IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 5, MAY 1998

695

New Results on Selection Diversity

Elisabeth A. Neasmith, Member IEEE, and Norman C. Beaulieu, Senior Member, |IEEE

Abstract— The performances of selection diversity receiver
structures in a dow flat Rayleigh-fading environment are as-
sessed. A number of new and interesting results are obtained.
Binary digital signaling using noncoherent frequency-shift key-
ing (NCFSK), differential phase-shift keying (DPSK), coherent
phase-shift keying (CPSK), and coherent frequency-shift keying
(CFSK) is considered. The traditional analysis (the Traditional
Selection Diversity Model) of a selection diversity system is based
on choosing the branch with the largest signal-to-noise (SNR)
power ratio while assuming that the noise power is constant
across all branches. However, many practical selection systems
choose the branch based on a largest signal-plus-noise (S + N
selection) sample of afilter output. Thispaper comprises accurate
analyses of such S 4+ N sdlection systems. Results show that
S + N sdlection systems perform better than predicted by the
Traditional Selection Diversity Model. Thisis because the former
includes the statistical nature of the noise, whereas the latter
does not. The performance difference between the two models
increases as the number of diversity branchesincreases. For each
of DPSK and CPSK, thedual diversity equal gain (EG) combining
and S + N sdlection systems perform identically. For each of
NCFSK and CFSK, receiver structures which are eguivalent
when there is no diversity perform differently in a diversity
environment. Certain dual diversity S + N selection systems
give the same performances as EG combining or square law
combining. The results are contingent upon perfect cophasing for
the EG combining. In systems where estimates of the combining
carrier phases contain noise, S + N selection outperforms EG
combining for dual diversity.

Index Terms— Combining techniques, diversity, fading chan-
nels.

I. INTRODUCTION

IVERSITY is a well-known technique used to com-
Dpensate for the unacceptable signal fades experienced
on wireless communication channels. This paper assesses
the performance of selection diversity receiver structures in
a slow frequency-nonselective Rayleigh-fading and additive
white Gaussian noise (AWGN) environment. Binary digital
signaling using noncoherent frequency-shift keying (NCFSK),
differential phase-shift keying (DPSK), coherent phase-shift
keying (CPSK), and coherent frequency-shift keying (CFSK)
are considered. The results challenge traditional thinking.
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The traditional analysis of a selection diversity system (here-
after referred to as the Traditional Selection Diversity Model)
specifies that of L diversity branches 7 =1,2,-.-, L, the one
providing the largest signal-to-noise (S/N) power ratio (SNR)
be selected for data recovery. For binary NCFSK signaling
in a Rayleigh-fading environment, Pierce [1] provides an
expression for the L-branch average bit-error rate (BER) using
the Traditional Selection Diversity Model. It is computed by
averaging the time-invariant (static) channel-error rate P(~)
over the probability density function (pdf) f(v) of the largest
SNR v = a2y, of the L branches, where « is the largest (best)
fading parameter of the «;, j = 1,2,---,L and y = Ey/N,
is the SNR per bit. The Traditional Selection Diversity Model
establishes the average BER as [1]

L

1 1
»Umsn 0

=1

P(e)NCFSKraa =

In (1) 7, = v - E{aj} is the average SNR per bitand E{a3}
is the mean value of the square fading parameter, assumed to
be the same on all branches j = 1,2,---, L and independent
of j.

Note that this analysis, which is often cited [2], uses the pdf
which is actually that of the largest signal S independent of
the noise. This is appropriate only if, in measuring the largest
SNR, the average noise power, computed as

200 =+ /0 "n2(1) dt @

is taken over a sufficiently long time 7 such that it may be
considered as a constant across all branches. In other words, in
cases where 7 is long compared to the variability of the noise
power, choosing the largest S/N is equivalent to choosing
the largest S so that use of the above-mentioned pdf in the
analyses in [1] and [2] is accurate.

