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Alexander Pilz4,†, Carlos Seara2,‡,§, and Rodrigo I. Silveira2,‡,§
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Abstract. We consider a natural variation of the concept of stabbing a
segment by a simple polygon: a segment is stabbed by a simple polygon P
if at least one of its two endpoints is contained in P . A segment set S
is stabbed by P if every segment of S is stabbed by P . We show that
if S is a set of pairwise disjoint segments, the problem of computing
the minimum perimeter polygon stabbing S can be solved in polynomial
time. We also prove that for general segments the problem is NP-hard.
Further, an adaptation of our polynomial-time algorithm solves an open
problem posed by Löffler and van Kreveld [Algorithmica 56(2), 236–269
(2010)] about finding a maximum perimeter convex hull for a set of
imprecise points modeled as line segments.

1 Introduction

Let S be a set of n straight line segments (segments for short) in the plane.
The problem of stabbing S with different types of stabbers (in the computer
science literature) or transversals (in the mathematics literature) has been widely
studied during the last two decades.

Rappaport [14] considered the case in which the stabber is a simple polygon.
Specifically, he studied the following problem: a simple polygon P is a polygon
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transversal of S, if we have P ∩ s �= ∅ for all s ∈ S; that is, every segment in S
has at least one point in P . A simple polygon P is a minimum polygon transversal
of S if P is a polygon transversal of S and all other transversal polygons have
equal or larger perimeter. Rappaport observed that such a polygon always exists,
is convex, and may not be unique. He gave an O(3mn + n logn) time algorithm
for computing one, wherem is the number of different segment directions. Several
approximation algorithms are known [6,8], but determining if the general problem
can be solved in polynomial time is still an intriguing open problem.

Arkin et al. [2] considered a similar problem: S is stabbable if there exists
a convex polygon whose boundary C intersects every segment in S; the closed
convex chain C is then called a (convex) transversal or stabber of S. Note that in
this variation there is not always a solution. Arkin et al. [2] proved that deciding
whether S is stabbable is NP-hard.

In this paper we also consider the problem of stabbing the set S by a simple
polygon, but with a different criterion that is between the two criteria above.
More concretely, we use the following definition:

Definition 1. A segment s ∈ S is stabbed by a simple polygon P if at least one
of the two endpoints of s is contained in P. The set S is stabbed by P if every
segment of S is stabbed by P.

With this definition we study the Minimum Perimeter Stabbing Polygon
(MPSP) problem, defined as finding a simple polygon P of minimum perimeter
that stabs a given set S of segments. The MPSP problem is radically different
from the two problems above, those studied by Rappaport [14] and Arkin et
al. [2], because for the MPSP only the endpoints of the segments play a role
in the solution. Indeed, an alternative way to describe the input to the MPSP
problem is by saying that the input are pairs of points instead of segments.
However, as we will show in this paper, the segments play an important role in
establishing the difficulty of the problem, hence we stick to the original definition.

Moreover, the difference with the problem of Rappaport [14] is that in his
definition P can have both endpoints of a segment of s ∈ S not in P (provided
that the interior of s is stabbed by P), whereas we force one of the endpoints
to be in P . One of the common properties of both problems is that the optimal
solution is a convex polygon and that it always exists (the convex hull of S is
always a stabbing polygon).

On the other hand, a difference with the definition used by Arkin et al. is
that in the MPSP problem a segment of S can be fully contained in P , with
both endpoints in the interior of P , while this is not allowed in the problem
studied by Arkin et al. Therefore, we can say that our problem is between the
two mentioned ones.

Related Work. Prior to the paper by Rappaport [14], Meijer and Rappa-
port [12] solved the same problem for a set of n parallel segments in optimal
Θ(n log n) time. Mukhopadhyay et al. [13] considered a similar problem in which
the segments are all vertical, and proposed an O(n log n) time algorithm to find a
minimum-area convex polygon transversal of S. For parallel segments, Goodrich
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and Snoeyink [7] gave an O(n logn) time algorithm that decides whether a con-
vex transversal exists.

