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Abstract: This paper deals with the problem of piecewise auto regressive systems with exogenous input (PWARX) model identi-
fication based on clustering solution. This problem involves both the estimation of the parameters of the affine sub-models and the

hyper planes defining the partitions of the state-input regression. The existing identification methods present three main drawbacks
which limit its effectiveness. First, most of them may converge to local minima in the case of poor initializations because they are based
on the optimization using nonlinear criteria. Second, they use simple and ineffective techniques to remove outliers. Third, most of
them assume that the number of sub-models is known a priori. To overcome these drawbacks, we suggest the use of the density-based

spatial clustering of applications with noise (DBSCAN) algorithm. The results presented in this paper illustrate the performance of
our methods in comparison with the existing approach. An application of the developed approach to an olive oil esterification reactor
is also proposed in order to validate the simulation results.
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1 Introduction

Hybrid systems are heterogeneous dynamical systems
that arise out of the interaction of continuous and discrete
dynamics. The continuous behavior is the fact of the nat-
ural evolution of the physical process whereas the discrete
behavior can be due to the presence of switches, operating
phases, transitions, computer program codes, etc. These
hybrid dynamics characterize the behavior of a broad class
of physical systems, for example, the real-time control sys-
tems where physical processes are controlled by embedded
controllers. The notion of hybrid system can also be used
to represent complex nonlinear continuous systems. In fact,
the operating range of a nonlinear system can be decom-
posed into a group of operating point. For each operation
points, we associate a simple sub-model (linear or affine)
with it. Indeed, a complex system can be modeled as a
hybrid system switching between simple sub-models. This
paper addresses the problem of identification of hybrid sys-
tems represented by piecewise auto regressive systems with
exogenous input (PWARX). This problem consists in build-
ing mathematical models of hybrid systems from observed
input-output data. The PWARX models have attracted a
considerable attention in recent years, since they provide
an efficient solution for modeling a wide range of engineer-
ing applications. In addition, these models are able to ap-
proximate any nonlinear system with arbitrary accuracy[1].
Moreover, the piecewise affine (PWA) model can be con-
sidered as a generic representation for other hybrid models
such as jump linear (JL) models[2], Markov jump linear
(MJL) models[3] mixed logic dynamical (MLD) models[4, 5],
max-min-plus-scaling systems (MMPS) models[6] , linear
complementarity (LC) models[7], extended linear comple-
mentarity (ELC) models[8]. In fact, the transfer of the
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results of PWARX models to other classes of hybrid sys-
tems is insured thanks to the properties of equivalence of
PWARX models[9]. The PWARX models are obtained by
decomposing the regression domain into a finite number
of non-overlapping convex polyhedral regions and by as-
sociating a simple linear model with each region. Con-
sequently, two main problems must be considered for the
identification of PWARX models: One is the estimation of
the parameters of the sub-models, and another is the de-
termination of the hyper planes defining the partitions of
the state-input regression. Consequently, the identification
of PWARX models is one of the most difficult problems
that represent an area of research where considerable work
has been done in the last decade[10−13]. In fact, numer-
ous solutions have been proposed in the literature for the
identification of the PWARX models such as the algebraic
solution[14], the clustering-based solution[12], the Bayesian
solution[15], the bounded-error solution[16] and so on. Only
the clustering one is considered in this paper. This solution
consists of three main steps, which are data classification,
parameter estimation and region reconstruction. It is easy
to remark that the performance of this approach depends on
the efficiency of the used classification algorithm. The early
methods have favored the simplicity of implementation. For
example, the method proposed in [12] uses a clustering tech-
nique based on a modified k-means algorithm[17] . It as-
sumes that the number of sub-models and their orders are
known a priori. It consists in classifying the data into sev-
eral clusters or local sets. The identified parameter vectors
from these small local sets are then collected to the param-
eter vectors of the true sub-models. Therefore, the param-
eters of the sub-models can be obtained by clustering the
local parameter vectors. This method is characterized by its
simplicity of implementation. But the presence of outliers
in the data and the poor initializations degrade its perfor-
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mances. A modification of this approach was proposed in
[18] to allow the number of sub-models to be estimated as
the data are classified. This modified approach uses a hi-
erarchical classification method called single-linkage. The
idea of this method consists in defining a distance between
two disjoint local sets. These sets are then fused if a given
criterion is verified. It should be noted that the num-
ber of sub-models is critically dependent on a parameter
supplied by the user. In fact, a small value of this param-
eter would produce a large number of sub-models. How-
ever, if the parameter has a too large value, it could give a
single sub-linear model. Another method was introduced
in [19]. It exploits a statistical classification approach
based on a Gaussian mixture model which allows to com-
pletely separate the data without considering the parameter
vectors. In fact, its performance degrades when the data
of different sub-models do not form classes quite distant
in the regression space. In addition, the equipartition of dif-
ferent models can favorite some models over others in deci-
sion making. It assumes that the number of sub-models and
the orders are known a priori. Finally, the method proposed
in [20, 21] is based on unsupervised classification algorithm
which is combined with regression techniques in order to
separate the data according to their respective sub-models
and thus estimate their parameters. The classification uses
the principle of the k-nearest neighbor′s algorithm. In fact,
each nearest neighbor of a given vector provides information
on the allocation of this vector. This approach requires the
knowledge of the orders of the system. In addition, a single
adjustment parameter must be provided by the user. This
study allows us to identify the main drawbacks of the main
existing methods, which can be summarized as follows:

1) Most of them are based on the optimization of non-
linear criteria. Consequently, they may converge to local
minima in the case of poor initializations.

2) Their performances degrade in the case of the presence
of outliers in the data to be classified.

3) Most of them assume that the number of sub-models
is known a priori.

To overcome these problems, we recommend the use of
density-based spatial clustering of applications with noise
(DBSCAN) algorithm, which is a pioneer algorithm of
density-based clustering[22, 23]. This choice is justified by
the fact that the algorithm automatically generates the
number of models. In addition, it is characterized by its
robustness to the classification of noisy measurements and
the containing outliers.

This paper is organized as follows. Section 2 presents
the model and its assumptions. In Section 3, we recall
the main steps of the identification of PWARX systems ap-
proach based on clustering algorithm and its main draw-
backs. Section 4 proposes a solution to overcome the main
problems of the existing methods. This solution consists
of using the DBSCAN algorithm for data classification. In
Section 5, we present the simulation results in order to il-
lustrate the performance of the proposed solution and to
compare its efficiency with the modified k-means method.
Section 6 proposes an application of the developed approach
to an olive oil esterification reactor.

2 Model and assumptions

In this paper, we address the problem of identifying
PWARX systems in the regression form described by

y(k) = f(ϕ(k)) + e(k) (1)

where y(k) ∈ R is the system output, e(k) is the noise, k
is the current time index, ϕ(k) is the vectors of regressors
which belongs to a bounded polyhedron H in Rd:

ϕ(k) =
[
y(k − 1), · · · , y(k − na), u(k − 1), · · · ,

u(k − nb)
]T

(2)

where u(k) ∈ Rnu is the system inputs, na and nb are the
system orders, and d = na + nu(nb + 1).

f is a piecewise affine function defined by

f(ϕ) =

⎧
⎪⎪⎨
⎪⎪⎩

θ1
Tϕ̄, if ϕ ∈ H1

...

θs
Tϕ̄, if ϕ ∈ Hs

(3)

where ϕ̄ =
[
ϕT 1

]T
, s is the number of sub-models, Hi

are polyhedral partitions of the bounded domain H , and
θi ∈ Rd+1 is the parameter vector.

The following assumptions are assumed to be verified:
Assumption 1. The number of sub-models s is un-

known.
Assumption 2. The orders na and nb are known.
Assumption 3. The noise e(k) is an independent Gaus-

sian sequence and identically distributed with zero mean
and finite variance σ2.

Assumption 4. The regions {Hi}s
i=1 are the polyhedral

partitions of a bounded domain H ⊂ Rd such as

⎧⎨
⎩

s⋃
i=1

Hi = H

Hi

⋂
Hj = Ø, ∀i �= j.

(4)

Problem statement. Identify the number of sub-
models s, the partitions {Hi}s

i=1 and the parameter vec-
tors {θi}s

i=1 of the PWARX model using a data set
{y(k), ϕ(k)}N

k=1.

