
New Results on the Computability and Complexity of
Points – to – Analysis

Venkatesan T. Chakaravarthy
Computer Sciences Department
University of Wisconsin–Madison

1210, West Dayton Street, Madison, WI 53706, USA.

venkat@cs.wisc.edu

ABSTRACT
Given a program and two variables p and q, the goal of
points-to analysis is to check if p can point to q in some ex-
ecution of the program. This well-studied problem plays a
crucial role in compiler optimization. The problem is known
to be undecidable when dynamic memory is allowed. But
the result is known only when variables are allowed to be
structures. We extend the result to show that, the problem
remains undecidable, even when only scalar variables are al-
lowed. Our second result deals with a version of points-to
analysis called flow-insensitive analysis, where one ignores
the control flow of the program and assumes that the state-
ments can be executed in any order. The problem is known
to be NP-Hard, even when dynamic memory is not allowed
and variables are scalar. We show that when the variables
are further restricted to have well-defined data types, the
problem is in P. The corresponding flow-sensitive version,
even with further restrictions, is known to be PSPACE-
Complete. Thus, our result gives some theoretical evidence
that flow-insensitive analysis is easier than flow-sensitive
analysis. Moreover, while most variations of the points-to
analysis are known to be computationally hard, our result
gives a rare instance of a non-trivial points-to problem solv-
able in polynomial time.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers,optimization

General Terms
Languages, Theory

Keywords
Pointer analysis, flow-sensitive, flow-insensitive, complexity,
undecidability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-628-5/03/0001 ...$5.00.

1. INTRODUCTION
Modern compilers use static analysis to optimize and speed-

up programs. The analysis gets complicated for languages
that support pointers (such as C). In order to analyze a pro-
gram that involves pointers, it is necessary to know what
each variable may point to at a given program statement.
For example, consider the following segment of a program.

1. x = 3;
2. *p = 5;
3. y = 4*x;

If we know that p can never point to x at statement (2),
we can optimize the program by changing statement (3) to
be “y=12”. This may lead to further optimization possibil-
ities. Thus points-to analysis is useful in static analysis and
optimization of programs. Two types of points-to analysis
are prevalent: flow-sensitive and flow-insensitive. This pa-
per deals with the theoretical aspects of both versions of the
problem.
In the flow-sensitive points-to analysis problem, we are

given the control flow graph of a program, a pair of vari-
ables p and q and a location in the program. The goal is to
check if there is some path in the control flow graph such
that executing the statements along the path makes p point
to q at the given program location. We will discuss the se-
mantics of the programming language in Section 3. Briefly,
the program is allowed to use the usual assignment state-
ments, branching statements and loops. As is traditionally
done, we make the conservative assumption that all paths in
the program are executable. Thus, we ignore the conditions
in the branching statements.
The points-to problem has been well studied, in terms of

both theory and practice. The theoretical results have dealt
with the complexity of the problem, whereas approximation
algorithms have been proposed in practice.
Throughout the following discussion, we assume that the

input program is made of a single procedure (with no proce-
dure calls). Even with such a restriction, various versions of
the problem are known to be undecidable or computation-
ally hard. Thus the assumption, in fact, gives us stronger
hardness results.
Our first result deals with classifying various special cases

of the flow-sensitive analysis. The special cases are obtained
by placing restrictions on the input program. Firstly, we
can either allow or disallow the program to use dynamic
memory. Secondly, we can either restrict the program to use
only scalar variables (e.g. int, int*, int** etc.) or allow non-
scalar variables (i.e. arrays and structures) as well. Landi [7]

115

and Ramalingam [10] proved the following result.

Theorem 1. ([7, 10]) Single procedural flow-sensitive points-
to analysis with dynamic memory and non-scalar variables
is undecidable.

Our first result improves the above undecidability result
to

Theorem 2. Single procedural flow-sensitive points-to
analysis with dynamic memory is undecidable, even when
only scalar variables are allowed.

The new result gains some interest when we interpret it
with the known results for the other case where dynamic
memory is not allowed. In this case, the problem is decid-
able, as the configuration space of pointers becomes finite.
But, Landi [6] and Muth and Debray [9] proved a very strong
PSPACE-Hardness result for this case. To state their result,
let us restrict the problem further. First, we assume that
the variables are scalars. Next, we assume that the variables
have well-defined data types and that the programs conform
to typing rules. For example, a pointer of type int ∗ ∗ can
only point to a variable of type int∗. Furthermore, we re-
strict that the number of levels of dereferences in the types
is just 2. For example, the variables can only be of type int,
int∗ or int ∗ ∗. Now we are ready to state the PSPACE-
Hardness result:

Theorem 3. ([6],[9]) 1 Single procedure flow-sensitive
points-to analysis is PSPACE-Complete, even when all vari-
ables are scalars with well defined types and only two levels
of dereferencing in the types are allowed.