Several similar problems have been considered in the context of data impreci-
sion by Löffler and van Kreveld [10,11]. Their input is a set of imprecise points,
where each point is specified by a region in which the point may lie. The output
is the smallest and the largest possible convex hulls, measured by perimeter and
by area. Among the results obtained in [10], we cite those where regions are seg-
ments. For maximum-area convex hulls, the problem can be solved in O(n3) time
if the segments are parallel, or when they are pairwise disjoint with endpoints
in convex position. The problem is NP-hard for general segments.

The minimum-perimeter and minimum-area convex hulls problems for paral-
lel segments coincide with the problems studied by Meijer and Rappaport [12]
and Mukhopadhyay et al. [13], respectively. Notice also that the setting we con-
sider is in fact a constrained version of the problems studied by Löffler and van
Kreveld [10], in which each imprecise point is specified by a pair of points.

Pairs of points are also the input to the problems studied by Arkin et al. [1],
who studied the 1-center and 2-center problems for pairs of points. In the former
problem, the goal is to find a disk of smallest radius containing at least one point
from each pair. The latter one aims at finding two disks of smallest size such that
each pair has one point in each disk. Arkin et al. [1] presented algorithms for
these problems that run in O(n2polylog n) and O(n3 log2 n) time, respectively.

In a more general setting, Daescu et al. [4] studied the complexity of the
problem of given a k-colored point set, finding a convex polygon of minimum
perimeter containing at least one point from each color. Note that the MPSP
problem is the special case in which 2n points are colored with n colors and each
color is used twice. They proved that their problem is NP-hard if k is part of
the input of the problem.

Our Results. We show in Section 2 that if S is a set of pairwise disjoint seg-
ments, the MPSP problem for S can be solved in polynomial time. We then
show how the algorithm can be adapted to solve the following maximization
problem: Select exactly one point on each segment in S such that the perimeter
(or area) of the convex hull of the selected points is maximized. This problem
was stated as open [10], and is also the solution to the maximization variant of
the transversal problem [10]. In Section 3 we show that for general segments the
MPSP problem is NP-hard. We complement the NP-hardness by showing that
the MPSP problem is Fixed Parameter Tractable (FPT).

Note throughout the paper that optimization on the perimeter requires com-
paring sums of radicals (specifically, the sum of Euclidean distances). It is not
known whether this problem is in NP [3], and therefore the NP-hardness result
does not imply NP-completeness for the decision version of the problem. For the
same reason, we assume the real RAM as the underlying computational model in
our algorithms. Since our algorithms are combinatorial and only the cost func-
tion depends on the geometry of the problem instance, the methods in Section 2
are also applicable for optimizing the area (which is in NP).

Due to lack of space, several proofs have been deferred to the full version [5].
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2 Solving the Problem for Pairwise Disjoint Segments

In this section we show that if the segments in S are pairwise disjoint, then the
MPSP problem can be solved in polynomial time. Given any two points p and q
in the plane, let pq denote the segment joining p and q. For any simple polygon P
let ∂P denote the boundary of P . Consider all possible bitangents of S, i.e., let
B be the set of all segments not contained in S spanned by two endpoints of
segments in S. Note that the elements of B might cross each other and might also
cross the segments in S. A polygon C∗ with minimum perimeter that contains
at least one endpoint of every segment of S is spanned by endpoints of segments
in S, and its edges are elements of B.

Arkin et al. [2] describe a dynamic programming approach to decide whether a
set of pairwise disjoint segments admits a convex transversal (the vertices of the
transversing polygon are restricted to a given set of candidate points). They use
constant-size polygonal chains that separate subproblems and are not crossed by
segments; therefore the subproblems are independent. We adapt their approach
to produce an algorithm for the MPSP problem. The main difference (apart
from the fact that no candidate points are needed) is that segments actually can
cross the separating chains. However, we show below that they can be handled
in a way that leads to polynomial running time. Afterwards, we discuss how to
adapt this approach for the maximization variation.