3 The PWA regression algorithm

Based on the observed data, the identification problem
amounts to determining the parameters of the ARX sub-
models together with the regions of the regressor space
where each model is valid. The main problem in the iden-
tification of PWARX models is the problem of data classi-
fication: Each data point must be assigned to one specific
sub-model. When the data have been classified, the param-
eters of the sub-models can be determined, and the regions
where each of the sub-models is valid can be estimated using
techniques for pattern classification.

3.1 Data classification

For every pair of data {ϕ(k), y(k)}N
k=1, we construct a

local set Ck collecting {ϕ(k), y(k)} and its (nρ − 1) nearest
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neighbors satisfying

∀(ϕ̌, y̌) ∈ Ck, ‖ϕ(k) − ϕ̌‖2 � ‖ϕ(k) − ϕ̂‖2, ∀(ϕ̂, ŷ) ∈ Ck.
(5)

We also define ρk such that ρk =
{
t1k, · · · , t

nρ

k

}
containing

in ascending order the indexes of the elements belonging to
Ck. Among the obtained local sets (Ck), some may contain
only data from the same model as they are called pure local
sets, and others can collect data from multiple sub-models
that are called mixed sets.

nρ is a parameter chosen randomly as nρ > d + 1. It
influences decisively on the performance of the algorithm.
The optimal value of nρ is always a compromise between
two phenomena: The bigger this parameter is, the more
the parameter estimation is improved and more effectively
the noise is rejected. However, a large value of nρ increases
the number of local mixed sets.

For each local set Ck, we can identify an affine model.
To accomplish this task, we adopt the least square method
to determine the local parameters θk as

θk = (φT
k φk)−1φT

k Yk (6)

where φk =
[
ϕ̄(t1k), · · · , ϕ̄(t

nρ

k )
]T

, and Yk =[
y(t1k), · · · , y(t

nρ

k )
]T

.

Our objective is to classify the vectors {θk}N
k=1 in s sep-

arated classes Di using a suitable classification technique
taking into account that the number of sub-models s is un-
known.

The classification of data represents the main step toward
the objective of PWARX system identification because the
performance of the following steps (parameter estimation
and regions estimation) depends essentially on the effec-
tiveness of the used clustering algorithm. The early ap-
proaches use classical clustering algorithms for data clas-
sification such as k-means algorithms[5, 12, 18]. These algo-
rithms are interesting from a theoretical point of view be-
cause they allow to demonstrate the possibility of estimat-
ing PWARX model from measurements. In addition, they
are defined by simple algorithms in terms of implementa-
tion and computational complexity. But, they are not rec-
ommended in engineering applications because they do not
smooth out the effect of outliers. Moreover, they are based
on the optimization of nonlinear cost functions which may
converge to local minima in the case of bad initialization.

In Section 4, we propose an alternative to these meth-
ods based on the DBSCAN clustering algorithm. Thus, we
improve the performances of the existing clustering meth-
ods for the identification of PWARX models. We describe
the advantages of our approach: automatic generation of
sub-models number, processing and deletion of outliers, and
avoiding arbitrary initializations.

3.2 Parameter estimation

As the obtained data are classified, it is possible to de-
termine the s auto regressive exogenous (ARX) sub-models.
Since the application that attributes for every pair of data
(ϕ(k), y(k)), one parameter vector is bijective, it is easy to
obtain θi, i = 1, · · · , s by appealing the least square method

again. More precisely, the i-th sub-model is obtained from
data that belong to cluster Di. Then, the points in each fi-
nal cluster can be used for estimating the parameter vector
of each sub-model according to the rule:

(ϕ(k), y(k)) ∈ Di ⇔ θk ∈ Di. (7)

3.3 Region estimation

The final step is to determine regions Hi. Methods of sta-
tistical learning such as the support vector machine (SVM)
offer an interesting solution to this task[24, 25]. SVM is a
popular machine learning method for classification, regres-
sion and other learning tasks. This study is still an ongoing
research issue[26, 27].