The only possible further restrictions are either to allow
only one level of dereferencing or to disallow the use of point-
ers! As the second case does not allow use of any pointers,
we ignore it! The first case is known to be solvable in poly-
nomial time [6].
Theorem 3 combined with Theorem 1 gives us a very good

understanding of the theory of flow-sensitive analysis. The
only case left open is to allow dynamic memory, but restrict
variables to be scalars. Theorem 2 shows that this case
is also undecidable. We can now summarize the results as
Figure 1.

Points-to Analysis

With dynamic memory Without dynamic memory

(Undecidable)

With well defined types

Levels >= 2
(PSPACE-Complete)

Without well defined types
(PSPACE-Complete)

Levels < 2
(Is in P)

Figure 1: Flow sensitive points-to analysis - a clas-
sification

Our second result deals with flow-insensitive analysis. In
this type of analysis, we ignore the control flow of the pro-
gram and assume that the statements can be executed in
any order (with possible repetition). Thus flow-insensitive

1The above result was proved for four levels in [6] and was
improved to two levels in [9].

analysis is a special case of flow-sensitive analysis, where the
input control flow graph is a complete graph.
As flow-sensitive analysis is hard, there have been at-

tempts to do flow-insensitive analysis. Many algorithms for
approximate flow-insensitive analysis have been proposed [1,
2, 3, 11, 12, 13]. These algorithms compute a safe solution
to the problem: given the input program and a pair of point-
ers (p, q), if there is an execution that makes p point to q,
the algorithm would definitely accept the pair. But, the al-
gorithm may accept the pair (p, q), even though there may
not be any execution that makes p point to q. Thus, the
algorithm compute an approximate solution (with one sided
error). In this paper, we focus on the complexity of com-
puting the exact solution to the problem.
One important result in this context is the following.

Theorem 4. (Horwitz [5]) Even when dynamic memory
is not allowed and variables are scalar, flow-insensitive anal-
ysis is NP-Hard, provided arbitrary number of dereferences
is allowed in pointer expressions 2

Except for this result, unfortunately, not much is known
about the computability and complexity of the problem.
Several questions remain open: Is the above problem in NP?
Is the problem decidable, if we allow dynamic memory? Can
the problem be solved in polynomial time, if we bound the
number of dereferences allowed in pointer expression? A
positive answer to the last question will have practical im-
plications, because in real world programs, a pointer expres-
sion like “∗∗∗ . . .∗p” uses only a limited number of derefer-
ences. Thus, unlike the flow sensitive case, the complexity
of flow-insensitive case is less understood. In this scenario,
our second result aims to shed some light on the complex-
ity of flow-insensitive analysis. We show that the problem
stated in Theorem 4 can be solved in polynomial time, if we
add the restriction that the variables have well-defined data
types.

Theorem 5. When dynamic memory is not allowed and
the variables are scalars with well defined types, the flow
insensitive analysis can be solved in polynomial time, even
when arbitrary number of dereferences are allowed in an ex-
pression.

The above theorem is interesting for a few reasons. First
of all, from our discussion so far, we can see that there
are only negative results on points-to analysis problems.
The theorem shows that there is a somewhat-natural, non-
trivial points-to problem solvable in polynomial time. Sec-
ondly, though flow-insensitive analysis (being a special case)
seems to be easier than flow-sensitive analysis, there is lit-
tle theoretical evidence for this thesis. The new result,
when compared with Theorem 3, gives us a version of the
problem where flow-insensitive analysis is easier than flow-
sensitive analysis. When the variables have well-defined
types, flow-insensitive analysis can be solved in polynomial
time (for arbitrary levels of dereferences in types), whereas
flow-sensitive analysis is PSPACE-Complete (even for just

2The issue of number of dereferences in an expression did not
arise in the context of flow-sensitive analysis, because there,
using temporary variables, we can break an expression into
a sequence of statements that use one level of dereferencing.
But in flow insensitive analysis, breaking statements may
not preserve the solution.