Triangulating a Combination of Segments and a Polygon. The following
way of triangulating a combination of segments and a polygon is crucial for the
algorithm, and motivates the structure of the subproblems used in the dynamic
programming algorithm.

Let Q be a simple polygon and let Sc be a set of pairwise disjoint segments
of which each crosses ∂Q exactly once. Note that throughout this section we
distinguish between a segment intersecting (having a point in common) and
crossing (having an interior point in common with) another segment or set.
Let X be the interior of Q and let X ′ denote the set we get after removing the
1-dimensional domains of Sc from X , i.e., X ′ = X \⋃s∈Sc

s. Then X ′ is an open
region whose closure is Q. Note that the vertices of X ′ are the union of: (i) the
vertices of Q, (ii) the endpoints of edges in Sc that are in the interior of Q, and
(iii) the points where elements of Sc cross ∂Q. Further, note that X ′ might not
be connected if there is a segment of Sc that has one endpoint on ∂Q and the
other one outside Q (e.g., the longest segment in Fig. 1, left).

We now triangulate X ′ (i.e., partition it into triangles that are spanned only
by vertices of X ′, see Fig. 1). The triangulation T of X ′ behaves like the trian-
gulation of a collection of simple polygons (imagine the 1-dimensional parts not
in X ′ where the segments of Sc enter Q, i.e., X \X ′, to be slightly “split”, as in
Fig. 1, center). Note that the vertices of T are exactly the vertices of X ′. Each
edge in T that is not part of ∂Q or part of a segment in Sc partitions X

′ into two
sets (note that each set need not be connected). We call such edges chords (gray
edges in Fig. 1, right). Chords are the equivalent of diagonals of simple polygons
(interior edges that subdivide the polygon into two smaller polygons). Further,
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Q

Fig. 1. Left: an optimal polygon Q, only the solid edges are in Sc. Center: schematic
view of X ′ as a collection of simple polygons. Right: a triangulation of X ′, gray edges
are chords. The segments fully contained in the polygon (shown dashed) are ignored
by the triangulation.

X ′ might also be separated by an edge that is part of a segment in Sc (like the
longest edge in Fig. 1). We call such a segment a separating segment. Keep in
mind that there are chords that have one or both of their endpoints not on the
endpoint of a segment or at a vertex of Q, but at the crossing of a segment with
∂Q. In any case, a chord or a separating segment defines a polygonal path from
one point on an edge of Q to another point on an edge of Q. Following [2], we
will use these polygonal paths of at most three edges, called bridges, to define
our subproblems to obtain a solution when taking the MPSP C∗ as Q. One
may think of the approach being similar to the classic dynamic programming
algorithm for minimum weight triangulations of simple polygons (see, e.g., [9]),
but with a major difference: we do not know the boundary of the triangulated
region beforehand.

Subproblems. Every subproblem is defined by an ordered pair (a, b) of directed
bitangents of B and a polygonal chain β of at most three edges, the bridge, which
connects a and b. When evaluating a subproblem (a, b, β), we assume that a and b
are edges of C∗ and that C∗ equals Q in the discussion above (for some choice
of Sc to be defined later). Therefore, the bridge β is part of a triangulation of X ′

and separates X ′; β is either a part of a separating segment or consists of a
chord (called the chord of β) and at most two parts of segments of Sc. See Fig. 2
for examples of bridges. Note that a bridge might have a chord that is not a
bitangent of B (like the second from the left in Fig. 2). Further, note that a
bridge can only be crossed by a segment through the chord, since the segments
are pairwise disjoint by definition.

Let the directed bitangents be a = a1a2 and b = b1b2. Given a directed
bitangent a = a1a2 we write a for the directed bitangent a2a1. W.l.o.g. let a1
and b1 be on the x-axis and a2 and b2 be above it. Also, let b be to the left of
the directed line through a1 and a2. See Fig. 3 for an illustration.
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Fig. 2. Examples of bridges. The two bitangents defining the subproblem are shown
dashed, chords are dash-dotted, and segments from Sc are shown solid.
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Fig. 3. Examples of subproblems. Rightmost: example for the initial pair.