For practical implementations, however, measurement of
SNR may be difficult or expensive, especially for high sig-
naling rates. For this reason, the branch with the largest
signal-plus-noise is often chosen. We use S + N to denote
a signal-plus-noise sample (i.e., not a power measurement).
Historical justification for the extensive use of an SNR analysis
(the Traditional Selection Diversity Model) to describe the
performance of S 4+ IV selection systems stems from the idea
that any branch which has the largest SNR must also have
the largest sum of signal power and noise power if the noise
power is taken to be a constant on all branches [3]. When
physically realizing S + N selection, though, by sampling the

0090-6778/98$10.00 © 1998 IEEE
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Fig. 1.

output of a matched filter, the noise is a random variable. Thus,
it is inexact to specify the performance of S + N selection
systems using a constant noise analysis. In fact, intuitively
one would expect S + N selection to yield a better error
performance than that predicted by the Traditional Selection
Diversity Model because with the former system there is
opportunity for at least one sample to be better (less noisy)
than the average of the samples. This is confirmed in [4] and
[5], although neither reference offers an explanation for the
observed results.

This paper provides exact analyses of S + N selection
systems and explains the significance of the results by com-
paring the observed performances to the performances of
other common combining techniques. As the signaling scheme
most commonly employed with selection diversity, NCFSK is
considered first with specific receiver structures analyzed in
Section Il and performance results provided in Section III.
These analyses and results are specific to binary orthogonal
signaling. In Section 1V binary antipodal DPSK is presented
as a variant of the above-mentioned NCFSK analyses and
results. Finally, the coherent signaling schemes CPSK and
CFSK are addressed in Section V. Conclusions follow in
Section VI.

Il. BINARY NCFSK SYSTEM MODELS AND ANALYSES

In this section we examine three binary orthogonal NCFSK
S+ N selection diversity receiver structures: S + N Selection
Receiver Models 1, 2, and 3. These structures have the
same performance when the traditional S//V analysis is used
to predict their performances [see (1)]. As will be shown,
the structures have different performances when an S +
N selection analysis specific to each receiver structure is
implemented. In all cases, symbol synchronization is assumed.

Binary NCFSK S + N Selection Receiver Model 1 showing u,(t) being transmitted for analysis purposes.

A. S+ N Sdection Receiver Model 1

The S + N Selection Receiver Model 1, depicted in Fig.
1, has been analyzed previously in [4] but is covered briefly
here for clarity. Note that of the possible (low-pass equiva-
lent) transmissions in a binary orthogonal system w,(t) and
us(t), it has been (arbitrarily) chosen to transmit u,(¢) to
analyze the system. The output statistics from each branch
are X, = |20 + Yj1| and X5 = |Yj2|, where the complex
Gaussian random variables Yj,,, m = 1,2 are independent
and identically distributed (i.i.d.) with zero mean and variance
4/7,. The average BER for binary signaling (M = 2) is
expressed as [4]

P(G)NCFSKS+NModcll
= Pr[max{le < max{X;s}]

1l 1

: [FXzz (x)]L_l : lez (37) dz (3)

PI‘ ‘ jl <‘Y12 PI‘ ‘ 42 < X192

/ FX11

where Fx,, (z) and Fx,,(x) are the respective cumulative
distribution functions (cdf’s) of the random variables X;; and
Xaz, and fx,,(x) is the pdf of the random variable X;5. The
solution to (3) is [4]

P(E)NCFSK 54 x oder1
_1)]< ) H L k45 /( 1+%) @

where 7, was defined in the introduction.
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Fig. 2. Binary NCFSK S + N Selection Receiver Model 2 showing w; () being transmitted for analysis purposes.

B. S+ N Sdection Receiver Model 2

This model is shown in Fig. 2. It differs from § + N
Selection Receiver Model 1, shown in Fig. 1, in that now
a summing process occurs on each branch before invoking
data recovery logic. To the best of the authors’ knowledge,
an analysis of the system shown in Fig. 2 has not yet
been reported. The receiver bases its decision on the random
variables X,---, Xy and, as in the case of the previous
model, the analysis assumes the transmission of the low-
pass equivalent signal «,(¢). The output statistic from the jth
branch is Xj = A1 — ng = |20éj + Y;1| - |Y;2| which,
under static conditions, is the difference between a Rician-
and a Rayleigh-distributed random variable. The complex
Gaussian random variables Y;,,, m = 1,2 were detailed
above. An error occurs if X, <0and |X,,| > max [{ X} j2p }H,
j=1,2,---,p,---, L. That is, an error occurs if, of the L
statistics X;, the one with the largest magnitude is negative.
The average BER is written

