Section 2.
That means that X1 and X2 are two solutions of the SPDE (1.1) with the same noise W

and u := X1 �X2 is the difference of the two, i.e.

u(t, x) =

Z t

0

Z

pt�s(y � x)D(s, y)W (ds dy) a.s. for all t � 0, x 2 R
q, (3.1)

where D(s, y) = �(s, y,X1(s, y))� �(s, y,X2(s, y)) which by (2.3) obeys

|D(s, y)|  R0e
R1|y||u(s, y)|γ . (3.2)

Let (Pt)t�0 be the heat-semigroup acting on Ctem. For � � 0 set

u1,δ(t, x) := Pδ(u((t� �)+, ·))(x), u2,δ := u� u1,δ. (3.3)

With the help of the Stochastic-Fubini-Formula (Theorem 2.6 in [18], where (1.8) and lo-
calization with TK as in (2.2) are used for the condition on the expectation) reformulate
that for �  t to

u1,δ(t, x) =

Z (t�δ)+

0

Z

pt�s(y � x)D(s, y)W (ds dy).

We define the following functions

Gδ(s, t, x) = P(t�s)++δ(u(s�δ)+)(x), (3.4)

F
(l)
δ (s, t, x) = �@xl

Gδ(s, t, x), 1  l  q, (3.5)
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for which we easily obtain u1,δ(t, x) = Gδ(t, t, x). We denote by

p
(l)
t (x) = @xl

pt(x), 1  l  q

the spatial derivative of the heat kernel. Then the following result holds, which is
analogous to Lemma 3.1 in [10] and the lines preceding it and has essentially the same
proof:

Lemma 3.1. The random fields Gδ and F
(l)
δ are both jointly continuous in (s, t, x) 2

R
2
+ ⇥R

q and

Gδ(s, t, x) =

Z (s�δ)+

0

Z

p(t_s)�r(y � x)D(r, y)W (dr dy),

F
(l)
δ (s, t, x) =

Z (s�δ)+

0

Z

p
(l)
(t_s)�r(y � x)D(r, y)W (dr dy), where 1  l  q.

Additionally, u1,δ and u2,δ are both C(R+, Ctem)-valued.

Note that for the special choice of s = t in the previous lemma we have that

@xl
u1,δ(t, x) = �

Z (t�δ)+

0

Z

p
(l)
t�r(y � x)D(r, y)W (dr dy) = �F

(l)
δ (t, t, x).

For (t, x) 2 R+ ⇥R
q and n 2 N let

Bn(t, x) := {y 2 R
q : |y � x|  p

an, |u(t, y)| = inf{|u(t, z)| : |z � x|  p
an}}

be the set of points with the smallest u-values in a certain neighborhood close to x and
let

x̂n(t, x)

be a measurable choice of a point in Bn(t, x) (e.g. with the smallest first coordinate, if
this does not suffice to uniquely select a point, take the smallest second coordinate and
so on). Let us fix two positive but very small constants "0, "1 throughout the paper

"1 2
✓

0,
1

32
(2(2� � 1)� ↵)

◆

, "0 2
✓

0,
1

4
(1� �)"1

◆

. (3.6)

Let L = L("0, "1) = b"�1
0 (1/2� 6"1)c 2 N and set for i = 0, . . . , L

�i = i"0 2 [0,
1

2
� 6"1], �i = 2(�i + "1) 2 [0, 1] (3.7)

and �L+1 = 1
2 � "1. So altogether for i = 0, . . . , L+ 1 we have

�i 2


0,
1

2
� "1

�

. (3.8)

We define the following subsets of Rq:

Jn,0(s) :=
n

x 2 R
q : |x|  K0, |hus,Φ

mn+1
x i|  an, |ru1,an

(s, x̂n(s, x))| � aε0
n

4 ]
o

,

Jn,L(s) :=
n

x 2 R
q : |x|  K0, |hus,Φ

mn+1
x i|  an, |ru1,an(s, x̂n(s, x))|  a

βL
n

4 ]
o

,
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and for i = 1, . . . , L� 1 we set

Jn,i(s) :=

⇢

x 2 R
q : |x|  K0, |hus,Φ

mn+1
x i|  an, |ru1,an(s, x̂n(s, x))| 2



a
βi+1
n

4 , a
βi
n

4

��

.

Recall (2.17) and observe that for t � 0, n 2 N,

In(t)  a�1�2/n
n

L(ε0,ε1)
X

i=0

Z t

0

ds

Z

R3q

dxdwdz 1Jn,i(s)(x)|u(s, w)|
γ |u(s, z)|γ

⇥ Φ
mn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1)Ψs(x)

=:

L(ε0,ε1)
X

i=0

In,i(t). (3.9)

To verify the hypotheses of Proposition 2.2, it suffices to show the existence of stopping
times UM,n,K satisfying (H1) as well as for i = 0, . . . , L,

(H2,i) lim
n!1

E (In,i(t0 ^ UM,n,K)) = 0 for all M,K 2 N with K � K1.

We will get to the definition of these stopping times in Section 6. We now define

�x := �x(n, s) := ru1,an
(s, x̂n(s, x))(|ru1,an

(s, x̂n(s, x))|)
�1

as the direction of the gradient ru1,an at the point x̂n(s, x) close to x. We also set

l̄n(�i) = aβi+5ε1
n ,

where dependence on �i is not written out explicitly if there are no ambiguities.
To get (H2,i) we need to derive some properties of points in Jn,i. Therefore, set

J̃n,0(s) :=
n

x 2 R
q : |x|  K0, |hus,Φ

mn+1
x i|  an,

�x ·ru1,a
ε0
n
(s, x0) � aε0n /16 for all x0 2 R

q s.t. |x0 � x|  5l̄n(�0) and

|u
2,a

λ0
n
(s, x0)� u

2,a
λ0
n
(s, x00)|  2�75aβ1

n

⇣

|x0 � x00| _ a
2
α
(γ�β1�ε1)

n _ an

⌘

for all x0, x00 2 R
q s.t. |x0 � x|  4

p
an, |x

00 � x0|  l̄n(�0)

and |u(s, x0)|  3a(1�ε0)/2
n for all x0 2 R

q s.t. |x0 � x|  p
an

o

,

J̃n,L(s) :=
n

x 2 R
q : |x|  K0, |hus,Φ

mn+1
x i|  an,

|ru
1,a

λL
n

(s, x0)|  aβL
n for all x0 2 R

q s.t. |x0 � x|  5l̄n(�L) and

|u
2,a

λL
n

(s, x0)� u
2,a

λL
n

(s, x00)|  2�75aβL+1
n

⇣

|x0 � x00| _ a
2
α
(γ�βL+1�ε1)

n _ an

⌘

for all x0, x00 2 R
q s.t. |x0 � x|  4

p
an, |x

00 � x0|  l̄n(�L)
o

and for i = 1, . . . , L� 1,

J̃n,i(s) :=
n

x 2 R
q : |x|  K0, |hus,Φ

mn+1
x i|  an,

|ru
1,a

λi
n
(s, x0)|  aβi

n and �x ·ru
1,a

λi
n
(s, x0) � aβi+1

n /16

for all x0 2 R
q s.t. |x0 � x|  5l̄n(�i) and

|u
2,a

λi
n
(s, x0)� u

2,a
λi
n
(s, x00)|  2�75aβi+1

n

⇣

|x0 � x00| _ a
2
α
(γ�βi+1�ε1)

n _ an

⌘

for all x0, x00 2 R
q s.t. |x0 � x|  4

p
an, |x

00 � x0|  l̄n(�i)
o

.
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We also define two deterministic constants

nM ("1) = inf
�

n � 1 : aε1n  2�M�8
 

, n0("0, "1) = sup
n

n 2 N :
p
an < 2�a�ε0ε1/4

n

o

and will from now on always assume that

n > nM ("1) _ n0("0, "1). (3.10)

The next proposition shows that we can ultimately estimate the size of the sets J̃n,i(s)
instead of that of Jn,i(s) :

Proposition 3.2. J̃n,i(s) is a compact set for all s � 0, i 2 {0, . . . , L}. There exist

stopping times UM,n,K satisfying (H1) such that for all n � nM , i 2 {0, . . . , L}, and

s  UM,n,K ,

Jn,i(s) ⇢ J̃n,i(s).

The proof of this proposition can be found in Section 6. We will use this proposition to
show (H2,i) at the end of this section. We need the following notation for i 2 {0, . . . , L}:

ln(�i) := (129a1�βi+1
n ) _ a

2
α
(γ�βi+1�ε1)

n ,

where we omit the dependence on �i if there are no ambiguities and obtain:

Lemma 3.3. If i 2 {0, . . . , L} and n > nM ("1), then

ln(�i) <
p
an <

1

2
l̄n(�i).

Proof.

ln(�i)a
�1/2
n = (129a

1
2�βi+1
n ) _ a

2
α
(γ�βi+1�ε1)� 1

2
n

 (129aε1n ) _ a
1
2α (4γ�4βi�4ε0�ε1�α)
n < 1

by (3.6), (3.8) and because aε1n < 2�8 by (3.10). This gives the first inequality. For the
second one, use �i  1

2 � 6"1 and (3.10) to see that

p
an l̄n(�i)

�1 = a
1
2�βi�5ε1
n  aε1n < 1/2.

We give some elementary properties of the sets J̃n,i(s).

Lemma 3.4. Assume s � 0, i 2 {0, . . . , L}, x 2 J̃n,i(s), x
0 2 R

q and |x0 � x|  4
p
an.

(a) If i > 0, x00 2 R
q s.t. |x00 � x0|  l̄n(�i), then

|u(s, x00)� u(s, x0)|  2aβi
n

⇣

|x00 � x0| _ a
2
α
(γ�βi+1�ε1)

n _ an

⌘

.

(b) If i < L, x00 2 R
q s.t. (x00 � x0) k �x and a

2
α
(γ�βi+1�ε1)

n _ an  |x0 � x00|  l̄n(�i), then

u(s, x00)� u(s, x0)

(

� 2�5a
βi+1
n |x00 � x0| if (x00 � x0) · �x � 0,

 �2�5a
βi+1
n |x00 � x0| if (x00 � x0) · �x < 0.
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(c) Suppose y 2 J̃n,i(s), |x � y|  l̄n(�i). Additionally let y0, y00 2 R
q, s.t. |y � y0| 

p
an, (y

00 � y0) k �x and a
2
α
(γ�βi+1�ε1)

n _ an < |y00 � y0| < l̄n(�i). Then

u(s, y00)� u(s, y0)

(

� 2�5a
βi+1
n |y00 � y0| if (y00 � y0) · �x � 0,

 �2�5a
βi+1
n |y00 � y0| if (y00 � y0) · �x < 0.

(d) If i > 0, then for |w � x| <
p
an,

|u(s, w)|  5aβi+1/2
n .

Proof. To prove (a) let n, i, s, x, x0, x00 be as above. Since

|x0 � x| _ |x00 � x|  4
p
an _ (4

p
an + l̄n(�i))  5l̄n(�i),

the distance to x of any point on the line between x0 and x00 is bounded from above by
5l̄n(�i). By the Mean Value Theorem and the definition of J̃n,i(s), we get

|u(s, x00)� u(s, x0)|  |u
1,a

λi
n
(s, x00)� u

1,a
λi
n
(s, x0)|+ |u

2,a
λi
n
(s, x00)� u

2,a
λi
n
(s, x0)|

 aβi
n |x00 � x0|+ 2�75aβi+1

n

⇣

|x00 � x0| _ a
2
α
(γ�βi+1�ε1)

n _ an

⌘

 2aβi
n

⇣

|x00 � x0| _ a
2
α
(γ�βi+1�ε1)

n _ an

⌘

.

To prove (b) w.l.o.g. consider (x00 � x0) · �x � 0 and so estimate analogously to (a)
(remember that [·, ·] denotes the Euclidean geodesic between two points in R

q):

u(s, x00)� u(s, x0) � inf
y2[x0,x00]

h

ru
1,a

λi
n
(s, y) · (x00 � x0)

i

� |u
2,a

λi
n
(s, x00)� u

2,a
λi
n
(s, x0)|

�
�

aβi+1
n /16

�

�x · (x00 � x0)� 2�75aβi+1
n |x00 � x0|

�
�

aβi+1
n /32

�

(x00 � x0) · �x.

Next, we prove (c) using that |y0 � x| _ |y00 � x| <
p
an + l̄n(�i) + l̄n(�i)  5l̄n(�i).

u(s, y00)� u(s, y0) � inf
z2[y0,y00]

h

ru
1,a

λi
n
(s, z) · (y00 � y0)

i

� |u
2,a

λi
n
(s, y00)� u

2,a
λi
n
(s, y0)|

�
�

aβi+1
n /16

�

(y00 � y0) · �x � 2�75aβi+1
n |y00 � y0|

�
�

aβi+1
n /32

�

(y00 � y0) · �x,

where in the next to last inequality we used that x 2 J̃n,i(s) for the ru
1,a

λi
n
-part and

y 2 J̃n,i(s) for the u
2,a

λi
n
-part.