In our case, it is matter of finding for every i �= j the
hyperplane that separates points existing in Hi and Hj .
Given two sets Hi and Hj , i �= j, the linear separation
problem is to find w ∈ Rd and b ∈ R such that

wTϕk + b > 0, ∀ ϕk ∈ Hi

wTϕk + b < 0, ∀ ϕk ∈ Hj . (8)

This problem can be easily rewritten as a feasibility prob-
lem with linear inequality constraints. The estimated hy-
perplane separating Hi from Hj is denoted by Mi,jϕ =
mi,j , where Mi,j and mi,j are matrices of suitable dimen-
sions. Moreover, we assume that the points in Hi belong to
the half-space Mi,jϕ � mi,j .

The regions Hi are obtained by solving these linear
inequalities[12]:

[
M ′

i,1, · · · , M ′
i,s, M

′] ϕ̄ �
[
m′

i,1, · · · , m′
i,s, m

′] (9)

where Mx � m are the linear inequalities describing H .

4 DBSCAN clustering technique

4.1 Principle

Clustering of data forms the basis of many modeling and
pattern classification algorithms. The purpose of cluster-
ing is to find natural groupings of data in a large data
set. The clustering algorithms can be classified into sev-
eral categories such as: partitioning clustering, hierarchi-
cal clustering, density based clustering, grid based cluster-
ing, and model based clustering[28, 29]. In this paper, we
use the density-based spatial clustering of applications with
noise (DBSCAN) algorithm which is a pioneer algorithm of
density-based clustering[22, 23]. The reason for us to choose
this category is that it has significant advantages over parti-
tional and hierarchical clustering algorithms. It can find out
clusters of arbitrary shapes and sizes from a large amount
of data containing noise and outliers.

The key idea of the DBSCAN algorithm is that for each
data object of a cluster, the neighborhood of a given radius
(ε) has to contain at least a minimum number (MinPts) of
objects. The main steps of the DBSCAN procedure can be
summarized as follows:

1) DBSCAN starts with an arbitrary point. It counts all
the neighbor points within distance ε of the starting point.

2) If the number of neighbors is at least MinPts, the
point is marked as core.
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3) If the number of neighbors is less than MinPts and
the considered point is a neighborhood of a core point, the
point is marked as border.

4) The remaining points are considered as noise points.
5) For the first core point, a cluster is formed and the

neighbors are added to this cluster. The algorithm repeats
the evaluation process for all the core points recursively:
If the considered point is not previously associated to a
cluster, a new cluster will be created, else the algorithm
proceeds to iterate through the remaining unvisited points
in the data set.

4.2 Algorithm

In the following, we present the basic version of DBSCAN
algorithm that has two inputs (ε and MinPts) and gener-
ates the clusters and their centers:

1) Dispose of {θi}N
i=1 from a given data set (ϕi, yi).

2) Choose the input parameters: ε and MinPts.
3) Determine the core points as

D2
i = ‖θi − θj‖ , i, j = 1, · · · , N. (10)

Count the number Nbng of the neighbors of θi satisfying
Di � ε

if Nb � MinPts then
θi is a core point

else
if (Nb < MinPts) and (θi is a core′s neighbor)

then
θi is a border point

else θi is a noise point
end if

end if
4) Cluster the core and the border points into cluster-

label
for k = 1 : number of core points do

if cluster-label(k) = 0 then
create new cluster-label

end if
for t = 1 : Nbng(k) do

if cluster-label (t) = 0 then
add the neighbor to the same cluster-label

end if
end for

end for
5) The number of clusters = size of (cluster-label)
6) The cluster center = mean(core points of the same

cluster).

4.3 Properties

The new clustering technique has several interesting
properties which can be summarized as follows.

1) This method generates automatically the number of
sub-models.

2) This method does not require the initialization of cen-
ters. Therefore, the problem of convergence towards local
minima does not appear.

3) This method removes the misclassified points and con-
sider them as noise. This operation improves the perfor-
mance of the clustering step.

5 Simulation example

The purpose of these simulations is to illustrate the per-
formance of the proposed method and to compare its effi-
ciency with that of the modified k-means method[12]. To
achieve this objective, we consider the following quality
measures[30].