P(C)NCFSK5+N Model 2

L
= Z Pr(max | X; jzp| <|Xp|, Xp <0),
p=1
j = 17 27 e 7L
= L -Pr(max|X; ;21| <|X1], X1 <0)
= L -Pr{(max|X, j21| + X1) <0} (5)

which has solution
P(C)NCFSKS+NModc12
0 —z2 /207
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following the technique detailed at Appendix A.
In (6) the constants C;, Cs, and C3 are given
by &1 = 25, +1)/0*(7,+2)° and O =

V@ +1)/o?(7, +2), and Cs = 1/\/0%(F, +1) (3, +2),
the variance is specified as o> = 2/%,, and the Q-function
is defined as

o0 —t?/2

Q(z) = j ﬁdt'

Equation (6) is evaluated numerically.

()

C. S+ N Slection Receiver Model 3

The S + N Selection Receiver Model 3 is shown in Fig. 3.
In contrast to S + N Selection Receiver Model 2 (addressed
above), now the envelopes are squared before being summed
to form a branch output statistic. This detail is reflected in
Fig. 3 by using the notation W vice X to label the branch
output statistics. We have W; = W;;1 — Wj2 = [2a; +
Y;1]? — [Y;2]? which, under static conditions, is the difference
between a noncentral and a central chi-square random variable,
respectively, each with n = 2 degrees of freedom. The
complex Gaussian random variables Yj,,, m = 1,2 were
detailed above. Again, an error occurs if, of the L output
statistics, the one with the largest magnitude is negative. We
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To compute (9) from (8), exactly the same procedure is used as }\
that which was used to compute (6) from (5) (see Appendix \
A). However, note that in this present case (S + N Selec-
tion Receiver Model 3), the branch outputs are statistically \
described by the difference between a noncentral and a central
chi-square random variable, as compared to S + /N Selection 10™

Receiver Model 2, where the difference between a Rician-
and a Rayleigh-distributed random was required. This greatly
facilitates the resulting mathematics and ultimately allows a
closed-form solution (9) to describe S+ N Selection Receiver
Model 3, unlike the solution (6) to S + N Selection Receiver
Model 2, which must be evaluated numerically.

I1l. NCFSK RESULTS

We now discuss the performance of the receiver structures
described above. Maximal ratio (MR) combining, square law
combining, and equal gain (EG) combining curves are included
for reference where applicable. First consider Fig. 4. The

10 11 12 13 14 15 16 17 18 19 20 21 22

Average SNR/bit, dB

Fig. 4. Performance comparison of NCFSK receiver structures for . = 2
and L = 4 branch diversity.

abscissa is 7, as defined in Section | (vice L -7, as used
in [4]). Distinct average BER differences between the NCFSK
receiver systems, for each of two- and four-branch diversity,
are evident. As an example, for dual diversity, for an average
BER of 1073, the difference in required SNR per bit predicted
by the Traditional Selection Diversity Model and each of
S 4+ N Selection Receiver Models 1, 2, and 3 is 0.2, 0.4,
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and 0.5 dB, respectively. For fourfold diversity the corre-
sponding differences are 0.8, 1.0, and 1.2 dB, respectively.
The performance difference between the Traditional Selection
Diversity Model and S + N Selection Receiver Model 1 is
that which was reported in [4]; however, no explanation was
offered for this result. Our treatment indicates that the latter
model outperforms the former model because it (the latter)
takes into account the statistical nature of the noise. That
the difference becomes greater for higher orders of diversity
can be attributed to the increased number of choices among
statistically independent noise sources.