116

two levels). Finally, ideas used in the proof of the theorem
may be useful in solving the open questions.
The rest of the paper is organized as follows. In Sec-

tion 2, we prove Theorem 5 that deals with flow-insensitive
analysis. In Section 3, we prove Theorem 2 that deals with
flow-sensitive analysis. We state a few open problems and
conclusions in Section 4.

2. FLOW-INSENSITIVE ANALYSIS WITH
WELL DEFINED TYPES

In this section, we give a polynomial time algorithm for
the flow-insensitive analysis with well-defined types and
thereby prove Theorem 5. We first consider the problem
without well-defined types and briefly discuss the difficulties
in solving it (Section 2.1). There, we also develop some
notation used throughout the paper. Then, we discuss how
these difficulties can be handled when the input program has
well-defined types and present a high level overview of the
algorithm (Section 2.2). We then solve two subproblems in
Sections 2.3 and 2.4 that are used in our algorithm. Finally,
we present our algorithm in Section 2.5. Throughout the
discussion, we use notations from the C language.

2.1 Flow-Insensitive Analysis Without Types
In this problem, we are given a set of pointers (or vari-

ables) {p1,p2,. . . ,pn}, a set of statements S and a pair of
pointers p and q. A statement can be of two types: (i)
∗ ∗ ∗ . . . ∗ pi = &pj or (ii) ∗ ∗ ∗ . . . ∗ pi = ∗ ∗ ∗ . . . ∗ pj , for
some variables pi and pj . Given the set of pointers, the set
of statements and two pointers p and q, the goal is to check
if there is a finite sequence s = s1, s2, . . . , sr of the input
statements from S, such that at the end of executing these
statements (in order) p points to q. We then say that the
sequence s makes p point to q. In such a sequence, a single
statement can be used any number of times. We assume the
usual semantics of using pointers. In the beginning of any
execution all the variables point to a special NULL value.
We do not consider sequences that dereference the NULL
value any time during their execution. That is, by defini-
tion, such a sequence cannot make p point to q.
As stated in Theorem 4, the above problem is known to

be NP-Hard. Here, we discuss the problem and some known
approximation algorithms. Our aim is to highlight the dif-
ficulties involved in solving the problem. Later, we shall
see how these difficulties can be overcome if add the typing
restrictions to the problem. We first develop some notation.

Notation: We denote the expression ∗ ∗ ∗ . . . ∗ x, with
i stars, as ∗ix. If a sequence of input statements from S
makes x point to y then we say that the sequence realizes
the pair 〈x, y〉. If some such sequence exists, we say that
the pair 〈x, y〉 is realizable. Observe that, the goal of the
problem is to check if the input pair 〈p, q〉 is realizable. We
say that a set {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉} is realizable,
if there is a sequence of input statements from S that makes
each xi point to yi (simultaneously). As a special case, if a
set of pointers {〈x1, x2〉, 〈x2, x3〉, 〈x3, x4〉 . . . , 〈xk−1, xk〉} is
realizable, we say that the chain

x1 → x2 → · · · → xk

is realizable.
Though we are mainly interested in the realizability of

the input pair, 〈p, q〉, it is useful to consider the set of all

��������a ��

���
��

��
��

��
	
�����c

��
��������d ��

��

��������b

�������������

��

Figure 2: Realizability graph of Example 1

realizable pairs. For the given set of input statements S, we
denote its solution as

λ(S) = {〈x, y〉| the pair (x, y) is realizable.}
It is often convenient to view the solution as a directed
graph: the pointers form the vertices of the graph and λ(S)
serves as the edge set. In other words, (x, y) will be an edge
in the graph iff the pair 〈x, y〉 is realizable. We call the graph
the realizability graph of the set of input statements S.

Example 1 Consider a set of pointers P = {a, b, c, d} and
the set of statements

S = {a = &c, c = &b, b = &a, b = a, ∗b = c, d = ∗a}
It is easy to see that 〈a, c〉, 〈c, b〉 and 〈b, a〉 are realizable.
The sequence a = &c, b = a realizes the pair 〈b, c〉. The
sequence c = &b, b = &a, ∗b = c realizes the pair 〈a, b〉. The
following sequence would realize the pair 〈d, a〉:

c = &b, b = &a, ∗b = c, b = &a, d = ∗a
One can construct sequences that realize the pairs 〈d, b〉 and
〈b, b〉. One can argue that no other pair is realizable. In
particular, note that the pair 〈d, c〉 is not realizable. So, the
solution is