1) The maximum of relative error of parameter vectors
is defined by

Δθ = max
i=1,··· ,s

∥∥θi − θ̄i

∥∥
2∥∥θ̄i

∥∥
2

(11)

where θ̄i and θi are the true and the estimated parameter
vectors for sub-model i, respectively. The identified model
is deemed acceptable if Δθ is small or close to zero.

2) The averaged sum of the squared residuals is defined
by

σ2
e =

1

s

s∑
i=1

SSRi

|Di| (12)

where SSRi =
∑

(y(k),ϕ(k))∈Di

(y(k) − [ϕ(k)′1]θi)
2, and |Di|

is the cardinality of cluster Di.
The identified model is considered acceptable if σ2

e is
small and/or close to the expected noise variance of the
true system.

3) The percentage of the output variation that is ex-
plained by the model is defined by

FIT = 100 ×
(

1 − ‖ŷ − y‖2

‖y − ȳ‖2

)
(13)

where ŷ and y are the estimated and the real outputs′ vec-
tors, respectively; and ȳ is the mean value of y.

The identified model is considered acceptable if FIT is
close to 100.

Consider the following PWARX model[20]:

y(k) =

⎧⎪⎨
⎪⎩

[0.4 0.5 0.3] ϕ̄(k) + e(k), if ϕ(k) ∈ H1

[−0.7 0.6 − 0.5] ϕ̄(k) + e(k), if ϕ(k) ∈ H2

[0.4 − 0.2 − 0.2] ϕ̄(k) + e(k), if ϕ(k) ∈ H3

(14)

where s = 3, na = 1, nb = 1, and ϕ(k) =
[y(k − 1) u(k − 1)]T is the regressor vector.

H1 =
{
ϕ ∈ R2 : [1 0.3 0] ϕ̄ � 0 and [0 0.5 0] , ϕ̄ > 0

}

H2 =
{
ϕ ∈ R2 : [1 0.3 0] ϕ̄ � 0 and [1 − 0.3 0] , ϕ̄ < 0

}

H3 =
{
ϕ ∈ R2 : [1 − 0.3 0] ϕ̄ � 0 and [0 0.5 0] , ϕ̄ � 0

}
.

(15)

System 15 is simulated using an input signal u(k) and a
noise signal e(k) which are normal distributions with vari-
ances 0.5 and 0.05, respectively. The output y(k) is pre-
sented in Fig. 1.
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Fig. 1 The real output of the system (squares: output of sub-

model 1; triangles: output of sub-model 2; dots: output of sub-

model 3)

5.1 Data classification

Now, we determine the local parameter vectors using
the least square method by taking a number of neighbors
nρ = 21. The parameter vectors are presented in Fig. 2.

Fig. 2 Local parameters

The DBSCAN clustering technique allows not only to
separate these local parameters but also to remove the mis-
classified ones. The noise points are eliminated from the
data set before starting the computation of clusters.

Another important benefit of the proposed method is
that it can determine automatically the number of sub-
models s. This is shown in Fig. 3 that illustrates the local
parameters separated into s = 3 sets, where the clusters′

centers are depicted by the star symbols.

5.2 Parameter estimation

Table 1 presents the estimated parameter vectors ob-
tained with the proposed method and the k-means one.

5.3 Region estimation

We use the SVM algorithm for the estimation of the re-
gions Hi. For the proposed method they are defined by the
following inequalities:

Fig. 3 Local parameters separated into 3 sets

Table 1 Estimated parameters

True values Proposed method k-means

θ1

⎡
⎢⎢⎣

0.4

0.5

0.3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.4054

0.4903

0.2992

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.4064

0.5464

0.2598

⎤
⎥⎥⎦

θ2

⎡
⎢⎢⎣

−0.7

0.6

−0.5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−0.7369

0.6675

−0.5239

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−0.6955

0.5903

−0.4939

⎤
⎥⎥⎦

θ3

⎡
⎢⎢⎣

0.4

−0.2

−0.2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.4679

−0.1977

−0.2298

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.4792

−0.2101

−0.2406

⎤
⎥⎥⎦

H1 =

{
ϕ ∈ R2 :

[
−0.9347 4.3010 0.6823

4.0579 0.7345 0.8633

]
, ϕ̄ � 0

}

(16)

H2 =

{
ϕ ∈ R2 :

[
0.9342 −4.2998 −0.6817

3.5076 −2.0378 0.2352

]
, ϕ̄ � 0

}

(17)

H3 =

{
ϕ ∈ R2 :

[
−4.0646 −0.7318 −0.8602

−3.5083 2.0387 −0.2350

]
, ϕ̄ � 0

}
.