To the best of the authors’ knowledge, the consideration
of S + N Selection Receiver Models 2 and 3 is new. Fig.
4 shows that, in fact, the dual diversity S + /N Selection
Receiver Model 2 system performs identically to the EG
combining system, while the dual diversity S + N Selection
Receiver Model 3 system performs identically to the square
law combining system. This is expected intuitively for the
dual diversity case because the sign of the sum of two
algebraic summands is determined by the summand having
largest magnitude. This is especially significant in that dual-
diversity systems are by far the most common in current
applications. For fourfold diversity, Fig. 4 shows that EG
and square law combining outperform S + N selection. The
EG combining results were obtained using digital computer
simulation. The S + N Selection Receiver Model 2 results
were obtained numerically using (6). All other results were
obtained analytically using (1), (4), (9), and [10, eq. (14-4-15)]
for the Traditional Selection Diversity Model, S+ N Selection
Receiver Model 1, S + N Selection Receiver Model 3, and
square law combining, respectively. All analytical results have
been confirmed by computer simulation.

Fig. 5 is provided to illustrate performance trends as the
number of diversity branches increases. The average BER
P(e) is plotted against the order of diversity for each of the
systems indicated. To produce Fig. 5, an average SNR per bit
of 15 dB was chosen as being representative of the mobile
communications environment. For other values of SNR per
bit, the same performance trends are observed as those seen
in Fig. 5 [6]. The results in Fig. 5 indicate that the S + N
Selection Receiver Models all perform increasingly better than
the Traditional Selection Diversity Model as the order of
diversity increases. Interestingly, there is little performance
difference between S + N Selection Receiver Models 1 and 2,
with model 2 outperforming model 1. This is to be expected
for the following reason. The most likely error situation for
model 1 is that of a noise-only branch output having the largest
magnitude which is slightly larger than the largest signal-plus-
noise branch output. In this case the subtraction effected by
receiver model 2 deemphasizes this branch relative to the other
branches.

Fig. 6 compares selection combining to the optimum com-
bining technique, MR combining [7], [8]. The (analytically
established) performance of MR-combined NCFSK is pre-
sented in [8] and [9]. Fig. 6 shows the required SNR per bit
over MR combining, for certain receiver structures discussed
above, as the number of diversity branches increases. To
produce Fig. 6, an average BER of P(e) = 10~ was chosen.
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For different values of P(¢), the same performance trend is
observed as that seen in Fig. 6 [6]. The MR combining curve is
effectively the horizontal axis. When there is no diversity (i.e.,
L = 1) all selection combining receiver structures perform
identically and equal the performance of MR combining; thus,
the SNR per bit required over MR combining is 0.0 dB
for all three systems indicated. As the number of diversity
branches increases, the selection-combining receiver structures
are shown to deviate, in terms of performance, from the
MR-combining curve. Note that the Traditional Selection
Diversity Model gives the worst performance of the three in
that it requires the most SNR per bit over MR combining
to retain the average BER of 10—3. The S + N selection
curves fall intermediately between the Traditional Selection
Diversity Model and MR combining. Although they do not
lose as much as the Traditional Selection Diversity Model, all
selection diversity schemes lose substantially compared to MR
combining as the diversity order increases.

IV. EXTENSION TO BINARY DPSK

The use of DPSK signaling in conjunction with diversity
combining is practical and desirable when the carrier phase
does not change appreciably over two consecutive symbol
durations [10]. With binary DPSK, antipodal signaling may
be assumed so that only one matched filter per diversity
branch is required, as illustrated in Fig. 7. We consider the
product detector for demodulation. The output statistic for
each branch is X; = Re{Xj,, - X7, }, which may be written
as X; = Re{(20; + Yj,,) - (205 + Y1 )}, where tz, z =
1,2 represents two consecutive time periods. The Y}, , z =
1,2 are i.i.d. complex Gaussian random variables with zero
mean and variance 4/7,, and * denotes complex conjugation.
For derivation of the S 4+ NV selection system performance,
the statistical characterization of the X, is facilitated by
application of the identity given in [9, eq. (8-2-1)]. The average
BER P(e)prsks,y May be expressed as in (5) and thus

Binary DPSK receiver model for S + N selection showing w1 (¢) being transmitted for analysis purposes.

evaluated using the technique of Appendix A. The result is

> ()