λ(S) = {〈a, c〉, 〈c, b〉, 〈b, a〉, 〈a, b〉, 〈b, c〉, 〈b, b〉, 〈d, a〉, 〈d, b〉}
The realizability graph is shown in Figure 2
As the problem is NP-Hard, approximation algorithms

have been proposed by Andersen [1], Steensgaard [12], and
Shapiro and Horwitz [11], to name a few. These algorithms
compute a safe solution T to a given set of input statements
S. We say that T is a safe solution if T is a superset of
the exact solution λ(S). For example, the set of all pairs
of pointers is a safe solution. The accuracy of a solution
is measured in terms of its size: smaller the better. The
above algorithms consider a restricted version of the prob-
lem where only one dereferencing is allowed in any input
statement. That is, the only statements allowed are of the
form x = &y, x = y, ∗x = y and x = ∗y. The idea is that
the given set of statements S can be transformed into a new
set of statements S′. We “break” a more general statement
∗ ∗ ∗ . . . ∗ x = y in S into a sequence of statements that use
at most one dereferencing by using temporary variables. In
flow-sensitive analysis, one can do the above transformation
without loss of accuracy. But in flow-insensitive analysis,
it may lead to some loss of accuracy, because extra pairs
of pointers may be realizable in the transformed program.
However, the transformation will not compromise safety, be-
cause λ(S) ⊆ λ(S′). The three algorithms provide tradeoff
between accuracy and running time. We briefly discuss An-
dersen’s algorithm.
Given the set of input statements S, we start with an

empty solution T = φ. We first consider direct assignment
statements of the form x = &y and add the pair 〈x, y〉 to T .
Then, we executte the following procedure iteratively, and

117

add more pairs to T . If x = y is an input statement in S and
〈y, z〉 ∈ T , we add the pair 〈x, z〉 to T . If x = ∗y is in S and
〈y,w〉 and 〈w, z〉 are in T , we add 〈x, z〉 to T . Similarly, if
∗x = y is in S, and 〈x,w〉 and 〈y, z〉 are in T , we add 〈w, z〉
to T . We stop when no more pairs can be added to T .
It is easy to see that Andersen’s algorithm will output

a safe solution. However, it may not be the exact solu-
tion. The issue is that there may be pairs 〈y,w〉 and 〈w, z〉
that are realizable individually, but not simultaneously (i.e.
〈y,w〉 and 〈w, z〉 are realizable, but {〈y,w〉, 〈w, z〉} is not
realizable). Suppose such pairs exist and x = ∗y is an in-
put statement. Then, the algorithm would include 〈x, z〉 in
its solution T , even though 〈x, z〉 may not be realizable. In
the above situation, informally, we say that the realizable
pairs 〈y,w〉 and 〈w, z〉 are “dependent” on each other. For
instance, consider the set of statements S presented in Ex-
ample 1. We see that 〈a, b〉 and 〈b, c〉 are realizable individu-
ally. But they are not realizable simultaneously. So the pairs
are dependent. Consider running Andersen’s algorithm on
Example 1. As pairs 〈a, b〉 and 〈b, c〉 are realizable, and
d = ∗a is an input statement, the algorithm would include
〈d, c〉 in its solution. But 〈d, c〉 is not actually realizable (i.e.
〈d, c〉 �∈ λ(S)).
The above discussion shows that in order to compute the

exact solution, we have to handle the dependencies among
the realizable pairs more carefully (at least, when one tries
to extend Andersen’s algorithm to compute exact solutions).
It remains open whether one can do that efficiently. Recall
that, the general problem where arbitrary number of deref-
erencing is allowed in an input statement is NP-Hard (The-
orem 4). But, when the number of dereferences allowed is
bounded (say, only one dereferencing per statement is al-
lowed), no such hardness result is known. Hence, one may
be able to compute the exact solution in polynomial time. It
is a challenging open problem. We believe that some mech-
anism to handle the dependencies correctly and efficiently
may lead to a polynomial time algorithm.
In this paper, we show that when the pointers are required

to have well-defined types, we can deal with the dependen-
cies correctly and efficiently (in polynomial time). More-
over, we can do that even when the input statements use
arbitrary number of dereferences. We do not “break” such
statements and hence obtain exact solutions. The rest of
the section presents a polynomial time algorithm for the
flow-insensitive analysis with types.