Solution of a Subproblem. We define the solution of a subproblem as follows.
Let C∗

a,b,β be a polygon of minimum perimeter that: (i) contains a and b as two
of its boundary edges, (ii) contains at least one endpoint of each segment in S,
and (iii) contains both endpoints of every segment of S that properly crosses the
chord of β. The importance of the third condition will become clear later.

Let Ca,b,β be the polygonal chain on ∂C∗
a,b,β starting at a1, counterclockwise

traversing ∂C∗
a,b,β and ending at b1. Note that Ca,b,β is an open polygonal chain,

as opposed to C∗
a,b,β , which is a simple polygon.

The solution of a subproblem (a, b, β) is Ca,b,β , and its cost is the length of
that chain. The base case occurs when a2 = b2, and has cost equal to the sum
of the lengths of a and b. Note throughout the construction that this is the only
way a and b can intersect. In general, a and b form a quadrilateral a2a1b1b2. If
the quadrilateral is not convex, we discard the subproblem (i.e., we assign it a
cost of +∞). The general case where it is convex is discussed next.

Outline of the Algorithm. From now on we assume that a and b define a
convex quadrilateral. The outline of the algorithm is as follows. We guess a pair
x, y ∈ B such that y2y1x1x2 are four consecutive vertices of C∗. Hence, after
O(|S|4) guesses we have found x and y such that ∂C∗ = Cx,y,β0 ∪ y1x1 with
β0 = x1y1. Suppose we are given the solution Q = C∗. Let X ′ be defined as
above, and let Sc be the set of segments in S that cross Cx,y,β0 (which does not
include the ones that cross β0). Let Δ0 be the triangle of a triangulation T of
X ′ that has β0 = y1x1 as one side. The subproblem (x, y, β0) will be solved by
guessing the third endpoint of Δ0 and the edge c of Cx,y,β0 that is incident to
Δ0 or that is crossed by a segment whose endpoint is incident to Δ0. In the most
general case, this gives two new subproblems (x, c, β1) and (c, y, β2), where each
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of β1 and β2 contains one side of Δ0 that is not part of β0 (we will consider the
other cases in detail below). See Fig. 3, right.

Let â be the ray through a2 starting at a1. Let b̂ be defined analogously. For
every subproblem (a, b, β), only a part of the elements of S is relevant. Consider
the (possibly unbounded) maximal region to the left of a and to the right of b
(recall that a and b are directed). The bridge β disconnects that region into two
parts. The subproblem region Ra,b,β is the part “above” β (i.e., the part adjacent

to â \ a and b̂ \ b; the bridge might not be x-monotone).
The subproblem region is marked gray in Fig. 3. Only the segments that have

at least one endpoint in Ra,b,β are relevant for finding Ca,b,β . We distinguish
between three different types of such segments: (1) Segments that are entirely
inside Ra,b,β are complete. (2) Segments that share more than one point with
Ra,b,β but are not complete are cut. (3) A segment with infinitely many points
on the bridge is neither cut nor complete. We say that a point is inside Ca,b,β

when it is contained in the closure of the region bounded by Ca,b,β and β.
If there is a segment that is entirely to the right of a or to the left of b, then the

choice of a and b cannot give a solution and such a subproblem is assigned +∞
as cost. We also do this if a segment intersected by â or b̂ does not have an
endpoint inside the subproblem region.

Note that if a segment in a valid subproblem intersects â or b̂, then we know
which of its endpoints must be inside Ca,b,β , while we do not know that for the
cut segments that intersect the chord of the bridge. However, we will choose our
subproblems in a way such that all endpoints of cut segments in the subproblem
region will be inside Ca,b,β ; the reason for that will become clear in the proof of
Lemma 3, but the reader should keep this in mind as an essential part of the
method. For complete segments, we need to decide which endpoint to select.