(18)

For the k-means method, the following inequalities are ob-
tained

H1 =

{
ϕ ∈ R2 :

[
0.3255 3.1594 −0.1354

3.1094 1.4634 −0.1090

]
, ϕ̄ � 0

}

(19)

H2 =

{
ϕ ∈ R2 :

[
−2.9235 −1.4932 0.1469

−2.4998 1.6640 −0.1243

]
, ϕ̄ � 0

}

(20)

H3 =

{
ϕ ∈ R2 :

[
−0.3255 −3.1594 0.1354

2.4998 −1.6640 0.1243

]
, ϕ̄ � 0

}
.

(21)

To obtain the output of the system with the two methods,
we consider the input of Fig. 4.
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Fig. 4 The input used for the two methods

Figs. 5 and 6 illustrate the outputs and the error signals
of the proposed method.

Fig. 5 Real and estimated outputs of the proposed method

Fig. 6 Error for the proposed method

Figs. 7 and 8 illustrate the outputs and the error signals
of the k-means method.

Table 2 presents the quality measures (11), (12) and (13)
of the proposed method and the modified k-means method.

Fig. 7 Real and estimated outputs: modified k-means method

Fig. 8 Error for the k-means method

Table 2 Validation results

Quality measures Proposed method k-means method

Δθ 0.1514 0.1828

σ2
e 0.0097 0.0109

FIT 79.0183 74.195

Based on the results presented in Table 2, we observe
that the proposed method gives the best results compared
with those obtained by the modified k-means method.

6 Experimental example: a semi-batch
reactor

This section presents an application of the proposed
method to an olive oil esterification reactor. This reactor
carries out, by an alcohol, a chemical reaction of vegetable
olive oil esterification. The reaction is given by the following
scheme:

Acide + Alcohol ↔ Ester + Water (22)

The obtained ester is a product with a very high added
value. It is used in fine chemical industry. This reaction is
highly exothermic and very difficult to operate manually[31].
A block diagram of this reactor is given in Fig. 9.

Fig. 9 Block diagram of the reactor

The core is a cylindric stainless-steel reactor. Its temper-
ature is regulated by means of a fluid circulating through
a surrounding jacket, the fluid is either heated by a set
of three resistors with electric power Pe, or it is cooled in
the tabular cooler. A vertical stirrer, set along the reactor
axis, is continuously rotated at a constant speed in order
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to keep the medium as homogeneous as possible in terms of
temperature and composition. Finally, a semi-batch recipe
should be applied, a specific device that is located above the
reactor allows to supply any additional reactant. A water-
cooler condenser must be used to flow the solvent back to
the reactor. We note three variables measured by sensors:
inlet temperature Ti, outlet temperature To and reacting
temperature T

[31]
r . As shown in Fig. 10, the temperature

must follow a specific trajectory.
1) Heating stage: The reactor′s temperature Tr is in-

creased to 105◦C.
2) Reaction stage: The reactor′s temperature Tr is main-

tained constant during the reaction (when no more water
is dripped out of the condenser).

3) Cooling stage: The reactor′s temperature is decreased.

Fig. 10 Specific trajectory of the reactor temperature

An experimental study carried out on the reactor showed
that the plant, having the heating power Pe as input and
the reaction temperature Tr as output, is a nonlinear pro-
cess. The variation of the quality of the reagent inside the
reactor as well as the external effects can be regarded as
random disturbances[31]. So the classical modeling-method
based on one global model can not lead to satisfactory re-
sults. That is why we are interested in decomposing the
global model into different local models. Thus the alterna-
tive of considering a PWA map is very interesting because
the characteristic of the system can be considered as piece-
wise linear in each operating phase: the heating phase, the
reacting phase and the cooling phase.

The reactor is considered as a single-input-single-output
system. The input u(k) denotes the heating power Pe and
the output y(k) denotes the temperature Tr in the reactor.