2.2 Flow-Insensitive Analysis With Types
This problem is defined by restricting the general flow-

insensitive analysis (discussed in Section 2.1) to programs
with well-defined types. A more precise definition follows.
We are given a set of pointers (or variables) {p1, p2, . . . , pn},

a set of statements S and a pair of pointers p and q. A
statement can be of two types: (i) ∗ ∗ ∗ . . . ∗ pi = &pj or (ii)
∗ ∗ ∗ . . . ∗ pi = ∗ ∗ ∗ . . . ∗ pj , for some variables pi and pj .
All variables are scalars with well-defined types (e.g. int,
int*, int** etc.). A variable can point to only variables of
compatible type. For example, a variable of type int ∗ ∗ can
only point to a variable of type int∗. We identify the type
of a variable by the number of dereferences used. For exam-
ple, variables of type int and int ∗ ∗ are said to have types
0 and 2 respectively. The type information is part of the
input, given by a function Type(). The statements satisfy
the typing rule mentioned above. For example, if pi = &pj

��������p1

�� ���
��

��
��

��
��������p2

������
��

��
��

�
Layer 3

��������x1

��

��������x2

��

Layer 2

��������y1

�� ���
��

��
��

��
��������y2

��

Layer 1

��������q1 ��������q2 Layer 0

Figure 3: Realizability graph of Example 2

is a statement, then Type(pi) should be Type(pj)+1. Simi-
larly, if ∗∗∗pi = ∗pj is a statement, then Type(pi) should be
Type(pj)+2. Given the set of pointers, the set of statements
and two pointers p and q, the goal is to check if there is a
finite sequence s = s1, s2, . . . , sr of the input statements,
such that at the end of executing these statements p points
to q. We then say that the sequence s makes p point to q. In
such a sequence, a single statement can be used any number
of times.

Example 2 Input variables are {p1, p2, x1, x2, y1, y2, q1, q2}
and their types are:

Type(p1) = Type(p2) = 3
Type(x1) = Type(x2) = 2
Type(y1) = Type(y2) = 1
Type(q1) = Type(q2) = 0.

The set of input statements is:

{p1 = &x1, p2 = &x2,

x1 = &y1, x2 = &y2,

y1 = &q1, y2 = &q2,

p1 = p2, p2 = p1,

∗ ∗ p1 = ∗ ∗ p2}
The realizability graph is shown in Figure 3.
In the rest of the section, we make some preliminary ob-

servations and present an overview of our polynomial time
algorithm for flow-insensitive analysis with types. The algo-
rithm will be presented in detail in Section 2.5.
As the variables have well-defined types, the realizability

graph will be acyclic. Moreover, the variables will be ar-
ranged into “layers”. For instance, variables of type int will
be in layer 0, those of type int∗ will be in layer 1, and so on.
In general, a variable of type i will be in layer i. Further-
more, a pointer of type i can only point to a pointer of type
i − 1. Hence, any edge in the realizability graph can only
be from layer i to i− 1 (for some i). Thus, the realizability
graph will always be layered:

Definition 1. (Layered DAG) A directed graph G = (V,E)
over n vertices is said to be layered if there is a layering func-
tion l : V → [0..(n − 1)] such that for all edges (u, v) ∈ E,
l(v) = l(u)− 1. We say that a vertex u is in layer l(u) and
an edge (x, y) is in layer l(x). Note that layered graphs are
acyclic.

118

We next observe that pointers in a layer r are not useful
in realizing any edge in a layer l > r. In other words, if x is a
pointer in layer l, and 〈x, y〉 is a realizable pair, then there is
an execution sequence that realizes this pair without using
any pointer in a layer r < l. As a consequence, if 〈x, y〉 and
〈u, v〉 are realizable (individually) and layer(x) �= layer(u),
then {〈x, y〉, 〈u, v〉} is realizable 3. Thus, edges in different
layers can never be dependent. (Later, we will argue this
claim in more detail). However, the claim does not preclude
the possibility of edges in the same layer being dependent.
For instance, in Example 2, 〈p1, x2〉 and 〈p2, x1〉 are real-
izable individually, but {〈p1, x2〉, 〈p2, x1〉} is not realizable.
Thus, even though type restrictions do not eliminate depen-
dencies totally, they do make it easier to handle the depen-
dencies. As dependent pair of edges in the same layer will
be important in our algorithm, we give them a special name:
we call a pair of edges (x, y) and (u, v) in the same layer a
forbidden pair if 〈x, y〉 and 〈u, v〉 are realizable individually,
but they are not realizable simultaneously.
Next we extend the above claim as follows. If individual