Lemma 1. Given a subproblem instance (a, b, β), let t be the chord of β, or its
only edge if β is a single edge (which may be a chord itself, or part of a separating
segment). Let X be the region bounded by Ca,b,β ∪ β, and let X ′ = X \⋃s∈Sc

s,
for Sc the set of segments of S that are crossed by chain Ca,b,β. Then either t is
an edge of Ca,b,β, or there exists a triangle Δ such that:

1. The interior of Δ is completely contained in X ′.
2. The edge t is an edge of Δ.
3. The apex of Δ (i.e., the vertex not on t) is either (i) an endpoint of a segment

in Sc inside X, (ii) an endpoint of a segment in S that is a vertex of Ca,b,β,
or (iii) an intersection point between a segment in Sc and Ca,b,β.

Proof. Arbitrarily triangulateX ′. If t is not on the boundary, then the triangleΔ
incident to t inside the subproblem region fulfills the properties. See Fig. 4. �	

Lemma 2. Let Δ be the triangle of Lemma 1. Any segment of S that has a
non-empty intersection with the interior of Δ either has both its endpoints inside
Ca,b,β or crosses t; in the latter case the endpoint that is inside Ra,b,β is also
inside Ca,b,β.
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ab
t

Fig. 4. Illustration of Lemma 1. Left: four possibilities for Δ shown in gray. Ca,b,β is
dash-dotted, with the defining bitangents dashed. Right: a triangulation of X ′.

Proof. This follows from the properties of Δ in Lemma 1: A segment intersecting
the interior of Δ is not part of Sc but has a non-empty intersection with X .
Therefore, either both of its endpoints are inside Ca,b,β , or it enters X via t and
therefore has its relevant endpoint inside Ca,b,β by definition. See Fig. 4. �	

Getting Smaller Subproblems. Let A be the set of points that are either
endpoints of S or crossing points of a segment and a bitangent (recall that
no segment of S is an element of B). Hence, A contains all the points that
are possible apices for a triangle Δ of Lemma 1. Note that one may construct
subproblems where every possible apex of Δ is an endpoint of a segment in Sc,
as well as subproblems where every possible apex is on a point where a segment
crosses Ca,b,β. Further, note that |A| ∈ O(|S|3) since |B| = 4

(|S|
2

)
.

Consider again the subproblem (a, b, β). As in Lemma 1, let t be the chord of β
if a chord exists, or let t otherwise be the only edge of β. Let aβ be the intersection
point of a with the bridge β; bβ is defined analogously. For each subproblem
(a, b, β) that is not a base case (i.e., a2 �= b2), one of the following cases applies,
allowing to get one or two smaller subproblems. During the execution of the
algorithm we will consider both cases.

Case 1: t is an Edge of the Solution, i.e., an Edge of Ca,b,β. This happens
when t is a chord that does not intersect the interior of the quadrilateral defined
by a and b. This case is only valid if no segment crosses t, as we require all the
endpoints in Ra,b,β of segments crossing t to be inside Ca,b,β . In that case we get
at most two new subproblems (a, t, β1) and (t, b, β2), where β1 is the edge aβt1
and β2 is the edge t2bβ. However, note that one of (a, t) or (t, b) (or both) might
intersect at a2 or b2, respectively, and therefore form a base case.

Case 2: t is Not an Edge of the Solution.Then there is a triangle adjacent to t
as in Lemma 1.Wewill guess the apex of the triangle. For every point d inA∩Ra,b,β

consider the triangleΔd that d forms with t. We only consider d ifΔd is completely
inside Ra,b,β, and where the interior ofΔd does not intersect any segment that in-
tersects a or b. It follows from Lemma 1 that one of the triangles tested leads to a
subdivision of the optimal solution. We get the following two subcases, see Fig. 5.

Case 2.1: d is a Point Where a Bitangent and a Segment Cross. Let c be
the bitangent that contains d. If c equals a or b, then we get one new subproblem
(a, b, β′), with β′ containing a side of Δd as a chord (Fig. 5a). Otherwise, we get
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Fig. 5. Case 2. The new bridges are dotted. (a)-(b) Case 2.1. (c)-(d) Case 2.2.

two new subproblems, (a, c, β1) and (c, b, β2), where β1 and β2 both contain a
side of Δd (Fig. 5b).