Finally, prove (d) much in the same way as the previous claims: We have |x̂n(s, x)�
w| < |x̂n(s, x) � x| + |x � w|  2

p
an  l̄n(�i) by Lemma 3.3. So we can apply (a) for

x0 = x̂n(s, x) and x00 = w to obtain

|u(s, w)|  |u(s, x̂n(s, x))|+ |u(s, x̂n(s, x))� u(s, w)|

 an + 2aβi
n (|w � x̂n(s, x)| _ a

2
α
(γ�βi+1�ε1)

n _ an)

 5aβi+1/2
n

since a
2
α
(γ�βi+1+ε1)

n <
p
an, again by Lemma 3.3.

Now, define

Fn(s, x) := hΦmn+1
x , usi =

Z

Bq(0,
p
an)

Φ
mn+1(z)u(s, x+ z) dz.

The next lemma provides some conclusions that can be drawn about points that lie in
J̃n,i(s) for i 2 {0, . . . , L� 1} and s 2 R+.
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Lemma 3.5. Assume i 2 {0, . . . , L� 1}, s 2 R+.

(a) If x 2 J̃n,i(s), x̃ 2 R
q with (x̃� x) k �x and ln(�i) < |(x̃� x) · �x|  l̄n(�i), then

Fn(s, x̃)� Fn(s, x)

(

� 2�5a
βi+1
n |x̃� x| , if (x̃� x) · �x � 0,

 �2�5a
βi+1
n |x̃� x| , if (x̃� x) · �x < 0.

(b) Suppose x, y 2 J̃n,i(s), |x� y|  l̄n(�i). Then for ỹ 2 R
q, such that (y � ỹ) k �x and

ln(�i) < |y � ỹ| < l̄n(�i) it holds that

ỹ /2 J̃n,i(s).

(c) If x 2 J̃n,i(s), z 2 R
q and |x� z|  l̄n(�i)/2, then

Z

(�l̄n/2,l̄n/2)

db1{z + �xb 2 J̃n,i(s) \Bq(x, l̄n/2) }  2ln(�i).

Proof. For (a) assume (x̃� x) · �x 2 [ln(�i), l̄n(�i)]. Then

Fn(s, x̃)� Fn(s, x) =

Z

Bq(0,
p
an)

Φ
mn+1(z)(u(s, x̃+ z)� u(s, x+ z)) dz.

Clearly, |z|  p
an and for x00 = x̃+ z, x0 = x+ z, we have

|x0 � x|  p
an, (x

00 � x0) = (x̃� x) k �x, |x0 � x00| 2 [ln(�i), l̄n(�i)].

Therefore, we can apply Lemma 3.4 (b) in the case (x̃� x) > 0 to obtain

Fn(s, x̃)� Fn(s, x) �
Z

Bq(0,
p
an)

Φ
mn+1(z)|x̃� x|2�5aβi+1

n dz

� 2�5aβi+1
n |x̃� x|. (3.11)

The same can be done in the case (x̃� x) · �x < 0.
To show (b) use the same ideas as before, where Lemma 3.4 (b) is replaced by

Lemma 3.4 (c), in order to deduce that

|Fn(s, ỹ)| � |Fn(s, ỹ)� Fn(s, y)|� |Fn(s, y)|

� 2�5aβi+1
n ln(�i)� an

� 97

32
an.

Hence, since |hus,�
mn+1

ỹ i| > an it follows that ỹ /2 J̃n,i(s).

For (c) assume that y = z+ �xb 2 J̃n,i(s) for a certain b 2 [�l̄n/2, l̄n/2] (otherwise the
integral is 0 anyway). Observe that

|y � x|  |x� z|+ |b|  l̄n.

So, we can apply (b) for x, y 2 J̃n,i(s) to obtain that

Z

(� l̄n
2 , l̄n2 )

db1

⇢

z + �xb 2 J̃n,i(s) \B(x,
l̄n
2
)

�


Z

(�l̄n,l̄n)

db1{y + �xb 2 J̃n,i(s) }  2ln(�i).
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Let Σx be a q ⇥ (q � 1)-dimensional matrix whose rows are an orthonormal basis of
the orthogonal space �ortho

x = {y 2 R
q : �x · y = 0} and let |A| denote the Lebesgue

measure of a measurable set A ⇢ R
q.

Lemma 3.6. For i 2 {0, . . . , L � 1} and s � 0, n 2 N there is a constant c3.6 = c3.6(q)

such that

|J̃n,i(s)|  c3.6K
q
0 ln(�i)l̄n(�i)

�1.

Proof. Set Bx = Bq(x, l̄n(�i)/4) and cover the compact set J̃n,i(s) with a finite number
of these balls, say Bx01 , . . . , Bx0Q0 . If |x0j � x0k|  l̄n(�i)/4, then Bx0j ⇢ Bq(x0k, l̄n(�i)/2).
So, if we increase the radius of the balls around x01, . . . , x0Q0

to l̄n(�i)/2, it suffices to use
those balls whose centers have at least distance l̄n(�i)/4, which we denote by x1, . . . , xQ.

If we consider Bq(xk, l̄n(�i)/8), k = 1, . . . , Q, then all of these balls are disjoint. Thus,
we have

Q  Kq
0

�

l̄n(�i)/8
��q

(3.12)

and also

J̃n,i(s) ⇢
Q
[

k=1

Bq
�

xk, l̄n(�i)/2
�

\ J̃n,i(s). (3.13)

Next we want to consider the Lebesgue measure of the sets on the right-hand-side by
using an appropriate decomposition and Lemma 3.5 (c). Fix k 2 {1, . . . , Q} and denote
by C(q) the volume of the q-dimensional Euclidean ball. We have

�

�

�
Bq

�

xk, l̄n(�i)/2
�

\ J̃n,i(s)
�

�

�

=

Z

Bq(0,l̄n/2)

dz0 1{xk + z0 2 J̃n,i(s) }


Z

Bq�1(0,l̄n/2)

dz0
Z

(�l̄n/2,l̄n/2)

db1{xk + Σxkz0 + �xkb 2 J̃n,i(s) }


Z

Bq�1(0,l̄n/2)

dz0 2ln(�i)

= 2C(q � 1)(l̄n(�i)/2)
q�1ln(�i).

Here, we were able to apply Lemma 3.5 (c) in the last inequality with z = xk + Σxkz0

since |xk + Σxkz0 � xk| = |Σxz
0| = |z0|  l̄n/2. And therefore, by (3.12) and (3.13) for

c3.6 = 4 · 4qC(q � 1) we obtain

|J̃n,i(s)|  c3.6K
q
0 ln(�i)

�

l̄n(�i)
��1

.

We are now in the position to complete the

Verification of the Hypothesis (H2) in Proposition 2.2.

Let n > nM ("1) _ n0("0, "1), t > 0 and M 2 N fixed. First, consider i = 0. For x 2 Jn,0(s)

and |y � x|  p
an we have |u(s, y)|  3a

(1�ε0)/2
n due to Proposition 3.2. So, we obtain in

(3.9) for n large enough so that "1 > 2
n :

In0 (t0 ^ UM,n,K)  a�1�2/n
n 32γaγ(1�ε0)

n

Z t0^UM,n,K

0

ds

Z

dxΨs(x)1Jn,0(s)(x)

Z

dw

Z

dzΦmn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1)

 C(kΨk1, kΦk1)a�1�ε1
n aγ(1�ε0)

n

a�α/2
n t0K

q
0 ln(�0)l̄n(�0)

�1 (by (3.10) and Lemma 3.6)

 Ct0K
q
0a

�1�α/2+γ(1�ε0)
n

⇣

a1�ε0�6ε1
n _ a

2
α
(γ�ε1�ε0)�6ε1

n

⌘

.

(3.14)
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And this expression tends to zero as n ! 1 since by (3.6)

�1� ↵/2 + �(1� "0) + 1� "0 � 6"1 � � � ↵/2� 8"1 > 8"1 > 0

as well as

�1� ↵/2 + �(1� "0) +
2

↵
(� � "1 � "0)� 6"1 � � � 1� ↵/2 + (� � "1 � "0)� 7"1

� 2� � 1� ↵/2� 9"1 > 23"1 > 0.

Next, let i 2 {1, . . . , L} and assume x 2 J̃n,i(s), y 2 R
q, |y � x|  p

an. So, we can use
Lemma 3.4 (d) to get that

|u(s, y)|  5a
βi+

1
2

n . (3.15)

Put that into (3.9) for y = w and y = z to obtain that

Ini (t0 ^ UM,n,K)  52γa�1�2/n
n a2βiγ+γ

n

Z t

0

ds

Z

dx1Jn,i(s)(x)Ψs(x)

⇥
Z

R2q

dwdzΦmn+1
x (w)Φmn+1

x (z)(|w � z|�α + 1). (3.16)

In order to treat the integral in w and z we use (2.18) leading to

Ini (t0 ^ UM,n,K)  25Ca�1�2/n
n a2βiγ+γ

n mα
n+1

Z t0^UM,n,K

0

Z

1Jn,i(s)(x)Ψs(x) dxds (3.17)

 C(↵, q, kΨk1, kΦk1)a�1�ε1
n a2βiγ+γ

n a
�α

2
n

Z t0^UM,n,K

0

|J̃n,i(s)| ds.

Next, we use Lemma 3.6 in the case i 2 {1, . . . , L� 1} and obtain

Ini (t0 ^ UM,n,K)  Ca�1�ε1
n a2βiγ+γ

n a
�α

2
n t0C(q)Kq

0 ln(�i)l̄n(�i)
�1

 Ct0a
�1�α

2 +2βiγ+γ�ε1
n

⇣

a1�βi+1
n _ a

2
α
(γ�βi+1�ε1)

n

⌘

a�βi�5ε1
n

= Ct0

⇣

a
�1�α

2 +2βiγ+γ+1�βi+1�βi�6ε1
n

_a�1�α
2 +2βiγ+γ+ 2

α
(γ�βi+1�ε1)�βi�6ε1

n

⌘

=: Ct0[a
ρ1,i
n _ aρ2,i

n ].

Hence, it suffices to check for positivity of ⇢1,i and ⇢2,i to obtain the desired result.

⇢1,i = �1� ↵

2
+ 2�i� + � + 1� �i+1 � �i � 6"1

= �↵
2
+ � + 2��i � 2�i � 6"1 � "0

� 1

2
(2(2� � 1)� ↵) + 1� � � 2�i(1� �)� 7"1

> 8"1 + (1� �)(1� 2�i)� 7"1 > "1 > 0

by (3.6). Additionally, note that by (3.6),

2

↵
(� � �i+1 � "1) =

2� � 1

↵
+

1� 2�i+1 � 2"1
↵

� 1

2
+

1

2
(1� 2�i � 4"1)

= 1� �i � 2"1.
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So we can calculate

⇢2,i = �1� ↵

2
+ 2�i� + � +

2

↵
(� � �i+1 � "1)� �i � 6"1

� �1� ↵

2
+ 2�i� + � + 1� �i � 2"1 � �i � 6"1

� 2� � 1� ↵

2
� 8"1 > "1 > 0

since �i  1
2 by (3.6).

In order to finish the proof we note that in the case i = L it suffices to use a trivial
bound on the integral in (3.17) and we obtain with �L � 1

2 � 6"1 � "0 � 1
2 � 7"1 from

(3.6):

InL(t0 ^ UM,n,K)  Ca�1�ε1
n a2βLγ+γ

n a
�α

2
n t0K

q
0

 Ca
γ�1�α/2+2( 1

2�7ε1)γ�ε1
n

= Ca2γ�1�α/2�15ε1
n  Caε1n .

And so, we are done with the proof of Proposition 2.2. 2

4 Heat kernel estimates

This section will be concerned with estimates for the heat kernel in R
q defined by

pt(x) = (2⇡t)�
q
2 exp

✓

� |x|2

2t

◆

,

and its derivative in space

p
(l)
t (x) := @xl

pt(x) = �xl

t
pt(x), 1  l  q

for x 2 R
q, t > 0. There are already a number of results in Section 5 of [11] regarding

bounds on heat kernels, in particular when they are connected by a correlation kernel
and also in Section 4 of [10] regarding the derivatives of heat kernels. Here, we will
combine the techniques used for those results in order to obtain bounds on integrals
of the derivatives p

(l)
t that are connected by a correlation kernel related to colored

noise. All of the proofs are put into the appendix. As necessary we will highlight the
dependence of constants C on various quantities.

This first simple lemma will be used frequently later on:

Lemma 4.1. Let 0 < r0  r1. Then there is a constant C = C(r0, r1) > 0 such that for

all r 2 [r0, r1] and a � 0, u � 1,

a  Cu1/r exp

✓

ar

u

◆

 Cu1/r0 exp

✓

ar

u

◆

. (4.1)

A trivial consequence is the following Lemma 4.2 in [10]:

Lemma 4.2. For the heat kernel in R
q there is a constant C > 0 such that for l =

1, . . . , q, t > 0, x 2 R
q,

|p
(l)
t (x)|  C

1p
t
p2t(x).

The next lemma is about the integral over distances of heat kernel derivatives:
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Lemma 4.3. For ↵ 2 (0, q),K � 0, there is a positive constant C = C(↵, q,K) < 1 such

that for any x, x0 2 R
q, 0 < t  t0  K,

ZZ

�

�

�

⇣

p
(l)
t (w � x)� p

(l)
t0 (w � x0)

⌘⇣

p
(l)
t (z � x)� p

(l)
t0 (z � x0)

⌘�

�

� (|w � z|�α + 1) dwdz

 Ct�1�α/2

✓

1 ^ |x� x0|2 + |t� t0|

t

◆

.