=0

P(e)prsks. v
S ()
=\ k (27, + 2)MH1
] (27, + 1)
2y (k—i+1)+k+1

In comparison, an analysis of the Traditional Selection
Diversity Model for DPSK establishes the average BER as

(10)

1
i+

1 L
P(e)prskn.a = 5 ; (11)
which may be obtained by following exactly the technique
given by Pierce [1] for NCFSK (as described in Section I)
except that the time-invariant (static) channel-error rate is
given by [10, eq. (14-3-9)] for DPSK vice [10, eq. (14-3-
11)] for NCFSK. Note the similarity of (10) to (9) and the
similarity of (11) to (1), the difference within each pair being
a scaling of the SNR by a factor of two. This is the well-
known 3-dB improvement in SNR performance of DPSK over
NCFSK [9]. Similar performance trends (Figs. 5 and 6) were
seen for DPSK [6] as were seen with NCFSK. Also consistent
with the NCFSK results, DPSK S+ N selection (10) performs
better than that predicted by the DPSK Traditional Selection
Diversity Model (11), with the difference between the two, in
average SNR per bit for P, = 1073, being 0.6 dB for dual
diversity and 1.2 dB for fourfold diversity [6]. For DPSK,
EG combining is the optimum combining technique against
which the performances of the former two techniques are
compared. The analysis shows [6] that S + IV selection and
EG combining [10, eq. (14-4-15)] actually perform identically
for dual diversity. This is particularly interesting in that
until now EG combining was thought to uniquely provide
the best performance for DPSK diversity combining. To the
authors’ knowledge, these results are new and are not available
elsewhere. For higher orders of diversity, EG combining
outperforms S 4+ NV selection combining.
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V. EXTENSION TO BINARY CPSK AND CFSK

Estimation of carrier phase may be difficult or expensive
in fading environments. Traditionally, MR or EG combining
have been primarily considered in conjunction with coherent
demodulation, and selection combining in conjunction with
noncoherent demodulation. Advances in integrated circuits
have resulted in the availability of coherent demodulation and
receiver components of low cost. The combination of selection
diversity with coherent demodulation is practical for systems
such as packet data systems with the diversity branch selection
being made on a block or packet duration basis. In this section
the performances of selection diversity schemes operating with
coherent demodulators are examined.

A. CPX

We begin with binary antipodal CPSK signaling. As for the
DPSK system considered above, only one matched filter per
diversity branch is required so that a diagram of this system
would be similar to Fig. 7, with appropriate modifications
to reflect the coherency of this modulation technique (i.e.,
cophasing and no product detection). Under static conditions,
the branch output statistics X; = 2q; + Z; are Gaussian
distributed where the Gaussian-distributed Z;, = 1,2,---, L
are i.i.d. with zero mean and variance 2/7,. The average BER
P(e)oprsks, y May be expressed as in (5) and evaluated using
the technique of Appendix A to yield

P(C)CPSKS+N

0 > 1 2 2 2
- / {/ oV 2w 6_(x1_2a1) e 20416_a1 dal}
—0o0 0
' {/oo |:Q<.’171 +20éj> +Q<$1 —20éj> _ 1:|
0 g g

L-1

. 2ocfe_a? doy; } dxq (12)
which may be evaluated numerically. Note that o2 = 2/7,.

As in the case of NCFSK and DPSK, the analysis of
CPSK using the Traditional Selection Diversity Model follows
the technique outlined in Pierce [1]; however, the process
is sufficiently different mathematically that further detail is
provided in Appendix B. The result is

I%'i(—l)k- <£) %T"rk.

k=0

P(e)crsKayag (13)

To the best of the authors’ knowledge, (13) is a new result.

B. CFX

As for NCFSK, the binary CFSK system requires two
matched filters per diversity branch. Receiver structure block
diagrams are similar to those of Figs. 1 and 2 with appropriate
modifications to reflect the coherency of this modulation
technique (i.e. cophasing and no envelope detectors). The
output statistics from each branch are X;; = 2«; + Z;;
and X;» = Z;2, where the Gaussian random variables Z;,,,
m = 1,2 are i.i.d. with zero mean and variance 2/7,. Three
systems, S+ NV Selection Receiver Model 1, S + N Selection
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Receiver Model 2, and the Traditional Selection Diversity
Model, are discussed below.