Case 2.2: d is an Endpoint of a Segment. Let s be the segment that has
d as its endpoint. Choose a point x where s intersects some bitangent c. Then,
for every possible choice of x (which implies the choices of c), we get two new
subproblems (a, c, β1) and (c, b, β2), as in the previous case; note that for both
new bridges, x = d is possible. The degenerate case where c equals a or b can be
handled as in the previous case. See Fig. 5c-d.

Lemma 3. Given any valid subproblem (a, b, β), there is a pair of subproblems
among the ones above such that the union of their solutions is equal to Ca,b,β.

Proof. Consider the edge t of Lemma 1. If t is a chord and part of Ca,b,β , then it
will be considered in Case 1. Otherwise, consider the triangle Δ inside Ca,b,β . All
segments that are intersected by the interior ofΔ are either completely contained
in Ca,b,β or enter through t (if it is a chord) and therefore have their relevant
endpoint inside Ca,b,β (cf. Lemma 2). Hence, when the choice of Δd coincides
with Δ, the two subproblems can be combined into Ca,b,β ; the only segments
that are part of both subproblems intersect the interior of Δ, and we know that
both endpoints will have to be inside the chain that results from the combination
of the solutions of the subproblems. Since all possibilities of Δd are checked, the
subproblem combination of minimum cost is guaranteed to be Ca,b,β. �	
This last lemma now implies that we actually find the optimal solution. Note
that it is easy to construct a pair of bitangents and a bridge (a, b, β) that is
part of the optimal solution but for which Ca,b,β is not part of C∗. However, as
mentioned in the outline of the algorithm, we choose the initial problem (x, y, β0)
in a way that ∂C∗ = Cx,y,β0 ∪ β0. All segments crossing β0 = x1y1 need to have
their endpoint above β0 inside the solution, and the algorithm actually produces
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a triangulation of X ′ when taking C∗ as Q and Sc being the segments that cross
∂C∗ but do not cross β0.

Recall that we initialize the algorithm using a brute-force approach: that
is, we consider all O(|S|4) possible choices for two defining bitangents and a
bridge a1b1. Every subproblem contains less edges of the complete graph on all
endpoints of S, and for every subproblem we need polynomial time. The number
of subproblems can be bounded by the choices for c and d. Therefore, dynamic
programming can be applied to obtain a polynomial-time algorithm.1

Theorem 1. Given a set S of pairwise disjoint segments, a Minimum Perime-
ter Stabbing Polygon (MPSP)—i.e. a minimum perimeter polygon containing at
least one endpoint of each segment in S—can be computed in polynomial time.

Maximization for Pairwise Disjoint Segments. Our previous algorithm
relies on the fact that the result has minimum perimeter: this automatically
prevents two endpoints of the same segment from being vertices of the result-
ing polygon. However, making the algorithm slightly more sophisticated, we can
solve in polynomial time a maximization version of the problem, stated open by
Löffler and van Kreveld [10]: select exactly one point on each segment in S such
that the perimeter (or area) of the convex hull of the selected points is maximized.
This result is based on the fact that for the maximum area or perimeter transver-
sal, one needs to consider only the endpoints of the segments [10, Lemmata 1
and 8]. The proof can be found in the full version [5].

Theorem 2. There exists a polynomial-time algorithm that selects exactly one
point on each segment in S such that the perimeter (or area) of the convex hull
of the selected points is maximized over all possible selections.

3 Hardness of the General Version

In this section we prove that the MPSP problem is NP-hard by reducing 3-SAT
to it. Our reduction is similar to the ones used in [2,4,10].

Theorem 3. The MPSP problem is NP-hard.

Proof (Sketch). We only present here the main construction, the rest of the
proof is given in the full version [5]. Let a 3-SAT instance consist of n variables
x1, . . . , xn and m clauses C1, . . . , Cm. We reduce this instance to the following
one of the MPSP problem. We draw a circle and place variable gadgets in the
left semicircle, clause gadgets in the right semicircle, and segment connectors
joining variable gadgets with clause gadgets. See Fig. 6a.