A simple extension of Lemma 5.1 in [11] is the following lemma:

Lemma 4.4. For 0 < t  t0, 0  r1, r2, r3  R, there is a constant C = C(R) such that
ZZ

pt(w)pt0(z)|w|
r1 |z|r2er3(|w|+|z|)(|w � z|�α + 1) dwdz

 Ce2r
2
3t

0

tr1/2t0r2/2(t�α/2 + 1),

and there is a constant C = C(K,R) such that for x, y 2 [�K,K]q:
ZZ

pt(x� w)pt0(y � z)|w|r1 |z|r2er3(|w|+|z|)(|w � z|�α + 1) dwdz

 Ce2r
2
3t

0

(tr1/2 + 1)(t0r2/2 + 1)(t�α/2 + 1).

Using the two previous lemmas we can obtain a result on integrals "outside" a cer-
tain area:

Lemma 4.5. For all R > 2, K > 0, there is a constant C = C(K,R) such that for all

0  p, r  R, ⌘0, ⌘1 2 (1/R, 1/2), l = 1, . . . , q, 0  s < t  t0 < K and x, x0 2 [�K,K]q:
ZZ

|w � x|p|z � x|p
⇣

p
(l)
t�s(w � x)� p

(l)
t0�s(w � x0)

⌘⇣

p
(l)
t�s(z � x)� p

(l)
t0�s(z � x0)

⌘

⇥ 1{|w � x| > (t0 � s)1/2�η0 _ 2|x� x0|} er|w�x|+r|z�x|(|w � z|�α + 1) dwdz

 C(t� s)�1�α/2 exp(�⌘1(t0 � s)�2η0/256)



1 ^
✓

|x� x0|2 + |t� t0|

t� s

◆�1�η1/2

.

(4.2)

5 Local bounds on the difference of two solutions

In this section we present the extension of Theorem 2.3, i.e. the results showing (in
some sense) “Hölder continuity of order 2”. This section is very similar in its ideas to
Section 5 of [10]. Hence, we do not give all of the proofs but can refer the interested
reader to Section 9.4 of [15] for the details. First, let us recall that for n 2 N,

an = exp(�n(n+ 1)/2)

and for (t, x), (t0, x0) 2 R+ ⇥R
q,

d((t, x), (t0, x0)) =
p

|t� t0|+ |x� x0|.

Define for N,K, n 2 N, � 2 [0, 1/2] the random set

Z(N,n,K,�)(!) = {(t, x) 2 [0, TK ]⇥ [�K,K]q ⇢ R+ ⇥R
q : there is a

(t̂0, x̂0) 2 [0, TK ]⇥R such that d((t, x), (t̂0, x̂0))  2�N ,

|u(t̂0, x̂0)|  an ^ (
p
an2

�N ), and |ru1,an
(t̂0, x̂0)|  aβn

 

.

(5.1)

For � = 0 define Z(N,n,K, 0) = Z(N,n,K) as above, but with the condition on ru1,an

omitted. Note that (t, x) 2 Z(N,n,K,�) always implies t  K. For � < 1 define recur-
sively �0 = 1 and

�m+1 = ��m + 1� ↵

2
. (5.2)
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This gives the explicit formula

�m = 1 +
(� � ↵/2)(1� �m)

1� �
. (5.3)

Since ↵ < 2(2� � 1) we have that �m is increasing to �1 = 1�α/2
1�γ

> 2 for m ! 1. So
there will be an m̄ 2 N such that �m̄+1 > 2 � �m̄. Set �̃m := �m ^ 2, 0  m  m̄+ 1.

Definition 5.1. A collection of [0,1]-valued random variables {N(↵) : ↵ 2 A} will be

called stochastically bounded uniformly in ↵, iff

lim
M!1

sup
α2A

P[N(↵) � M ] = 0.

For m 2 Z+, we will let (Pm) denote the following property:

Property (Pm). For any n 2 N, ⇠, "0 2 (0, 1),K 2 N
�K1 and � 2 [0, 1/2], there is an

N1(!) = N1(m,n, ⇠, "0,K,�) in N a.s. such that for all N � N1, if (t, x) 2 Z(N,n,K,�),

t0  TK and d((t, x), (t0, x0))  2�N , then

|u(t0, x0)|  a�ε0
n 2�Nξ

⇥

(
p
an _ 2�N )γ̃m�1 + aβn1{m > 0}

⇤

. (5.4)

Moreover, N1 is stochastically bounded uniformly in (n,�).

Proposition 5.2. Property (Pm) holds for any m  m̄+ 1.

The initial step of the induction is proved as in Proposition 5.1 of [10] using Theorem
2.3, here, instead of their Lemma 2.3, so we omit it. The induction step from (Pm) to
(Pm+1) is a bit more technical and needs some preparation. It will be completed at the
end of this section on page 32.

To get there we first write down a lemma which tells us what we can get out of
Property (Pm):

Lemma 5.3. Let 0  m  m̄+1. Assume that (Pm) holds. Let ⌘, ⇠, "0,K,� be as in (Pm).

If N 2 N and c5.3(!) = (4a�ε0
n + 22N1(ω)2KeK)2, then on the event

{! : N � N1(m,n, ⇠, "0,K,�), (t, x) 2 Z(N,n,K,�)},

we have, denoting d̄N = 2�N _ d((s, y), (t, x)),

|u(s, y)|  p
c5.3e

|y�x|d̄ξN
⇥

(
p
an _ d̄N )γm�1 + 1{m > 0}aβn

⇤

(5.5)

for all s < TK and y 2 R
q.

As the proof is essentially the same as Lemma 5.2 in [10] we omit it. The lemma
gives control on u(s, y) for y close to points in Z(N,n,K,�). To do the induction step we
want to use this control in the estimate |D(r, w)|  R0e

R1|w||u(r, w)|γ from (3.2), which
appeared in

F
(l)
δ (s, t, x) =

Z (s�δ)+

0

Z

p
(l)
t�r(w � x)D(r, w)W (dr dw), (5.6)

� > 0, 0  s  t, x 2 R
q and for 1  l  q, see (3.5) and Lemma 3.1. This is related

to the derivative of u1,δ as given in Lemma 3.1. Using the bound from Lemma 5.3 will
lead to an improved bound on u1,δ. Later, we will also give estimates for u2,δ and the
combination of the two bounds allows us to do the induction step at the end of the
section.
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To estimate F
(l)
δ we use the following decomposition for s  t  t0, s0  t0:

|F
(l)
δ (s, t, x)� F

(l)
δ (s0, t0, x0)|

 |F
(l)
δ (s, t, x)� F

(l)
δ (s, t, x0)|+ |F

(l)
δ (s, t, x0)� F

(l)
δ (s, t0, x0)|

+ |F
(l)
δ (s, t0, x0)� F

(l)
δ (s0, t0, x0)|

=

�

�

�

�

�

Z (s�δ)+

0

(p
(l)
t�r(w � x0)� p

(l)
t�r(w � x))D(r, w)W (dr dw)

�

�

�

�

�

+

�

�

�

�

�

Z (s�δ)+

0

(p
(l)
t�r(w � x0)� p

(l)
t0�r(w � x0))D(r, w)W (dr dw)

�

�

�

�

�

+

�

�

�

�

�

Z (s_s0�δ)+

(s^s0�δ)+
p
(l)
t0�r(w � x0)D(r, w)W (dr dw)

�

�

�

�

�

, 1  l  q.

(5.7)

All of these three expressions in the absolute values are martingales in the upper in-
tegral bound, when the rest of the values x, x0, t, t0, (s ^ s0 � �)+ stay fixed. We want
to obtain estimates on the quadratic variations of these martingales and then use the
Dubins-Schwarz Theorem in order to obtain estimates on the martingales themselves.
Recall that the Dubins-Schwarz Theorem (see for example Theorem 3.4.6 in [4]) states
that a continuous martingale M can be represented in the form Mt = BhMit for a stan-
dard Brownian motion B, which implies the useful inequality

P(Mt > x, hMit  s)  P

✓

sup
0rs

Br > x

◆

, x 2 R+, s 2 R+. (5.8)

In order to calculate the first two quadratic variations we need to introduce the
following partition of Rq (for fixed values of x, x0, ⌘0):

Aη0

1 (r, t) = 1

n

y 2 R
q : |y � x|  (t� r)1/2�η0 _ 2|x� x0|

o

Aη0

2 (r, t) = 1

n

y 2 R
q : |y � x| > (t� r)1/2�η0 _ 2|x� x0|

o

= Aη0

1 (r, t)C ,

whenever 0  r < t. For estimating (5.7), we now introduce the following square
functions for i, j 2 {1, 2}:

Qi,j
X,δ,η0

(s, t, x, t, x0) =

Z (s�δ)+

0

dr

Z

A
η0
i (r,t)

dw

Z

A
η0
j (r,t)

dz

�

�

�

⇣

p
(1)
t�r(w � x0)� p

(1)
t�r(w � x)

⌘⇣

p
(1)
t�r(z � x0)� p

(1)
t�r(z � x)

⌘�

�

�

R2
0e

R1(|w|+|z|)|u(r, w)|γ |u(r, z)|γ(|w � z|�α + 1),

Qi,j
T,δ,η0

(s, t, x0, t0, x0) =

Z (s�δ)+

0

dr

Z

A
η0
i (r,t0)

dw

Z

A
η0
j (r,t0)

dz

�

�

�

⇣

p
(1)
t�r(w � x0)� p

(1)
t0�r(w � x0)

⌘⇣

p
(1)
t�r(z � x0)� p

(1)
t0�r(z � x0)

⌘�

�

�

R2
0e

R1(|w|+|z|)|u(r, w)|γ |u(r, z)|γ(|w � z|�α + 1),

and

QS,δ(s, s
0, t0, x0) =

Z (s_s0�δ)+

(s^s0�δ)+
dr

Z

dw

Z

dz
�

�

�p
(1)
t0�r(w � x0)p(1)t0�r(z � x0)

�

�

�

R2
0e

R1(|w|+|z|)|u(r, w)|γ |u(r, z)|γ(|w � z|�α + 1).
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Now we want to establish an upper bound for

Qtot
δ,η0

(s, t, x, s0, t0, x0) = QS,δ(s, s
0, t0, x0)+

2
X

i,j=1

⇣

Qi,j
T,δ,η0

(s, t, x0, t0, x0) +Qi,j
X,δ,η0

(s, t, x, t, x0)
⌘

,

(5.9)
when s, t, x, s0, t0, x0 are subject to some restrictions. Then (5.9) is clearly an upper
bound itself for the quadratic variation of each of the three martingales in (5.7).

Remark 5.4. Since we would execute the same calculations for any spatial dimension

l we restrict ourselves now to l = 1 for the estimates on F
(l)
δ . We already omitted

this dependence in the definitions leading up to (5.9). Also, note that dependence of

constants on the universal constants ↵, q, �, R0 and R1 will not be mentioned in the

following lemmas.

We combine two estimates for the cases (i, j) = (1, 2), (2, 1) or (2, 2), so i+ j � 3 :

Lemma 5.5. For all K 2 N
�K1 , R > 2 there exist c5.5(K,R), N5.5(K,!) almost surely

such that 8⌘0, ⌘1 2 (1/R, 1/2), � 2 (0, 1], � 2 [0, 1/2], N,n 2 N, (t, x) 2 R+ ⇥ R
q the

following holds for i+ j � 3: For ! 2 {(t, x) 2 Z(N,n,K,�), N � N5.5} we have

Qi,j
X,δ,η0

(s, t, x, t, x0)  c5.52
4N5.5 |x� x0|2�η1 ,

Qi,j
T,δ,η0

(s, t, x0, t0, x0)  c5.52
4N5.5

h

|t� t0|1�η1/2 + |t� t0|1�η1/2��1�α/2(|t� t0| ^ 1)4γ
i

,

for all 0  s  t  t0, |x0|  K + 1.

Proof. We will just give the proof for i = 2 without taking into account j, i.e. the restric-
tion on z. This suffices by symmetry. Use the estimate (3.2) on D, take ⇠ = 3/4,m = 0

and set N5.5(K,!) = N1(0, n, 3/4, "0,K,�), see the definition of (Pm) in (5.4). Also set
w.l.o.g. � < s. Then, in Lemma 5.3 for the case m = 0 we can take "0 = 0 as well
(c5.3 = C(K)2N1(0,3/4,K)) and obtain

Qi,j
X,δ,η0

(s, t, x, t, x0) c5.3

Z s�δ

0

dr

ZZ

1{|w � x| > (t� r)1/2�η0 _ 2|x� x0|}

⇣

p
(1)
t�r(w � x0)� p

(1)
t�r(w � x)

⌘⇣

p
(1)
t�r(z � x0)� p

(1)
t�r(z � x)

⌘

eR1(|w|+|z|)eγ(|w�x|+|z�x|)R2
0(|w � z|�α + 1)

⇥

2�N _ d((r, w), (t, x))
⇤3γ/4 ⇥

2�N _ d((r, z), (t, x))
⇤3γ/4

dwdz.