In the CFSK S+ N Selection Receiver Model 1 system, the
largest filter output is chosen for data recovery (similar to Fig.
1 for NCFSK). The average BER P(e)cFsK s x modar: 1S thUs
expressed as in (3) and has solution (following the technique
in [4] for NCFSK)

P(e)CFSKs | x model 1

i [ [ rofe=20)] ]
Q) e e

which is evaluated numerically. Note that o2 = 2/7,.

For the CFSK S + N Selection Receiver Model 2 system,
the filter outputs are summed on each branch before choosing
the largest amplitude (similar to Fig. 2 for NCFSK). Under
static conditions, the branch output statistics X; = X;; — X
are Gaussian distributed with variance 4/%,. The average BER
P(e)CFsKs, x moaa» 15 Written as in (5) and solves to the same
equation as (12) except that now the variance is specified as
o2 = 4/7, vice ¢% = 2/7,.

Finally, for the CFSK Traditional Selection Diversity
Model, the analysis is identical to that presented in Appendix
B for the CPSK Traditional Selection Diversity Model system
except that now the variance is doubled (¢ = 4/7, vice
0% = 2/%,). Thus, we may readily establish

L

. —
B 1 k Y&
P(e)CFSKpaq = 3" k_o(_l) ' <k> V7, +2k

(15)

which is obviously very similar to (13). To the best of the
authors’ knowledge, (15) is a new result.

C. Performance Results for CPSK/CFSK

Fig. 8 illustrates the performances of various CPSK receiver
structures. For the coherent systems, MR combining is con-
sidered optimum [7], [8]; however, being more practical to
implement, the performance of EG combining is the ideal
against which the performances of the other combining tech-
niques are compared. Again, the CPSK analysis shows [6]
that the performance of a practical S + NV selection system
(12) is not accurately portrayed by the Traditional Selection
Diversity Model (13), the latter indicating a requirement for
approximately 0.8 dB more average SNR per bit than the
former for dual diversity, for an average BER of 10—2. For
fourfold diversity, the difference is 1.4 dB. The analysis also
shows [6] that for the (most common) dual-diversity system,
S+ N selection gives the same performance as EG combining
(simulated). For fourfold diversity, EG combining outperforms
S+ N selection. Note that the performance difference between
the Traditional Selection Diversity Model and .S+ NV selection
is actually greater for this coherent case than is the difference
between the Traditional Selection Diversity Model and any of
the S + N selection models for the noncoherent cases (see
Sections Il and 1V) discussed above. For CFSK, both S + N
Selection Receiver Models 1 (14) and 2 (12 with 02 = 4/7,)
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Fig. 8. Performance comparison of CPSK receiver structures for L = 2 and
L = 4 branch diversity.

perform better than that predicted by the Traditional Selection
Diversity Model (15), with S + N Selection Receiver Model
2 giving the same performance as EG combining (simulated)
for dual diversity. As an example, for dual diversity, for an
average BER of 10~3, the difference in required SNR per bit
between the Traditional Selection Diversity Model and each of
S 4+ N Selection Receiver Models 1 and 2 is 0.3 and 0.8 dB,
respectively. For fourfold diversity, the respective differences
are 0.7 and 1.2 dB. An illustrative performance comparison of
CFSK receiver structures would be similar to that provided by
Fig. 8 [6] except that, as expected, CFSK requires 3 dB more
average SNR per bit than does CPSK to achieve the same
BER for corresponding signaling schemes.

Of consequence, all EG combining results are dependent
upon perfect phase estimates of the received signal, whereas
the performance of an S+ N selection system is independent of
any such phase estimate. Thus, it can be stated that the CPSK
S+ N selection and CFSK S+ N Selection Receiver Model 2
systems actually outperform EG combining for dual diversity,
where absolute knowledge of the combining carrier phases
is not possible. Performance trends for CPSK and CFSK are
similar to those presented in Figs. 5 and 6 for NCFSK [6].
The results for the coherent systems are consistent with those
of the noncoherent systems detailed above.