Previous works have demonstrated that the adequate es-
timated orders na and nb of each sub-model are equal to
two[32]. Thus, we can adopt the following structure

y(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−a1,1y(k − 1) − a1,2y(k − 2) + b1,1u(k − 1)+

b1,2u(k − 2), if ϕ(k) ∈ H1

...

as,1y(k − 1) + as,2y(k − 2) + bs,1u(k − 1)+

bs,2u(k − 2), if ϕ(k) ∈ Hs

(23)

where the regressor vector is defined by

ϕ(k) = [−y(k − 1),−y(k − 2), u(k − 1), u(k − 2)]T

and the parameter vectors is denoted by

θi(k) = [ai,1, ai,2, bi,1, bi,2] , i = 1, · · · , s.

We have taken some input-output measurements from
the reactor in order to identify a model for this process. We
have taken two measurement files, one for the identification
having a length N = 220 and another one of length N = 160
for validation.

The measurement file used in this identification is pre-
sented in Fig. 11.

Fig. 11 The real input-output evolution

We apply the proposed identification procedure in or-
der to represent the reactor by a PWARX model with the
number of neighboring nρ = 70. Our purpose is to esti-
mate the number of sub-models s, the parameter vectors
θi(k), i = 1, · · · , s and the hyper planes defining the parti-
tions {Hi}s

i=1. The number of sub-models and the parame-
ter vectors are simultaneously estimated: We obtain s = 3,
and the parameters are presented in Table 3.

Table 3 Estimated parameter vectors

Parameter vectors Estimated parameters

θ1

⎡
⎢⎢⎢⎢⎢⎣

−1.4404

0.4692

0.0003

0.0014

⎤
⎥⎥⎥⎥⎥⎦

θ2

⎡
⎢⎢⎢⎢⎢⎣

−1.1144

0.1772

0.0003

0.0032

⎤
⎥⎥⎥⎥⎥⎦

θ3

⎡
⎢⎢⎢⎢⎢⎣

−1.0591

0.1304

0.0006

0.0034

⎤
⎥⎥⎥⎥⎥⎦

It remains only to determine the partitions {Hi}s
i=1 that

are defined by the following inequalities

Hi =
{
ϕ ∈ R4 : Miϕ̄ � 0

}
(24)
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M1 =

[
−0.0114 0.03124 −7.8978 −17.2775 0.0004

0.4138 0.4370 −1.5539 −8.5077 0.0005

]

(25)

M2 =

[
0.0114 −0.0312 7.8983 17.2783 −0.0004

0.3168 0.3268 3.9548 4.4686 0.0001

]

(26)

M3 =

[
−0.4138 −0.4370 1.5550 8.5083 −0.0005

−0.3169 −0.3269 −3.9556 −4.4688 −0.0001

]
.

(27)

After estimating s, θi and Hi we obtain the output given
by Fig. 12.

Fig. 12 The input, the real and the estimated outputs

To validate the obtained models, we have considered a
new input-output measurement file having a length N =
160. Fig. 13 shows the real and the estimated outputs.
Fig. 14 illustrates the error signal.

Based on Figs. 13 and 14, we can remark that the pro-
posed method gives good results even in the experimental
case, which proves the importance of using the DBSCAN
clustering method.

7 Conclusions

In this paper, we have considered the clustering based
procedure for identification of PWARX models. In fact, we
have recalled the main steps of clustering based approach.
This presentation shows that the used clustering algorithms
require a good initial guess in order to converge to global
minima. In addition, these algorithms are sensitive to the
presence of outliers. To overcome this problem, we have
suggested the DBSCAN algorithm for data classification.
This algorithm presents several advantages. Firstly, this
method does not require any initialization and the problem
of convergence towards local minima is overcome. Secondly,
this method is able to remove the outliers and consider them
as noise points. Finally, our approach generates automati-
cally the number of sub-models. Numerical simulation re-
sults are presented to demonstrate the performance of the
proposed approach. Also, an experimental validation with

an olive oil reactor is presented to illustrate the efficiency
of the developed method.

Fig. 13 The input, the real and the estimated validation outputs

Fig. 14 Error for the validation measurements
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