Using d((r, w), (t, x))γ = (
p
t� r + |w � x|)γ  2((t � r)γ/2 + |w � x|γ) and t, r  K we

bound this by

c5.3R
2
0

Z (s�δ)+

0

dr

ZZ

1{|w � x| > (t� r)1/2�η0 _ 2|x� x0|}

⇣

p
(1)
t�r(w � x0)� p

(1)
t�r(w � x)

⌘⇣

p
(1)
t�r(z � x0)� p

(1)
t�r(z � x)

⌘

e2R1|x|e(γ+R1)(|w�x|+|z�x|)

2
⇣

K3γ/8 + |w � x|3γ/4
⌘

2
⇣

K3γ/8 + |z � x|3γ/4
⌘

(|w � z|�α + 1) dwdz.
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With the help of Lemma 4.5 for t = t0  K bound this by

c5.3C(K,R)

Z s�δ

0

dr (t� r)�1�α/2 exp

✓

�⌘1(t� r)�2η0

256

◆

1 ^ |x� x0|2

t� r

�1�η1/2

 c5.3C(K,R)(256R)R
Z s�δ

0

dr



1 ^ |x� x0|2

t� r

�1�η1/2

 c5.3C(K,R)|x� x0|2�η1

Z t

0

dr (t� r)η1/2�1

 c5.3C(K,R)|x� x0|2�η1 ,

where we used Lemma 4.1. The proof for the temporal estimate is similar but we omit
it here.

Next we need to consider the distances for the cases i = j = 1.

Lemma 5.6. Let 0  m  m̄+ 1 and assume that (Pm) holds. For all K 2 N
�K1 , R > 2

n 2 N, � 2 [0, 1/2], "0 2 (0, 1), there exist c5.6(K,R), N5.6(m,n,R, "0,K,�)(!) 2 N almost

surely such that for all ⌘1 2 (1/R, 1/2), ⌘0 2 (0, ⌘1/32), � 2 [an, 1], N 2 N, (t, x) 2 R+⇥R
q

the following holds: For ! 2 {(t, x) 2 Z(N,n,K,�), N � N5.6} we have

Q1,1
X,δ,η0

(s, t, x, t, x0)  c5.6
�

a�2ε0
n + 24N5.6

�

h

|x� x0|2�η1

⇣

�̄
(γγm�1�α

2 )^0

N + a2βγn �̄
(γ�1�α

2 )^0

N

⌘

+
⇣

d ^
p
�
⌘2�η1

��1�α
2

⇣

d̄2γγm

N + a2βγn d̄2γN

⌘

�

, (5.10)

Q1,1
T,δ,η0

(s, t, x0, t0, x0)  c5.6
�

a�2ε0
n + 24N5.6

�

h

|t� t0|1�η1/2
⇣

�̄
(γγm�1�α

2 )^0

N + a2βγn �̄
γ�1�α

2

N

⌘

(5.11)

+ (|t� t0| ^ �)1�η1/2��1�α
2 [d̄2γγm

N + a2βγn d̄2γN ]
i

,

for all 0  s  t, |x0|  K + 1. Here d̄N = |x� x0| _ 2�N and �̄N = � _ d̄2N . Moreover, N5.6

is stochastically bounded uniformly in (n,�).

Proof. First, we estimateQX . Let ⇠ = 1� 1
8R 2 ( 1516 , 1) and setN5.6 = N1(m,n, ⇠, "0,K,�).

W.l.o.g. s > � and therefore we always have d((r, w), (t, x)) ^ d((r, z), (t, x)) � p
an in the

integral. An application of Lemma 5.3 and the bound on |w�x|, |z�x| respectively gives

Q1,1
X,δ,η0

(s, t, x, t, x0) c5.3

Z s�δ

0

dr

ZZ

dwdz e4R1Ke4γKR2γ
0

⇣

p
(1)
t�r(w � x0)� p

(1)
t�r(w � x)

⌘⇣

p
(1)
t�r(z � x0)� p

(1)
t�r(z � x)

⌘

h

2�N _ ((t� r)1/2 + (t� r)1/2�η0 _ 2|x� x0|)
i2γξ

⇢

h

2�N _
⇣

(t� r)1/2 + (t� r)1/2�η0 _ 2|x� x0|
⌘iγm�1

+ aβn

�2γ

(|w � z|�α + 1).

Let �0 = �(1� 2⌘0) and observe the trivial inequalities

p
t� r  Kη0(t� r)1/2�η0 , (5.12)

|x� x0|  C(q)K|x� x0|1�2η0 .
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Then, Lemma 4.3 allows the following bound

Q1,1
X,δ,η0

(s, t, x, t, x0)  c5.3C(K)

Z s�δ

0

dr (t� r)�1�α/2



1 ^ |x� x0|2

t� r

�

⇥
h

2�2Nγ _ (t� r)γ
0 _ |x� x0|2γ

0

iξ

⇥
h

2�Nγ0(γm�1) _ (t� r)γ
0(γm�1) _ |x� x0|2γ(γm�1) + a2βγn

i

.

Using

2�2Nγ _ (t� r)γ
0 _ |x� x0|2γ

0  2�2Nγ0 _ |x� x0|2γ
0

+ (t� r)γ
0

 2
h

d̄2γ
0

N _ (t� r)γ
0

i

,

we can bound the above by

Q1,1
X,δ,η0

(s, t, x, t, x0) (5.13)

 c5.3C(K)

Z s�δ

0

dr (t� r)�1�α/2



1 ^ |x� x0|2

t� r

�

2ξ
⇣

d̄2γ
0ξ

N _ (t� r)γ
0ξ
⌘

2γm�1
h

(d̄2N _ (t� r))γ
0(γm�1) + a2βγn

i

 4c5.3C(K)

Z s�δ

0

dr 1{t� r � d̄2N}(t� r)�1�α/2+γ0ξ



1 ^ |x� x0|2

t� r

�

h

(t� r)γ
0(γm�1) + a2βγn

i

+4c5.3C(K)

Z s�δ

0

dr 1{t� r < d̄2N}(t� r)�1�α/2



1 ^ |x� x0|2

t� r

�

d̄2γ
0ξ

N

h

d̄
2γ0(γm�1)
N + a2βγn

i

= c5.3C(K)(I1 + I2). (5.14)

We start with an estimate on I1. If r  s� � and t� r � d̄2N then

r  t� d̄2N ^ s� �  t� d̄2N ^ t� � = t� �̄N . (5.15)

Use that to obtain

I1 
Z t�δ̄N

0

dr

✓

(t� r)�1�α/2+γ0ξ+γ0(γm�1)



1 ^ |x� x0|2

t� r

�

+(t� r)�1�α/2+γ0ξ



1 ^ |x� x0|2

t� r

�

a2βγn

◆

.

We want to drop the minimum with 1 to consider

|x� x0|2
Z t

δ̄N

du
⇣

u�2�α/2+γ0ξ+γ0(γm�1) + u�2�α/2+γ0ξa2βγn

⌘

.

It holds that for p 2 (�1, 1), 0 < a < b  K,

Z b

a

up�1 du  log(b/a)(ap + bp)  2K log(b/a)ap^0. (5.16)

Here, the first inequality follows since for p 6= 0 the left hand side equals 1
|p| |a

p � bp|,

which can be bounded using 1�x  � log x, x � 0. For p = 0 we even have equality. The
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second inequality follows by distinguishing cases for p negative, positive, and zero, and
by noting that K � 1. Hence, we have

I1  2K|x� x0|2 log(K/�̄N )
⇣

�̄
(�1�α/2+γ0ξ+γ0(γm�1))^0
N + �̄

(�1�α/2+γ0ξ)^0
N a2βγn

⌘

.

The log term is bounded by C(K,R)|x� x0|�η1/2 (use Lemma 4.1). Moreover, by Lemma
4.1(c) in [10] we bound

I2  2

2/↵

�

� ^ |x� x0|2
�

��1�α/2d̄2γ
0ξ

N

h

d̄
2γ0(γm�1)
N + a2βγn

i

. (5.17)

Therefore,

Q1,1
X,δ,η0

(s, t, x, t, x0)  c5.3 C(K,R)
h

|x� x0|2�η1/2
⇣

�̄
(�1�α/2+γ0(γm+ξ�1))^0
N + �̄

(�1�α/2+γ0ξ^0)
N a2βγn

⌘

+
�

� ^ |x� x0|2
�

��1�α/2d̄2γ
0ξ

N

⇣

d̄
2γ0(γm�1)
N + a2βγn

⌘i

.

To finish the proof for QX we replace ⇠ = 1� (8R)�1 by 1 and �0 = �(1� 2⌘0) by � at the

cost of multiplying by d�η1/2 � �̄
�η1/4
N since

⇠�0 = �(1� 2⌘0)(1� (8R)�1) � �(1� ⌘1/4), hence ⇠�
0 � � � ��⌘1/4 � �⌘1/4

and

�0(�m + ⇠ � 1) = �(1� 2⌘0)(�m � (8R)�1) � ��m � ⌘1

4

by some algebra using ⌘1 > 32⌘0 _R�1.

We will not give the proof for QT as it is quite similar except that some exponents
change slightly.

Finally, there is an estimate on QS:

Lemma 5.7. Let 0  m  m̄+ 1 and assume that (Pm) holds. For all K 2 N
�K1 , R > 2

n 2 N, � 2 [0, 1/2], "0 2 (0, 1), there exist c5.7(K,R, �), N5.7(m,n,R, "0,K,�)(!) 2 N

almost surely such that for all ⌘1 2 (1/R, 1/2), � 2 [an, 1], N 2 N, (t, x) 2 R+ ⇥ R
q the

following holds: For ! 2 {(t, x) 2 Z(N,n,K,�), N � N5.7} we have

QS,δ(s, s
0, t0, x0)  c5.7

�

a�2ε0
n + 24N5.7

�

h

|s� s0|1�η1/2
⇣

�̄
(γγm�1�α/2)^0
N + a2βγn �̄

(γ�1�α/2)^0
N

⌘

+(|s0 � s| ^ �)1�η1/21{� < d̄2N}��1�α/2
⇣

d̄2γγm

N + a2βγn d̄2γN

⌘i

for all 0  s  t, s0  t0, |x0|  K+1. Here d̄N = (|t�t0|1/2+|x�x0|)_2�N and �̄N = �_d̄2N .

Moreover, N5.7 is stochastically bounded uniformly in (n,�).

We omit the proof, since again it is similar to a proof in [10] (Lemma 5.6), here using
⇠ = (3/2� (2�)�1) ^ (1� (4�R)�1) as well as Lemma 4.1 and Lemma 4.4.

Notation: For s, t, s0, t0 � 0, x, x0 2 R
q we now introduce

d̃((s, t, x), (s0, t0, x0)) :=
p

|s� s0|+
p

|t� t0|+ |x� x0|. (5.18)

As a corollary of all the previous calculations we get a bound on Qtot
δ,η0

as defined in (5.9).
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Corollary 5.8. Let 0  m  m̄ + 1 and assume that (Pm) holds. For all K 2 N
�K1 ,

R > 2, n 2 N, � 2 [0, 1/2], "0 2 (0, 1), there exist c5.8(K,R), N5.8(m,n,R, "0,K,�)(!) 2 N

almost surely such that for all ⌘1 2 (1/R, 1/2), ⌘0 2 (1/R, ⌘1/32), � 2 [an, 1], N 2 N,

(t, x) 2 R+ ⇥R
q, the following holds: For ! 2 {(t, x) 2 Z(N,n,K,�), N � N5.8} we have

Qtot
δ,η0

(s, t, x, s0, t0, x0)  c5.8
�

a�2ε0
n + 24N5.8

�

d̃2�η1

h

��1�α/2d̄γγm

N + ��1�α/2a2βγn d̄2γN

+�̄
(γγm�1�α/2)^0
N + a2βγn �̄

γ�1�α/2
N

i

(5.19)

for all 0  s  t  t0  TK , |x0|  K + 1. Here, d̃ = d̃((s, t, x), (s0, t0, x0)) from (5.18),

d̄N = d((t, x), (t0, x0)) _ 2�N and �̄N = � _ d̄N . Moreover, N5.8 is stochastically bounded

uniformly in (n,�).

Notation: Let us now introduce

∆̄u0

1
(m,n,�, "0, 2

�N ) = a�ε0
n



a�λ/2(1+α/2)
n 2�Nγγm +

⇣

aλ/2n _ 2�N
⌘(γγm�1�α/2)^0

+a�λ/2(1+α/2)+βγ
n

⇣

aλ/2n _ 2�N
⌘γi

.

(5.20)

We note that in this definition and in the following � 2 [0, 1] replaces the analogous ↵ of
[10].

Proposition 5.9. Let 0  m  m̄ + 1 and assume that (Pm) holds. Then, for all

n 2 N, ⌘1 2 (0, 1/2], "0 2 (0, 1),K 2 N
�K1 ,� 2 [0, 1],� 2 [0, 1/2] there is an N5.9 =

N5.9(m,n, ⌘1, "0,K,�,�)(!) 2 N
�2 almost surely such that for all N � N5.9, (t, x) 2

Z(N,n,K,�), s  t, s0  t0  TK and d̃ = d̃((s, t, x), (s0, t0, x0)) < 2�N it holds that

|F
(l)

aλ
n
(s, t, x)� F

(l)

aλ
n
(s0, t0, x0)|  2�86q�4d̃1�η1∆̄u0

1
(m,n,�, "0, 2

�N ), l = 1, . . . , q. (5.21)

Moreover, N5.9 is stochastically bounded uniformly in (n,�,�).

Proof. We do the proof for l = 1 only, see Remark 5.4. Let R = 33⌘�1
1 , ⌘0 2 (R�1, ⌘1/32)

and consider the case t  t0 in the beginning only. Set

d = d((t, x), (t0, x0)),

d̃ =
p

|s0 � s|+ d,

d̄N = d _ 2�N ,

�̄n,N = aλn _ d̄2N .