VI. CONCLUSIONS

The efficacy of selection as a diversity combining technique
has been revisited by comparing, for common binary signal-
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ing schemes, the performance of certain selection combining
receiver structures against the performance of optimum com-
bining schemes such as MR, EG, and square law combining
as appropriate. A detailed analysis of binary NCFSK has
been provided, with results extended to include binary DPSK,
CPSK, and CFSK.

Specifically, by performing exact analyses of systems which
select the branch with the largest S+ &V, it has been shown that
the traditionally accepted selection diversity analysis, which
focuses on selecting the branch with the largest SNR while
assuming that the noise is a constant across all branches, pro-
duces a less-than-exact performance indication of a selection
system. The reason for this discrepancy is that the analysis
of the latter system includes the statistical nature of the noise
while the former analysis does not. The performance difference
between the two models increases as the number of diversity
branches increases, due to an increased number of choices
among statistically independent (Gaussian) noise samples. The
results are significant in that many practical selection systems
are implemented as selecting the largest S + N for data
recovery.

It was also shown that for each of DPSK and CPSK, the
dual-diversity EG combining and S + N selection systems
perform identically. For each of NCFSK and CFSK, receiver
structures which are equivalent when there is no diversity
perform differently in a diversity environment. Certain dual-
diversity NCFSK S + N selection systems give the same
performance as EG combining and square law combining. The
performance of EG combining may also be achieved, using an
S+N selection scheme, for dual-diversity CFSK. These results
are contingent upon perfect cophasing for the EG combining.
In systems where estimates of the combining carrier phases
contain noise, S+ N selection outperforms EG combining for
dual diversity.

APPENDIX A

Here the method of computing (6) from (5) is provided. To
express P(e)NCFSKs, yyoaaz 1N USEfUl form we first define
the random variable R; as R; = |X;|, § = 1,2,---,L,
the random variable R as the maximum of the magnitudes
R = max | X jz1| = max{R; ;1 }, and the random variable
Z as the sum Z = R+ X;. Then (6) may be written as

P(G)NCFSK5+N Moderz = L Pr(Z < 0)' (A1)
Note that £ and X; are independent. Also note that ; > 0,

j =12 .- L and thus » > 0, while z; < 0. Since
Pr(Z < z) = Fz(z), it is evident from (A.1) that we must
evaluate Fz(z) at = = 0. This is given by

/ / (@) () dr diy

_ /_ For (@) Fr(=21) = Fr(0)] dz1.  (A.2)

To proceed with computing (A.2), the pdf f,, (x;) of X; for
x1 < 0is required, as is the cdf Fr(r) of R = max | X ;1|
To establish these, the cdf of the random variable X; is
required. We derive this first.
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The output statistic from the jth branch is X; = X;; —
Xjo = |2a; + Yj1| — [Yj2] which, under static conditions,
is the difference between a Rician- and a Rayleigh-distributed
random variable. Note that these random variables are indepen-
dent. The complex Gaussian random variables Yj,,,, m = 1,2
are i.i.d. with zero mean and variance 4/%,. The Rician
cumulative distribution function (cdf) is given by [10, eq. (2-
1-142)] with the noncentrality parameter s? being defined at
[10, eq. (2-1-119)] and detailed as s* = 4«7 in our particular
case. Using the integral form of [10, eq. (2-1-122)] for n = 2
degrees of freedom, [10, eq. (2-1-142)] may be written as

=) R o . 2 2)k
F(z) =1 _/ 1. e &/ 2], Mda: (A.3)
() o/ kz_:_o (k1)2

where v; = af -, 1S the SNR on branch j. To account for
the fading, (A.3) is averaged across the pdf of ;, [10, eq.
(14-3-5)]. This yields

Fle (.’L'Jl) =1- 6_“@1/202(754-1)7 1 > 0. (A4)

Continuing, the pdf of the Rayleigh distributed X, is given
by [10, eq. (2-1-128)]

fij (z) = 22 G_J}‘?Z/Qazv (A.5)