For each variable xi, i ∈ [1..n], we put points Ti and Fi on the circle and place
three segments: segment TiFi, and two zero-length segments ai and bi, so that

1 A straightforward analysis of the running time results in O(|S|9), which probably
can be improved. In any case, it is worth stressing that our main contribution is
that the problem can be solved in polynomial time, more than the running time
itself.
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Fig. 6. (a) Overview of the reduction from 3-SAT. Variable gadgets (b) are to the left
and clause gadgets (c) to the right.

TiFi is parallel to the line containing both ai and bi. Refer to Fig. 6b. Further-
more, trapezoids with vertices ai, Ti, Fi, bi, for all i ∈ [1..n], are congruent. Let
Pv := |aiTi|+ |Tibi| = |aiFi|+ |Fibi| and P ′

v := |aiTi|+ |TiFi|+ |Fibi| (where |pq|
denotes the length of the segment pq).

For each clause Cj , j ∈ [1..m], we first place two zero-length segments cj
and dj . We select the three points pj,1, pj,2, and pj,3, dividing evenly the smallest
arc of the circle joining cj and dj into four arcs, and then we place three other
segments: pj,1pj,2, pj,2pj,3, and pj,3pj,1. See Fig. 6c. The convex pentagons with
vertices dj , cj , pj,1, pj,2, pj,3, for all j ∈ [1..m], are congruent. Let Pc := |cjpj,1|+
|pj,1pj,2|+|pj,2dj | = |cjpj,1|+|pj,1pj,3|+|pj,3dj | = |cjpj,2|+|pj,2pj,3|+|pj,3dj | and
P ′
c := |cjpj,1|+|pj,1pj,2|+|pj,2pj,3|+|pj,3dj |. We further ensure thatm(P ′

c−Pc) <
P ′
v − Pv. This condition will be necessary in the problem reduction.
For each clause Cj , j ∈ [1..m], we add segments called connectors as follows.

Let xi be the variable involved in the first literal of Cj . If xi appears in positive
form then we add the segment Tipj,1. Otherwise the segment Fipj,1 is added. We
proceed analogously with the variable in the second literal and point pj,2, and
with the variable in the third literal and point pj,3.

Consider the set of segments added at variable gadgets, clause gadgets, and
connectors as an instance of the MPSP problem. Observe that any optimal
polygon Popt for this instance satisfies the following conditions:

(a) Popt contains as vertices points ai and bi for all variables xi, i ∈ [1..n], and
points cj and dj for all clauses Cj , j ∈ [1..m].

(b) For each variable xi, i ∈ [1..n], Popt contains exactly one of Ti and Fi as
vertex between ai and bi.

(c) In the clause gadget of each clause Cj , j ∈ [1..m], if the selected endpoint of
at least one connector is not in the gadget as a vertex of Popt, then exactly
two points among pj,1, pj,2, and pj,3 are vertices of Popt. Otherwise, all three
are vertices of Popt.

In the full version [5], we show that any polygon satisfying conditions (a)-(c)
induces a valid variable assignment that satisfies the formula if and only if the
polygon has minimum perimeter. Further, we give an exact construction for the
segment endpoints of the gadgets. �	
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Observe that the same reduction with minor modifications applies for the case
of minimizing the area of the output polygon. Moreover, our proof shows that
the problem remains NP-hard even if the endpoints of all the segments are in
convex position. On the other hand, the

√
2-approximation algorithm of Daescu

et al. [4] gives the same approximation ratio for our MPSP problem.
It is worth mentioning that the MPSP problem is FPT on the number k

of segments that intersect other segments. Namely, let S′ ⊆ S be the set of
segments of S that do not intersect any segment of S. Consider the 2k instances
of the MPSP problem such that each consists of the elements of S′ joint with
exactly one endpoint (i.e., a segment of length zero) of each element of S \S′. All
these instances can be solved in O(2kP (n)) time, for the polynomial time P (n)
of Theorem 1, since each instance consists of pairwise disjoint segments. The
optimal solution for S is among the O(2k) solutions found for those instances.

References
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