By Corollary 5.8 for (t, x) 2 Z(N,n,K,�), N � N5.8 it holds that

Qtot
aλ
n,η0

(s, t, x, s0, t0, x0)1/2  c
1/2
5.8 (K, ⌘1)

�

a�ε0
n + 22N5.8

�

d̃1�η1/2

h

(aλn)
�1/2(1+α/2)

�

d̄γγm

N + aβγn d̄γN
�

+�̄
(γγm�1�α/2)/2^0
n,N + aβγn �̄

(γ�1�α/2)/2
n,N

i

(5.22)

for all s  t  t0, s0  t0  TK , |x0|  K + 2. Therefore define for cq = 2 + log(2 + q)

∆(m,n, d̄N ) = 2�96a�ε0
n

h

a�λ/2(1+α/2)
n

�

d̄γγm

N + aβγn d̄γN
�

+(
q

�̄n,N )(γγm�1�α/2)^0 + aβγn (
q

�̄n,N )γ�1�α/2

�

(q54cq )�1,
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which satisfies

∆(m,n, 2�N+1)  (2γγm _ 2γ _ 20 _ 2γ�1�α/2)∆(m,n, 2�N )  4∆(m,n, 2�N ).

Choose N3 = 33
η1

[N5.8 +N4(K, ⌘1)] +
4
η1
(8 + 10 log q), where N4 is chosen in such a way

that

q54cqc
1/2
5.8

�

a�ε0
n + 22N5.8

�

2�η1N3/4  c5.22(K, ⌘1)
�

a�ε0
n + 22N5.8

�

2�8N5.8�8N4

 a�ε0
n 2�100,

i.e. N4 = N4(an, "0, N5.8, c5.22) and hence N3 = N3(n, "0, N5.8,K, ⌘1), which is stochasti-
cally bounded uniformly in (n,�,�).

Let N 0 2 N be such that d̃  2�N 0

, which implies d̃1�η1/2  2�N 0η1/4d̃1�3η1/4. Then it
is true that on the event

{! :(t, x) 2 Z(N,n,K + 1,�), N � N3, N
0 � N3}

we have that

Qtot
aλ
n,η0

(s, t, x, s0, t0, x0)1/2  c
1/2
5.8 (a

�ε0
n + 22N5.8)2�N 0η1/4d̃1�3η1/42100aε0n ∆(m,n, d̄N )(q74cq )

 d̃1�3η1/4
1

16
∆(m,n, d̄N ),

whenever s  t  t0, s0  t0  Tk, |x
0|  K + 2. Recalling the decomposition of Fδ,1 in

(5.7) into the sum of three martingales and applying the Dubins-Schwarz Theorem in
the form (5.8) we can write as long as s  t  t0, s0  t0 and d̃  2�N ,

P

h

|F
(1)

aλ
n
(s, t, x)� F

(1)

aλ
n
(s0, t0, x0)| � d̃((s, t, x)(s0, t0, x0))1�η1∆(m,n, d̄N ),

(t, x) 2 Z(N,n,K + 1,�), N 0 ^N � N3, t
0  TK

i

 3P

"

sup
ud̃2�3η1/2(∆(m,n,d̄N )/16)2

|B(u)| � d̃1�η1∆(m,n, d̄N )/3

#

 3P



sup
u1

|B(u)| � d̃�η1/4

�

 C

Z 1

d̃�η1/4

exp(�y2/2) dy

 C exp(�d̃�η1/2/2), (5.23)

where we used the Reflection Principle in the next to last inequality.
Next apply a lemma similar to the Kolmogorov-Centsov estimate Lemma 5.7 in [10],

which is used in the proof of Proposition 5.8 in [10]. For details we refer to the proof
in Section 9.4 of [15]. Then, we obtain for a certain N5.9 which is bounded uniformly in
n,�,�: For N � N5.9 and (t, x) 2 Z(N,n,K,�)(!), d̃ = d̃((s, t, x), (s0, t0, x0))  2�N and
s  t  t0, s0  t0  TK we have

|F
(1)

aλ
n
(s, t, x)� F

(1)

aλ
n
(s0, t0, x0)|  32(q + 2)4cq+1

∆(m,n, 2�N )d̃1�η1 . (5.24)

Thus,

|F
(1)

aλ
n
(s, t, x)� F

(1)

aλ
n
(s0, t0, x0)|  2�88q�4d̃1�η1∆̄u0

1
(m,n,�, "0, 2

�N ). (5.25)

However if t0  t, then (t0, x0) 2 Z(N � 1, n,K + 1,�), and interchanging (s, t, x) with
(s0, t0, x0) gives the same estimate as (5.22) so that we obtain that Qtot

aλ
n
(s0, t0, x0, s, t, x) is
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bounded by 4 times the right hand side of (5.22). Proceeding as in the case t  t0 we
end up with (5.25) replaced by

|F
(1)

aλ
n
(s0, t0, x0)� F

(1)

aλ
n
(s, t, x)|  2�86q�4d̃1�η1∆̄u0

1
(m,n,�, "0, 2

�N ).

This completes the proof for the first coordinate. Clearly, the constants c5.9 and N5.9

can be chosen such that the result holds uniformly for all dimensions 1  l  q.

So putting things together we get for ru1,δ(t, x) = (F
(l)
δ (t, t, x))1lq:

Corollary 5.10. Let 0  m  m̄+ 1 and assume that (Pm) holds. Let n, ⌘1, "0,K,� and

� be as in Proposition 5.9. For all N � N5.9, (t, x) 2 Z(N,n,K,�), x0 2 R
q and t0  TK :

d((t, x), (t0, x0))  2�N implies that

|ru1,aλ
n
(t, x)�ru1,aλ

n
(t0, x0)|  2�85q�2 d((t, x), (t0, x0))1�η1∆̄u0

1
(m,n,�, "0, 2

�N ).

This result gives us something like a Hölder regularity of the gradient ru1,δ with
� = aλn. This will be helpful later.

Recalling the definition of Jn,i, however, we just "know" the range of the gradients of
u1,δ for � = an. But it will be helpful to find a result relating this range to the gradients

of u1,δ for � = aλn. The definition of F
(l)
δ allows us to relate these two gradients, since

for � � an and s = t� � + an,

@xl
u1,δ(t, x) = @xl

Pδ

�

u(t�δ)+
�

(x) = @xl
Pt�s+an

(u(s�an)+)(x)

= �F
(l)
δ (s, t, x) (5.26)

= �F
(l)
δ (t� � + an, t, x).

Note the last equality holds for any t, �, an � 0, where they are trivial if t� �  0. So we
need to relate F

(l)
δ (t� aλn + an, t, x) and F

(l)
δ (t, t, x). We can show a lemma on the square

function QT,an(s, t, t, x) using Lemma 4.2 and 4.4 and ideas from the proof of Lemma
5.6. Then transfer that to the following proposition using the same techniques as in the
proof of Proposition 5.9. For details we refer to Lemma 5.9 in [10] or to [15].

Proposition 5.11. Let 0  m  m̄+ 1 and assume that (Pm) holds. For all n 2 N, ⌘1 2
(0, 1/2], "0 2 (0, 1),K 2 N

�K1 ,� 2 [0, 1/2] there is an N5.11 = N5.11(m,n, ⌘1, "0,K,�)(!) 2
N

�2 almost surely such that for all N � N5.11, (t, x) 2 Z(N,n,K,�) and 0  t � s 
N�8/η1 it holds that for l = 1, . . . , q:

|F (l)
an

(s, t, x)� F (l)
an

(t, t, x)|  2�78q�1a�ε0
n

⇢

2�N(1�η1)
⇣

a1/2n _ 2�N
⌘(γγm�1�α/2)^0

+2Nη1a�α/4
n

⇣

2�N
p
an

+ 1
⌘⇣

2�Nγγ̃m + aβγn
�p

an _ 2�N
�γ
⌘

+(t� s)(1�η1)/2
h

�p
t� s _p

an
�γγ̃m�1�α/2

+ aβγn
�p

t� s _p
an
�γ�1�α/2

io

.

Moreover, N5.11 is stochastically bounded uniformly in (n,�).

There is a similar result forGδ in a special case ((t, x) = (t0, x0)), which will be needed
later:

Proposition 5.12. Let 0  m  m̄ + 1 and assume that (Pm) holds. For any n 2
N, ⌘1 2 (0, 1

2 ), "0 2 (0, 1), K 2 N
�K1 , � 2 [0, 1] and � 2 [0, 1/2], there is an N5.12 =
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N5.12(m,n, ⌘1, "0,K,�,�) 2 N a.s. such that for all N � N5.12, (t, x) 2 Z(N,n,K,�), s  t

and
p
t� s  2�N ,

|Gaλ
n
(s, t, x)�Gaλ

n
(t, t, x)|  2�95a�ε0�λα/4

n (t� s)(1�η1)/2

h⇣

aλ/2n _ 2�N
⌘γγm

+ aβγn
�p

an _ 2�N
�γ
i

.

Moreover, N5.12 is stochastically bounded uniformly in (n,�,�).

The proof of this result is similar, even easier than the proof leading to Proposition
5.9 and is omitted here, but details can be found in Section 9.8 in [15].

Recall that the goal of this section was to do the induction step of (Pm), i.e. to get
good Hölder estimates on u = u1,δ + u2,δ. Now we are able to give a result for u1,δ.

Notation: Let

∆̄u1(m,n,�, "0, 2
�N ) = a�ε0�λ(1+α/2)/2

n



aβ+λ(1+α/2)/2
n +

⇣

aλ/2n _ 2�N
⌘γγ̃m+1

+

+1(m � m̄)aβ+λ(1+α/2)/2
n + aβγn

⇣

aλ/2n _ 2�N
⌘γ+1

�

and

N 0
5.13(⌘) = min{N 2 N : 21�N  N�8/η}

for a constant ⌘ > 0.

Proposition 5.13. Let 0  m  m̄+ 1 and assume that (Pm) holds. For all n 2 N, ⌘1 2
(0, 1

2 ^ (1 � α
2 )), "0, "1 2 (0, 1),K 2 N

�K1 , � 2 ["1, 1 � "1], � 2 [0, 1/2] there is an N5.13 =

N5.13(m,n, ⌘1, "0,K,�,�)(!) 2 N
�2 almost surely such that for all N � N5.13 and n,�

that satisfy

an  2�2(N5.11+1) ^ 2�2(N 0

5.13(η1ε1)+1) and � � "1, (5.27)

and (t, x) 2 Z(N,n,K,�), t0  TK , x0 2 R
q s.t. d((t, x), (t0, x0))  2�N it holds that

|u1,aλ
n
(t, x)� u1,aλ

n
(t0, x0)| 2�90d((t, x), (t0, x0))1�η1∆̄u1

(m,n,�, "0, 2
�N ).

Moreover, N5.13 is stochastically bounded uniformly in (n,�,�).

We leave out the proof since it is really the same as the proof of Proposition 5.13 in
[10], but present the key idea. By definition

|u1,aλ
n
(t0, x0)� u1,aλ

n
(t, x)|  |u1,aλ

n
(t0, x0)� u1,aλ

n
(t0, x)|+ |u1,aλ

n
(t0, x)� Pt�t0(u1,aλ

n
(t0, ·))(x)|

+ |Gaλ
n
(t0, t, x)�Gaλ

n
(t, t, x)|

=: B1 +B2 +B3.

Then use Corollary 5.10 for B1 and B2 and Proposition 5.12 for B3 to get the result.
We also would like to obtain a similar result for u2,δ. We omit its proof which is

simpler than the previous calculations. In the statement of the result we use some
abbreviations.

Notation:

∆̄1,u2
(m,n, "0, 2

�N ) = a�ε0
n 2�Nγ



⇣

a1/2n _ 2�N
⌘γ(γ̃m�1)

+ aβγn

�

,

∆̄2,u2(m,n,�, "0) = a�ε0
n

h

a
λ
2 (γγ̃m�α/2)
n + aβγn a

λ
2 (γ�α/2)
n

i

.
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Proposition 5.14. Let 0  m  m̄ + 1 and assume that (Pm) holds. For all n 2
N, ⌘1 2 (0, α

4 ^ (1 � α
2 )), "0 2 (0, 1),K 2 N

�K1 , � 2 [0, 1], � 2 [0, 1
2 ] there is an N5.14 =

N5.14(m,n, ⌘1, "0,K,�,�)(!) 2 N almost surely such that for all N � N5.14, (t, x) 2
Z(N,n,K,�), t0  TK :

d := d((t, x), (t0, x0))  2�N implies that

|u2,aλ
n
(t, x)� u2,aλ

n
(t0, x0)|  2�94

⇣

d(1�α/2)(1�η1)∆̄1,u2
+ d1�η1∆̄2,u2

⌘

.

Moreover, N5.14 is stochastically bounded uniformly in (n,�,�).

We omit the proof since the ideas are the same as those leading to Proposition 5.9
and many steps are analogous to Section 7 in [10]. Now we are ready to complete this
section by proving the induction step.

Proof of Proposition 5.2:

Let 0  m  m̄ and assume (Pm). We want to show (Pm+1). Let therefore "0 2 (0, 1),
M = d 2

ε0
e, "1 = 1

M  "0/2, and �i = i"1 for i = 1, . . . ,M . Then clearly �i 2 ["1, 1] for all
i = 1, . . . ,M .