T2 Z 0.
o2 J

To describe the difference X; = X;; — X2, the joint density
Ix,1.x;. (41, 252) is integrated across an appropriate region
in the plane to determine the probability of that region. Since

by definition x;; > 0 and x;, > 0, there are two convenient
choices for regions of integration. For z; < 0 we have

oo zi+xji2
Fx (x5) =/ /0 Ix (@) fx,o (wh2) dojr dojo

= fxp(@e)  [Fx,(z;+252)—Fx;, (0)] dj2,

and for z; > 0 we have
o0 e )

Fx; (%’)I/ / Ixi(@1) fx;0 (252) djy dxjo
0 0

I/Oo Ix (@) - [Fx () +a2) = Fx 1 (0)] dajo,
0
z; > 0. (A.6b)

Substitution of (A.4) and (A.5) into each of (A.6a) and (A.6b),
and evaluation of the integrals, produces

—x2-/20'2
L + Cl ST 6—1}?/202(754—2)

Ty +2 !

{1 = Q(z;Ca)}, z; <0 (ATa)

FXj(aZj) =1 ¥, +1 e_“”?/QUZWb‘H)
¥y +2 o
+Oy a2 D Q(2,C5),
zj 20 (A.7b)

which is the cdf of the random variable X;. The constants
are detailed in Section I1-B. Equation (A.7) is now used to
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establish the components of (A.2). By taking the derivative of
(A.7a) and setting j = 1, we obtain

—pie—T1/20° _
——ne o3 /20% (7 +2)
fx, (z1) 2, +2) +Ci-e

T

1= CH V.41 - —~1

{ Q(-’El 2)} { 02(71} + 2) }
G2 —@ic)?)2
+ xlﬁ - C s T S 0
(A.8)

which gives the first factor in the integrand in (A.2). For the
second factor in the integrand in (A.2), the distribution of
R = max{R; ;- } is required. Since the .X;, and thus the R;,
are i.i.d., we have Fr(r) = [Fg,(r;)]*~!, where Fg,(r;) is
computed as
Fr,(rj) =Pr(R; <))

IPI‘(—Tj S Xj S 0) +PI‘(0 S Xj S 7‘j)

= Fx, (r;) = Fx,(~7;). (A9)
Using (A.7b) evaluated at r;, and (A.7a) evaluated at —v;, in
(A.9) as indicated yields

~ —72 /247
Fp,(rj)=1- <%—+1>6_7’§/202(%+1) e
7 Yy +2 Y + 2
+ 017,], _6—132_/202(%—1—2) [Q(Tng) + Q(Tng)],
r; 2> 0. (A.10)

Finally, use of (A.8) and (A.10) in (A.2), and substitution of
the solution into (A.1), produces (6).

APPENDIX B

Here, the average BER for the Traditional Selection Diver-
sity Model using CPSK signaling P(¢)cpsky,., 1S computed.
Following the technique outlined in Pierce [1] for NCFSK, the
static channel-error rate P(~) is averaged over the pdf f(v)
of the largest SNR ~ of the L branches. That is

P(€)CrsKae = /Oo P(y) - f(v) dy.

The error rate of CPSK without fading is well known [10,
eq. (14-3-2)], as is the pdf f(v) for Rayleigh fading [10, eq.
(14-3-5)]. Substitution of these in (B.1) yields

P(e)cpsian, = / TQU/E) L (L ey

. _ie—“//% dr.
Yo
With application of [11, eq. (7.1.6)] and the binomial theorem,
(B.2) is written

(B.1)

(B.2)

L—-1
1 L AL -1
P(C)CPSKT‘rad =5 =" Z(_l)k< )
2 ﬁ k=0 k
ot
264+ 7,

A204) o= B+ R+ DT gy (B.3)

[}
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Applying [12, eq. (3.461.2)] to the integral in (B.3), and using
[11, eq. (3.1.10)] (geometric series), we obtain

L—1 :
1 L -D)* (L-1
P(e)crsKpag = 5 9" (1+)k ' < k )
k=0

Y
Ty + (k+1) 4

which may be manipulated into the form given at (13).
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