Let n, ⇠,K,� be as in (Pm) and w.l.o.g. ⇠ is sufficiently large such that for ⌘1 := 1� ⇠

we have ⌘1 < α
4 ^ (1� α

2 ). Set ⇠
0 = (1 + ⇠)/2 2 (⇠, 1) and

N2(m,n, ⇠, "0,K,�)(!) =

M
_

i=1

N5.13(m,n, ⌘1, "0/2,K + 1,�i,�),

N3(m,n, ⇠, "0,K,�)(!) =
M
_

i=1

N5.14(m,n, ⌘1, "0/2,K + 1,�i,�),

N4(m,n, ⇠, "0,K,�)(!) =

⇠

2

1� ⇠

⇡

(N5.11 _N5.130 + 1) =:
1

1� ⇠
N5,

N1 = N2 _N3 _N4 _N0(⇠
0,K) + 1 2 N,

where N0(⇠
0,K) is the constant we obtained from Theorem 2.3. By the results on each

of the single constants we know that N1 is then stochastically bounded uniformly in
(n,�). Let now

N � N1, (t, x) 2 Z(N,n,K,�), t0  TK and d := d((t, x), (t0, x0))  2�N .

There are two cases for the values of n to consider. We start with small n:

an > 2�N5(m,n,η1,ε0,K,β), (5.28)

which implies
p
an

γ̃m+1�1 � a
1/2
n � 2�N5/2. As N � N0(⇠

0,K) we get by (P0) in the case
"0 = 0,

|u(t0, x0)|  2�Nξ0

 2�Nξ0
h

�p
an _ 2�N

�γ̃m+1
i

2N5/2

 2�N(1�ξ)/22N5/22�Nξ
h

�p
an _ 2�N

�γ̃m+1
+ aβn

i

 2�Nξ
h

�p
an _ 2�N

�γ̃m+1
+ aβn

i

.

This already completes the first case. For large n,

an  2�N5 , (5.29)
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let N 0 = N � 1 � N2 _ N3, which gives (t0, x0) 2 Z(N 0, n,K + 1,�) by the triangle
inequality. As (5.29) holds, we can apply Proposition 5.13 with ("0/2,K + 1) instead
of ("0,K). Additionally, use Proposition 5.14. So we can estimate |u(t̂0, x̂0) � u(t0, x0)|.
Before doing so we have to choose which partition with � = aλn of u to take in the sense
of (3.3) and then obtain some estimates. Therefore select i 2 {1, . . . ,M} such that the
following holds:

(a) If 2�N >
p
an then a

λi/2
n < 2�N 0  a

λi�1/2
n = a

λi/2
n a

�ε1/2
n .

(b) If 2�N  p
an then i = M and hence a

λi/2
n =

p
an � 2�N 0

.

Then in both cases
aλi/2
n _ 2�N 0  p

an _ 2�N 0

and writing � = �i leads to

a
�λ

2 (1+α/2)
n

⇣p
an _ 2�N 0

⌘1+α/2


⇣

a
�λ

2
n

⇣p
an _ 2�N 0

⌘⌘1+α/2



8

>

<

>

:

⇣

a
�λ/2
n 2�N 0

⌘1+α/2

 a
� ε1

2 (1+α/2)
n in case (a),

⇣

a
�λ/2
n a

1/2
n

⌘1+α/2

= 1  a
� ε1

2 (1+α/2)
n in case (b).

Hence in both cases we obtain a bound of

a
�λ

2 (1+α/2)
n

⇣p
an _ 2�N 0

⌘1+α/2

 a
� ε1

2 (1+α/2)
n . (5.30)

Furthermore, we have by ⇠ � ↵/2  (2� ↵) ξ2

2�N 0(2�α) ξ
2  2�N 0ξ2N

0 α
2 and

2�N 0((2�α) ξ
2+γ) = 2�N 0ξ2�N 0(γ�α/2)

 2�N 0ξ
⇣

a1/2n _ 2�N 0

⌘γ�α/2

(� > ↵/2).

Using the aforementioned propositions, the special i, (5) and the previous lines we get

|u(t̂0, x̂0)� u(t0, x0)|

 |u
1,a

λi
n
(t̂0, x̂0)� u

1,a
λi
n
(t, x)|+ |u

2,a
λi
n
(t̂0, x̂0)� u

2,a
λi
n
(t, x)|

 2�90a
� ε0

2
n 2�N 0ξ

⇢

aβn + a
�λ

2 (1+α
2 )

n aβγn



⇣

a
λ
2
n _ 2�N 0

⌘γ+1

+ a
�λ

2 (1+α/2)
n

⇣

a
λ
2
n _ 2�N 0

⌘γγ̃m+1
�

+1(m = m̄)
⇣

a
λ
2
n _ 2�N

⌘o

+ 2�94a�ε0/2
n

⇢

2�N 0((2�α) ξ
2+γ)



⇣

a1/2n _ 2�N 0

⌘γ(γ̃m�1)

+ aβγn

�

+2�N 0ξ



⇣

a1/2n _ 2�N 0

⌘γγ̃m�α/2

+ aβγn

⇣

a1/2n _ 2�N 0

⌘γ�α/2
��

 2�89a�ε0/2
n 2�N 0ξ

⇢

aβn + a�λ(1+α/2)/2
n aβγn

⇣

a1/2n _ 2�N
⌘1+α/2 ⇣

a1/2n _ 2�N
⌘γ�α/2

+a�λ(1+α/2)/2
n

⇣

a1/2n _ 2�N
⌘1+α/2 ⇣

a1/2n _ 2�N
⌘γγ̃m�α/2

+ 1(m = m̄)
⇣

a1/2n _ 2�N
⌘

+
⇣

an _ 2�N 0

⌘γ�α/2


⇣

a1/2n _ 2�N 0

⌘γ(γ̃m�1)

+ aβγn

�

+
⇣

a1/2n _ 2�N 0

⌘γ̃m+1

+ aβγn

⇣

a1/2n _ 2�N 0

)γ�α/2
⌘

�

.
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Now apply (5.30) to bound this by

2�89a�ε0/2
n a

� ε1
2 (1+α/2)

n 2�N 0ξ
h

aβna
ε1
2 (1+α/2)
n + aβγn

�p
an _ 2�N

�γ�α/2
⇣

2a
ε1
2 (1+α/2)
n + 1

⌘

+1(m = m̄)
⇣

a1/2n _ 2�N
⌘

+
�p

an _ 2�N
�γ̃m+1

⇣

1 + 2a
ε1
2 (1+α/2)
n

⌘i

.

Trivially,
�p

an _ 2�N
�γ̃m+1�1

+ 1(m = m̄)
�p

an _ 2�N
�

 2
�p

an _ 2�N
�

.

Then, since "0  "1/2 and "1 � 0,

|u(t̂0, x̂0)� u(t0, x0)|  2�872�N 0ξa�ε0
n

h

aβn + aβγn
�p

an _ 2�N
�γ�α/2

+
�p

an _ 2�N
�γ̃m+1

i

.

Now we can proceed to the last step of this statement and obtain

|u(t0, x0)|  |u(t̂0, x̂0)|+ |u(t̂0, x̂0)� u(t0, x0)|

 p
an2

�N + 2�852�Nξa�ε0
n

h

aβn + aβγn
�p

an _ 2�N
�γ�α/2

+
�p

an _ 2�N
�γ̃m+1

i

 a�ε0
n 2�Nξ

np
an2

�N(1�ξ) + 2�85
h

aβn + aβγn
�

2�N _p
an
�γ�α/2

+
�

2�N _p
an
�γ̃m+1

io

.

Clearly,
p
an2

�N(1�ξ)  p
an/2  aβn/2 and by (5.29) and an easy calculation (see Lemma

5.15 in [10]) we arrive at

aβγn
�

2�N _p
an
�γ�α/2  aβn _ 2�N  aβn +

�

2�N _p
an
�γγ̃m�α/2

.

Therefore, we can write

|u(t0, x0)|  a�ε0
n 2�Nξ



aβn
2

+ 2�84aβn + 2�84
�

2�N _p
an
�γγ̃m�α/2

�

 a�ε0
n 2�Nξ

h

aβn +
�

2�N _p
an
�γ̃m+1�1

i

,

since
�̃m+1 =

⇣

��m + 1� ↵

2

⌘

^ 2. (5.31)

This completes the proof of Proposition 5.2.

6 Proof of Proposition 3.2

Fix K0 2 N
�K1 , "0, "1 2 (0, 1) as in the definition (3.6) and for 0 < �  1� "1 define

�(�) := 2(� + "1) 2 [0, 1]. (6.1)

We define four collections of random times the first one being

U
(1)
M,n,β = inf

n

t � 0 : 9" 2 [0, 2�M ], |x|  K0 + 1, x̂0, x
0 2 R

q, such that |x� x0|  2�M ,

|x̂0 � x|  ", |u(t, x̂0)|  an ^ (
p
an"), |ru1,an

(t, x̂0)|  aβn, and

|ru1,aλ
n
(t, x)�ru1,aλ

n
(t, x0)| > 2�82a�ε0�ε1(1+α/2)

n |x� x0|1�ε0

⇥
h

a�β(1+α/2)
n (" _ |x� x0|)2γ + 1 + aβ(γ�1�α/2)

n (" _ |x0 � x|)γ
io

^TK0
, (6.2)

whenever M,n 2 N, � > 0. We define U
(1)
M,n,0 in the same way, omitting the condition on

|ru1,an(t, x̂0)|. These random times are actually stopping times by Theorem IV.T.52 of
[7].
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Lemma 6.1. For all n 2 N, � as in (3.8) it holds that U
(1)
M,n,β % TK0

almost surely as

M ! 1 and

lim
M!1

sup
n,0β1/2�ε1

P[U
(1)
M,n,β < TK0 ] = 0. (6.3)

Proof. The first statement about the almost sure convergence follows from the second
statement in (6.3) by monotonicity of the probabilities in M . For the second statement
use Corollary 5.10 with m = m̄ + 1 (justified by Proposition 5.2), ⌘1 = "0, K = K0 + 1.
Then there is an N0 = N0(n, "0, "1,K0+1,�) stochastically bounded in n and � such that
for all N � N0, (t, x) 2 Z(N,n,K0 + 1,�) and |x� x0|  2�N it holds that

|ru1,aλ
n
(t, x)�ru1,aλ

n
(t, x0)|  2�85|x� x0|1�ε0a�ε0

n

h

a
�(β+ε1)(1+

α
2 )

n 2�2Nγ +
�

aβ+ε1
n _ 2�N

�

0

+a�(β+ε1)(1+α/2)
n aβγn

�

aβ+ε1
n _ 2�N

�γ
i

 2�85|x� x0|1�ε0a�ε0�ε1(1+α/2)
n

h

a�β(1+α/2)
n 2�2Nγ + 1 + aβ(γ�1�α/2)

n

�

aβ+ε1
n _ 2�N

�γ
i

.

Note that by �(� � 1� ↵/2) + �� + (� + "1)� = �(2� � ↵/2� 1) + "1� > 0 we now obtain

|ru1,aλ
n
(t, x)�ru1,aλ

n
(t, x0)|  2�84a�ε0�ε1(1+α/2)

n |x� x0|1�ε0

h

a�β(1+α/2)
n 2�2Nγ + 1 + aβ(γ�1�α/2)

n 2�Nγ
i

.

We only do the case � > 0. Assume thatM > N0 and that there is a t < TK0 , " 2 [0, 2�M ],
|x|  K0 + 1, x̂0, x

0 2 R
q with |x� x0|  2�M , |x̂0 � x|  ", |u(t, x̂0)|  an ^ (

p
an"), and

|ru1,an
(t, x̂0)|  aβn.

If x 6= x0, then there is a N � N0 such that 2�N�1 < |x � x0| _ "  2�N  2�N0 . Then
(t, x) 2 Z(N,n,K0 + 1,�i) and we can use the previous estimate. Hence,

|ru1,aλ
n
(t, x)�ru1,aλ

n
(t, x0)|  2�82a�ε0�ε1(1+α/2)

n |x� x0|1�ε0

h

a�β(1+α/2)
n (" _ |x� x0|)2γ + 1 + aβ(γ�1�α/2)

n (" _ |x� x0|)γ
i

.

Therefore, U
(1)
M,n,β = TK0

and thus P(UM,n,β(1) < TK0
) = P(M < N0). As N0 is stochasti-

cally bounded uniformly in (n,�) the assertion follows.

Remark 6.2. The previous lemma is where the fact that we consider splitting at � = aλn
rather than � = an is suggested.

Let us define more stopping times, this time with u2. For 0 < �  1/2� "1 set

U
(2)
M,n,β = inf

n

t � 0 : 9" 2 [0, 2�M ], |x|  K0 + 1, x̂0, x
0 2 R

q, such that |x� x0|  2�M ,

|x̂0 � x|  ", |u(t, x̂0)|  an ^ (
p
an"), |ru1,an(t, x̂0)|  aβn, and

|u2,aλ
n
(t, x)� u2,aλ

n
(t, x0)| > 2�87a�ε0

n

n

|x� x0|(1�ε0)(1�α/2)

h

(
p
an _ " _ |x0 � x|)

2γ
+ aβγn (" _ |x0 � x|)

γ
i

+|x� x0|1�ε0aβ+ε1(1�γ)
n

oo

^ TK0
. (6.4)

And in the case � = 0 we make the same definition but without the condition on
|ru1,an

(t, x̂0)|. Then, we obtain the following.
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Lemma 6.3. For all n 2 N, � as in (3.8) it holds that U
(2)
M,n,β % TK0

almost surely as

M ! 1 and

lim
M!1

sup
n,0β1/2�ε1

P[U
(2)
M,n,β < TK0

] = 0. (6.5)

As the proof is similar to the one of Lemma 6.1 this time using Proposition 5.14
instead of Corollary 5.10 we omit it. Define

∆̃u0

1
(n, "1, "0,�) = a�ε0

n "�ε0{"+ a�α/4
n ("a�1/2

n + 1)("2γ + aβγn (" _p
an)

γ)}

and for 0 < �  1/2� "1 set

U
(3)
M,n,β = inf

n

t � 0 : 9" 2 [2�a�(β+ε1)ε0/4
n , 2�M ], |x|  K0 + 1, x̂0 2 R

q,

|x̂0 � x|  ", |u(t, x̂0)|  an ^ (
p
an"), |ru1,an(t, x̂0)|  aβn, and

|ru1,aλ
n
(t, x)�ru1,an(t, x)| > 2�74

⇣

∆̃u0

1
(n, "1, "0,�) + aβ+ε1(1�γ)/4

n

⌘o

^ TK0 .

If case � = 0 we make an analogous definition without the condition on |ru1,an
(t, x̂0)|.

Again those are stopping times, and we obtain the analogous statement:

Lemma 6.4. For all n 2 N, � as in (3.8) it holds that U
(3)
M,n,β % TK0

almost surely as

M ! 1 and

lim
M!1

sup
n,0β1/2�ε1

P[U
(3)
M,n,β < TK0

] = 0. (6.6)

The proof of this lemma requires Proposition 5.11 and structurally equals the one of
Lemma 6.1. As the fourth collection of stopping times define

U
(4)
M = inf

�

t � 0 : 9" 2 [0, 2�M ], |x|  K0 + 1, x̂0, x
0 2 R

q, |x� x0|  2�M , |x� x̂0| < ",

|u(t, x̂0)|  ", |u(t, x)� u(t, x0)| > (" _ |x0 � x|)1�ε0
 

^ TK0
. (6.7)

Lemma 6.5. Almost surely U
(4)
M % TK0

as M ! 1.

This proof uses Theorem 2.3 and is similar to the proof of Lemma 6.1, so it is omitted
here. Finally define the stopping times for 3.2:

UM,n,β =

3
_

j=1

U
(j)
M,n,β

UM,n =

0

@

L(ε0,ε1)
_

i=0

UM,n,βi

1

A ^ U
(4)
M .

By Lemmas 6.1, 6.3, 6.4, 6.5 we have that UM,n fulfills (H1). Hence there is not much
left to do in order to complete the proof of Proposition 3.2. It just remains to show the
compactness of J̃n,i(s) and J̃n,i(s) � Jn,i(s) for all s < UM,n. We will be mostly concerned
with J̃n,i(s) � Jn,i(s), show that in several steps and assume (3.10) throughout the rest
of the section, i.e.

aε1n  2�M�4 and
p
an � 2�a�ε0ε1/4

n . (6.8)

We first give a list of three lemmas that are analogous to Lemmas 6.5, 6.6 and 6.7 in
[10]. As the proofs are quite similar we only show the last lemma since it also contains
a slight improvement of Lemma 6.7 in [10].
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Lemma 6.6. When i 2 {0, . . . , L}, 0  s < UM,n, x 2 Jn,i(s), then

(a)
�

�

�ru1,an
(s, x̂n(s, x))�ru

1,a
λi
n
(s, x̂n(s, x))

�

�

�  2�71a
βi+ε1(1�γ)/2
n .

(b) For i > 0: ru
1,a

λi
n
(s, x̂n(s, x)) · �x 

�

�

�u
1,a

λi
n
(s, x̂n(s, x))

�

�

�  aβi
n /2.

(c) For i < L: ru
1,a

λi
n
(s, x̂n(s, x)) · �x � a

βi+1
n /8.

The proof is done using U
(3)
M,n,β . Next consider the derivatives of u1,aλ

n
.

Lemma 6.7. When i 2 {0, . . . , L}, 0  s < UM,n, x 2 Jn,i(s) and |x� x0|  5¯̀n(�i), then

(a) For i > 0:
�

�

�ru
1,a

λi
n
(s, x0)

�

�

�  aβi
n .

(b) For i < L: ru
1,a

λi
n
(s, x0) · �x � a

βi+1
n /16.

The proof uses U
(1)
M,n,β , but is left out. To finish things we only need a similar result

for the u2 expressions for which we give the details of the proof:

Lemma 6.8. When i 2 {0, . . . , L}, 0  s < UM,n, x 2 Jn,i(s), x
0, x00 2 R

q and |x � x0| 
4
p
an, then

�

�

�u
2,a

λi
n
(s, x0)� u

2,a
λi
n
(s, x00)

�

�

�  2�75aβi+1
n

⇣

|x0 � x00| _ a
2
α
(γ�βi+1�ε1)

n _ an

⌘

as long as |x0 � x00|  ¯̀
n(�i).

Remark 6.9. This lemma is stricter than Lemma 6.7 of [10]. Following their strategy,

we would obtain 1
α
(� � 2�i(1� �)� "1) instead of the larger exponent 2

α
(� � �i+1 � "1).

Proof. Let (i, n, s, x, x0) be as above and " = 5
p
an  2�M by (3.10). Then

|x0 � x̂n(s, x)|  |x0 � x|+
p
an  ", |x0|  K0 + 1 and

|u(s, x̂n(s, x))|  an = an ^ (
p
an").

If i > 0 then for x 2 Jn,i(s) we obtain |ru1,an(s, x̂n(s, x))|  aβi
n /4  aβi

n . Let

Q(n, "0,�i, r) := a�ε0
n r(1�ε0)(1�α/2)

�

(
p
an _ r)2γ + aβiγ

n rγ
�

.

Assume that |x0 � x00|  ¯̀
n(�i) ( 2�M ). Since s < U

(2)
M,n,βi

, it holds that

|u
2,a

λi
n
(s, x0)� u

2,a
λi
n
(s, x00)|  2�87

h

Q(n, "0,�i, "_|x0 � x00|) +|x0 � x00|1�ε0aβi+ε1(1�γ)�ε0
n

i

 2�80
h

Q(n, "0,�i, |x
0 � x00|) + |x0 � x00|1�ε0aβi+ε1(1�γ)�ε0

n

i

.

(6.9)

We will now show the following
Claim:

Q(n, "0,�i, r)  2aβi+1
n

⇣

r _ a
2
α
(γ�βi+1�ε1)

n _ an

⌘

if 0  r  ¯̀
n(�i). (6.10)

We split the proof of the claim into several cases:
Case 1:

p
an  r  ¯̀

n(�i) = aβi+5ε1
n

In this case we will bound Q by 2a
βi+1
n r and this holds if

r(1�ε0)(1�α/2)+2γ�1  aβi+1+ε0
n (6.11)
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and

rγ�1+(1�ε0)(1�α/2)  aβi+1+ε0�βiγ
n . (6.12)

Note that
(1� "0)(1� ↵/2)� 1 + 2� � 2� � ↵/2� "0 � 1 (by (3.7)).

Therefore (6.11) already follows (additionally using 5"1 > 2"0). For the other inequality
by r  aβi+5ε1

n it suffices to show that

�i(1� �) + 2"0 � �i[� � 1 + (1� "0)(1� ↵/2)]� 5"1[� � 1 + (1� "0)(1� ↵/2)]  0.

This holds if

�i(2� � 1� ↵/2 + "0(1� ↵/2))� 2"0 + 5"1(� � ↵/2) � 0.

And this holds since ↵ < 2(2� � 1) and 2"0 < 5"1. So we are done with the first case.

Case 2: a
2
α
(γ�βi+1�ε1)

n  r <
p
an.

In this case

Q(n, "0,�i, r) = a�ε0
n r(1�ε0)(1�α/2)[aγn + aγβi

n rγ ].

We need to estimate both summands. First

r(1�ε0)(1�α/2)aγ�ε0
n  raβi+1

n

is true by the lower bound on r and the fact that "0 < "1(1+
α
2 )

�1. The second summand
satisfies

a�ε0
n r(1�ε0)(1�α/2)aγβi

n rγ  raβi+1
n ,

since

rγ�α/2�ε0(1�α/2)  p
an

γ�α/2�ε0

 p
an

1�γ+5ε0  aβi(1�γ)
n a2ε0n ,

by 3"0 < "1 < 1
2 (2� � 1� α

2 ).

Case 3: r < a
2
α
(γ�βi+1�ε1)

n

This follows from monotonicity in r and the fact that Case 2 actually occurs since

2

↵
(� � �i+1 � "1) �

2

↵

✓

� � 1

2

◆

>
↵/2

↵
=

1

2
.

Hence the claim in (6.10) is shown.
Next, consider the other term in (6.9) to finish the proof. In the case r � an we have

r1�ε0aβi+ε1(1�γ)�ε0
n (aβi+1

n r)�1 = r�ε0a�2ε0+ε1(1�γ)
n

 a�3ε0+ε1(1�γ)
n < 1,

since "0 < 1�γ
3 "1. So for any r > 0 (when using the previous estimate with (r _ an) in

place of r),

r1�ε0aβi+ε1(1�γ)�ε0
n  aβi+1

n (r _ an)

 aβi+1
n (r _ a

2
α
(γ�βi+1�ε1)

n _ an).

Putting things together we get the statement of the lemma.
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Lemma 6.10. If 0  s < UM,n and x 2 Jn,0(s) then

|u(s, x)� u(s, x0)|  (
p
an _ |x� x0|)

1�ε0
if x0 is such that |x0 � x|  2�M

and

|u(s, x0)|  3(
p
an)

1�ε0 if |x0 � x|  p
an.

This statement has just the same proof as Lemma 6.8 in [10], so we omit it. We are
finally going to complete the

Proof of Proposition 3.2.

The compactness of J̃n,i(s) follows from the continuity of all the functions involved and
the inclusion Jn,i(s) ⇢ J̃n,i(s) follows from Lemmas 6.7, 6.8 and 6.10.

A Appendix

We give the proofs of the results from Section 4 and add some auxiliary results.
Remember that C > 0 denotes a constant that may change its values from line to line.
We start with the proof of Lemma 4.1.

Proof of Lemma 4.1. Consider for r > 0, u � 1 the function

f(a) = a exp

✓

�ar

u

◆

, a � 0,

which attains its maximal value u1/r( 1r )
1/r exp(�1/r) at a = (ur )

1/r. Hence, choose
C(r0, r1) = maxr2[r0,r1](

1
r )

1/r exp(�1/r) to obtain the result.

This lemma can be applied in the next proof.

Proof of Lemma 4.2. By Lemma 4.1 applied with a = |x|

2
p
t
, u = 1, r = 2,

�

�

�p
(l)
t (x)

�

�

�  1p
t

|x|p
t
(2⇡t)�q/2 exp

✓

� |x|2

2t

◆

 C
1p
t
(4⇡t)�q/2 exp

✓

� |x|2

4t

◆

,

which proves the result.

Next we can extend the results of Lemma 5.2 in [11] to derivatives:

Lemma A.1. There is a uniform constant C > 0 such that for any 0 < t < t0, w, v 2 R
q

the following holds for l = 1, . . . , q :

(a) Setting v̂0 := 0 and v̂i := v̂i�1 + viei, 1  i  q, where ei is the i-th unit vectors in

R
q, we have for the spatial differences

�

�

�p
(l)
t (w + v)� p

(l)
t (w)

�

�

�  Ct�1

q
X

i=1

Z |vi|

0

dri p2t(w + v̂i�1 + riei). (A.1)

(b) We obtain for the time differences

�

�

�p
(l)
t (w)� p

(l)
t0 (w)

�

�

�  C|t� t0|
1
2 t�

1
2 (t�1/2p2t(w) + t0�1/2p4t0(w)). (A.2)
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Proof. We follow [11, page 1932]. Without loss of generality we can assume that l = 1.

Then we consider for (a):

�

�

�

�

w1

t
exp

✓

� |w|2

2t

◆

� w1 + v1
t

exp

✓

� |w + v|2

2t

◆�

�

�

�


�

�

�

�

w1

t
exp

✓

� |w|2

2t

◆

� w1 + v1
t

exp

✓

� |w + v̂1|
2

2t

◆�

�

�

�

+

q
X

i=2

�

�

�

�

w1 + v1
t

�

�

�

�

·

�

�

�

�

exp

✓

� |w + v̂i�1|
2

2t

◆

� exp

✓

� |w + v̂i|
2

2t

◆�

�

�

�

.

Now, observe that

@x1

�

x1/t exp(�|x|2/(2t))
�

= t�1 exp(�|x|2/(2t))� (x1/t)
2 exp(�|x|2/(2t))

and @x1
exp(�|x|2/(2t)) = �(x1/t) exp(�|x|2/(2t)). Hence, the above is bounded by

|

Z |v1|

0

dr1



t�1 exp

✓

� |w + r1e1|
2

2t

◆

� (
w1 + r1

t
)2 exp

✓

� |w + r1e1|
2

2t

◆�

|

+
|w1 + v1|

t

q
X

i=2

�

�

�

�

�

Z |vi|

0

dri
wi + ri

t
exp

✓

� |w + v̂i�1 + riei|
2

2t

◆

�

�

�

�

�

.

Now, use (4.1) twice with a = wi+rip
t

, u = 4 and r = 1 respectively r = 2 to bound this
further by

t�1

Z |v1|

0

dr1

✓

exp

✓

� |w + r1e1|
2

2t

◆

+ C exp

✓

� |w + r1e1|
2

2t
+

|w1 + r1|
2

4t

◆◆

+ C

q
X

i=2

Z |vi|

0

dri exp

✓

� |w + v̂i�1 + riei|
2

2t
+

|wi + ri|
2

4t
+

|w1 + v1|
2

4t

◆

 Ct�1

Z |v1|

0

dr1 exp

✓

� |w + r1e1|
2

4t

◆

+ Ct�1

q
X

i=2

Z |vi|

0

dri exp

✓

� |w + v̂i�1 + riei|
2

4t

◆

.

And the result follows by multiplication with (2⇡t)�q/2.
To prove (b) we consider the time differences, following (52) in [11]. First, rewriting

and then using the Mean Value Theorem we get

�

�

�p
(1)
t (w)� p

(1)
t0 (w)

�

�

� = (2⇡)�q/2

�

�

�

�

w1

t
t�q/2 exp

✓

� |w|2

2t

◆

� w1

t0
t0�q/2 exp

✓

� |w|2

2t0

◆�

�

�

�

 (2⇡)�q/2|(t1/2)�q�2 � (t01/2)�q�2| |w| exp

✓

� |w|2

2t

◆

+ (2⇡)�q/2|w|t0�q/2�1

�

�

�

�

exp

✓

� |w|2

2t

◆

� exp

✓

� |w|2

2t0

◆�

�

�

�

 (2⇡)�q/2(q + 2)|w||t1/2 � t01/2|(t1/2)�q�3 exp

✓

� |w|2

2t

◆

+ (2⇡)�q/2|w|t0�1�q/2

Z t01/2

t1/2
exp

✓

� |w|2

2s2

◆

|w|2

s3
ds.

Using a  exp(a) for a = |w|2/(4s2), we have

Z t01/2

t1/2
exp

✓

� |w|2

2s

◆

|w|2

s3
ds 

Z t01/2

t1/2

4

s
exp

✓

� |w|2

4s2

◆

ds  |t1/2 � t01/2|
4

t1/2
exp

✓

� |w|2

4t0

◆

.
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Using further (4.1) in both lines of the above expression, we can bound it by

�

�

�
p
(1)
t (w)� p

(1)
t0 (w)

�

�

�
 (2⇡)�q/2Ct�1�q/2|t1/2 � t01/2| exp

✓

� |w|2

4t

◆

+ (2⇡)�q/2Ct0�1/2�q/2|t1/2 � t01/2|t�1/2 exp

✓

� |w|2

8t0

◆

 C|t1/2 � t01/2|t�1/2
⇣

t�1/2p2t(w) + t0�1/2p4t0(w)
⌘

.

Next, combine that lemma with Lemma 5.1 in [11]:

Proof of Lemma 4.3. There are two estimates to make, one for each part of the ^.
First, let us consider the left part. Expanding the product in the integral gives

ZZ

�

�

�

⇣

p
(l)
t (w � x)� p

(l)
t0 (w � x0)

⌘⇣

p
(l)
t (z � x)� p

(l)
t0 (z � x0)

⌘�

�

� (|w � z|�α + 1) dwdz


ZZ

�

�

�p
(l)
t (w � x)p

(l)
t (z � x)

�

�

� (|w � z|�α + 1) dwdz

+

ZZ

�

�

�p
(l)
t0 (w � x0)p(l)t0 (z � x0)

�

�

� (|w � z|�α + 1) dwdz

+

ZZ

�

�

�p
(l)
t (w � x)p

(l)
t0 (z � x0)

�

�

� (|w � z|�α + 1) dwdz (A.3)

+

ZZ

�

�

�p
(l)
t0 (w � x0)p(l)t (z � x)

�

�

� (|w � z|�α + 1) dwdz.

Note that by a change of variables (and |w| = | � w|) the last two lines coincide. The
same is true for the first two lines except that t and t0 differ. Thus, expression (A.3) is
equal to

ZZ

�

�

�p
(l)
t (w)p

(l)
t (z)

�

�

� (|w � z|�α + 1) dwdz

+

ZZ

�

�

�p
(l)
t0 (w)p

(l)
t0 (z)

�

�

� (|w � z|�α + 1) dwdz

+ 2

ZZ

�

�

�p
(l)
t (w � (x� x0)) p(l)t0 (z)

�

�

� (|w � z|�α + 1) dwdz.

(A.4)

For the first line of (A.4) we write, using |wl|  |w| and (4.1),

t�1

ZZ

(2⇡t)�q |wl|p
t
exp

✓

� |w|2

2t

◆

|zl|p
t
exp

✓

� |z|2

2t

◆

(|w � z|�α + 1) dwdz

 Ct�1

ZZ

(2⇡t)�q exp

✓

� |w|2

4t

◆

exp

✓

� |z|2

4t

◆

(|w � z|�α + 1) dwdz,

C(↵, q)
⇣

t�α/2�1 + t�1
⌘

by an application of Lemma 5.1 in [11] and the fact that t  t0. For the second line (with
t0) we can do exactly the same and obtain the same even with t instead of t0, since t  t0.
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For the third line of (A.4) the same reasoning leads to the bound

2(tt0)�1/2

ZZ

(2⇡)�q(tt0)�q/2 |(w � (x� x0))l|p
t

exp

✓

� |w � (x� x0)|2

2t

◆

|zl|p
t0
exp

✓

� |z|2

2t0

◆

(|w � z|�α + 1) dwdz

Ct�1

ZZ

(2⇡t)�q exp

✓

� |w � (x� x0)|2

4t

◆

exp

✓

� |z|2

4t0

◆

(|w � z|�α + 1) dwdz,

 C(↵, q)(t�α/2�1 + t�1)

by an application of Lemma 5.1 in [11] and t  t0  K.

So this was the first part of the ^. To consider the second estimate, we start with a
decomposition

�

�

�

⇣

p
(l)
t (w � x)� p

(l)
t0 (w � x0)

⌘⇣

p
(l)
t (z � x)� p

(l)
t0 (z � x0)

⌘ �

�

� (A.5)


�

�

�

⇣

p
(l)
t (w � x)� p

(l)
t (w � x0)

⌘⇣

p
(l)
t (z � x)� p

(l)
t (z � x0)

⌘ �

�

�

+
�

�

�

⇣

p
(l)
t (w � x)� p

(l)
t (w � x0)

⌘⇣

p
(l)
t (z � x0)� p

(l)
t0 (z � x0)

⌘ �

�

�

+
�

�

�

⇣

p
(l)
t (w � x0)� p

(l)
t0 (w � x0)

⌘⇣

p
(l)
t (z � x)� p

(l)
t (z � x0)

⌘ �

�

�

+
�

�

�

⇣

p
(l)
t (w � x0)� p

(l)
t0 (w � x0)

⌘⇣

p
(l)
t (z � x0)� p

(l)
t0 (z � x0)

⌘ �

�

� .

We start with the simplest case in (A.5):
ZZ

�

�

�

⇣

p
(l)
t (w � x)� p

(l)
t (w � x0)

⌘⇣

p
(l)
t (z � x)� p

(l)
t (z � x0)

⌘�

�

� (|w � z|�α + 1) dwdz.

Changing variables, setting v = x� x0 and using Lemma A.1, we bound this by

C

ZZ

"

t�1

q
X

i=1

Z |vi|

0

dri p2t(w + v̂i�1 + riei)

#

2

4t�1

q
X

j=1

Z |vj |

0

dr̃j p2t(z + v̂j�1 + r̃jej)

3

5

(|w � z|�α + 1) dwdz

= Ct�2

q
X

i=1

Z |vi|

0

dri

q
X

j=1

Z |vj |

0

dr̃j

ZZ

p2t(w + v̂i�1 + riei)p2t(z + v̂j�1 + r̃jej)(|w � z|�α + 1) dwdz

 Ct�2(t�α/2 + 1)max
i,j

|vivj |  Ct�2(t�α/2 + 1)|v|22 = Ct�2(t�α/2 + 1)|x� x0|22,

using Lemma 5.1 (a) of [11] in the last step (compare this with Lemma 5.2 (b) in [11]).
Now, we consider the temporal distances in (A.5), i.e. the last line. There we get by

Lemma A.1 and Lemma 5.1 (a) of [11] that
ZZ

�

�

�

⇣

p
(l)
t (w � x0)� p

(l)
t0 (w � x0)

⌘⇣

p
(l)
t (z � x0)� p

(l)
t0 (z � x0)

⌘�

�

� (|w � z|�α + 1) dwdz

 c|t� t0|t�2(t�α/2 + 1),

and this is the next part of the proposition - similar to Lemma 5.3 in [11]. The mixed
parts in (A.5) can be done similarly.

Next we give the proof of a technical lemma:
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Lemma A.2. For R > 0 there is a constant C = C(R) such that for any y, ỹ 2 R
q,

0 < t  t0 and ⌘0 2 (1/R, 1/2) the following holds for l = 1, . . . , q:

(a) 1{|ỹ| > t01/2�η0 _ 2|y � ỹ|}
�

�

�p
(l)
t (y)

�

�

�  C exp
�

� 1
64 t

�2η0
�

p4t(y).

(b) 1{|ỹ| > t01/2�η0 _ 2|y � ỹ|}
�

�

�p
(l)
t (y)

�

�

�  2qC exp
�

� 1
64 t

�2η0
�

p16t(ỹ).

Proof. Let us write A := {|ỹ| > t01/2�η0 _ 2|y � ỹ|}, then on that event it holds that

|y| � |ỹ|� |y � ỹ| >
|ỹ|

2
>

t01/2�η0

2
� t1/2�η0

2 , thus
|y|2

t
� t�2η0

4
.

Using this and (4.1) twice, we calculate

1A|p
(l)
t (y)| = 1A

|yl|

t
(2⇡t)�q/2 exp(� |y|2

2t
)

 1A
|y|

t
(2⇡t)�q/2 exp(� |y|2

2t
)

 1ACt�1/2(2⇡t)�q/2 exp(� |y|2

4t
)

= 1ACt�1/2 exp(� |y|2

8t
)(2⇡t)�q/2 exp(� |y|2

8t
)

 1ACt�1/2 exp(� 1
32 t

�2η0)(2⇡t)�q/2 exp(� |y|2

8t
)

 1AC(R) exp(� 1
64 t

�2η0)p4t(y).

Given that on the set A we have

|ỹ| < 2|y| , thus |y|2 � |ỹ|2

4
,

we can bound this further by

1A|p
(l)
t (y)|  C(R) exp

�

� 1
64 t

�2η0
�

p16t(ỹ).

In order to prepare Lemma 4.5 we give the following proof.

Proof of Lemma 4.4. By (4.1) we bound

|w|r1pt(w)  4r1/2+q/2tr1/2p2t(w) and |z|r2pt0(z)  4r2/2+q/2t0r2/2p2t0(z).

Next apply Lemma 5.1 (b) of [11] if r3 > 0 and their Lemma 5.1 (a) if r3 = 0, to get the
first estimate. For the second estimate note that by (4.1) and |x|  p

qK,

pt(x� w)|w|r1  pt(x� w)2r1(|w � x|r1 + |x|r1)

 2R(4t)r1/2p2t(x� w) + (2
p
qK)r1pt(x� w)

 C(K,R)p2t(x� w)(tr1/2 + 1)

so that we obtain the result by the first part.

Finally, we can conclude the appendix with the proof of Lemma 4.5
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Proof of Lemma 4.5. By Hölder’s Inequality we can bound the left hand side in (4.2) by
ZZ

�

�

�

⇣

p
(l)
t�s(w � x)� p

(l)
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p
(l)
t�s(z � x)� p
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⌘�

�

�

(|w � z|�α + 1) dwdz
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⇥
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p
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e2r/η1(|w�x|+|z�x|)(|w � z|�α + 1) dwdz
iη1/2

.

Now estimate the first integral using Lemma 4.3 and expand the second one to obtain
as a bound for (4.2)

C(R)(t� s)�(1+α/2)(1�η1/2)
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,

(A.6)

where

L(x, x0, w, z, s, t0) := |w � x|2p/η1 |z � x|2p/η1 1{|w � x| > (t0 � s)1/2�η0 _ 2|x� x0|}

e2r/η1(|w�x|+|z�x|)(|w � z|�α + 1).

Since all of the four terms in the sum are similar in the end we only consider the last
one which is the worst with respect to (t � s)-asymptotics. Use Lemma 4.2, replace
w̃ = w � x, z̃ = z � x and then use Lemma A.2 (b) to obtain
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,

where we used Lemma 4.4, first part, in the next to last line and (t0 � s)  K. The other
summands are similar, we use Lemma A.2 (with t = t0 for lines 1 and 3) and can use the
exponential of t0�s (t�s in lines 1 and 3) to control all of the negative exponents. Putting
this back in (A.6) gives the result since (1 + ↵/2)(1� ⌘1/2) + (1/2)(⌘1/2)  1 + ↵/2.
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