links of a chain are realizable, then the chain is realizable.
That is, if each of 〈p1, p2〉, 〈p2, p3〉,〈p3, p4〉, . . . ,〈pk−1, pk〉 is
realizable, then the chain

p1 → p2 → · · · → pk

is realizable.
With these observations, the idea is to compute the realiz-

ability graph layer by layer, starting with the highest layer.
Suppose, by induction, we have computed all layers from the
highest down to layer l+1 and we want to compute edges in
layer l. We first consider statements of the form ∗dp = &z
(with d ≥ 0). For each x in layer l, if there is a path of
length d from p to x (in the graph constructed so far) then
we add the edge (x, y).
Handling copying statements of the form ∗d1p = ∗d2q is

more tricky. Let x and y be pointers in layer l. It is tempt-
ing to conclude that, if there is a path of length d1 from p to
x and a path of length d2 from q to y, then values of y can
be copied to x. This is not true in general. We must also
make sure that the two paths can be realized simultaneously.
That involves checking for two necessary conditions. First,
the paths should be vertex disjoint. Second, any two edges
in the same layer used by the paths must be realizable simul-
taneously. So, it is not enough if we compute only the edges
in each layer. In each layer, we also need to know which pair
of edges are realizable simultaneously and which are forbid-
den. Now we are faced with two new subproblems. First,
we should be able to check for existence of vertex disjoint
paths that do not use forbidden pairs. Second, we should
also be able to compute forbidden pair of edges in each layer.
We formalize the first problem and solve it in Section 2.3.
As for the second problem, the set of forbidden pairs in a
layer is determined solely by how copy propagation works
in that layer. We formalize the problem as concurrent copy
propagation and solve it in Section 2.4.

2.3 Disjoint Paths With Forbidden Pairs
In this problem, we are given a directed graph G, a pair

of source vertices s1 and s2, a pair of target vertices t1 and
t2, and a set of pairs of edges F ⊆ E ×E. We call the pairs
in F as forbidden pairs. The goal of the problem is to check

3This claim fails if the pointers do not have well-defined
types, or if the goal is to do flow-sensitive analysis.

if there are two paths p1 and p2 such that i) p1 is a path
from s1 to t1 and p2 is a path from s2 to t2; ii) p1 and p2 are
vertex disjoint (i.e., they do not share any vertex); iii) for
any forbidden pair (e1, e2) ∈ F , if p1 uses e1 then p2 does
not use e2.
The well-known disjoint paths problem is a special case of

the above problem where there are no forbidden pairs (i.e.
F = φ). The problem is known to be NP-Complete [4].
Here we consider a special case of the problem where the
input graph is layered and for any forbidden pair 〈e1, e2〉,
the edges e1 and e2 are in the same layer of the graph. We
show that this restriction can be solved in polynomial time.

Theorem 6. The problem of disjoint paths with forbid-
den pairs can be solved in polynomial time, if the input graph
is layered and each forbidden pair of edges appear in the the
same layer.

Proof. We reduce the given problem to a question of
reachability in directed graphs. Let the input instance con-
sist of a layered graph G = (V,E) with a layering function
l, source vertices s1 and s2, target vertices t1 and t2, and
a set of forbidden pairs F . Without loss of generality, we
assume that the two source vertices are in the same layer.
(Suppose s2 is in a layer higher than s1. We can add new
vertices u1, u2, . . . , ud to G, where d = l(s2) − l(s1), and
add d − 1 edges (u1, u2), (u2, u3), . . . , (ud−1, ud), creating a
chain. Then we add the edge (ud, s1) and make u1 as a
source vertex, instead of s1.) Similarly, assume that the two
target vertices are in the same layer. Now we construct a
new graph G′ = (V ′, E′). V ′ ⊆ V × V consists of pairs of
distinct vertices in the same layer of G. Two vertices in G′

are connected by an edge if the corresponding components
of these vertices are connected by a pair of non-forbidden
edges in G. Formally let,

V ′ = {〈u, v〉|u, v ∈ V, u �= v, and l(u) = l(v)}
E′ = {(〈u1, v1〉, 〈u2, v2〉)|〈(u1, u2), (v1, v2)〉 ∈ E × E − F}
It is clear that G′ is also layered.
Now we show that the given instance has a solution iff

there is a path from 〈s1, s2〉 to 〈t1, t2〉 in G′. Suppose the
given instance has a solution via the disjoint paths p1 =
u1, u2, . . . , uk and p2 = v1, v2, . . . , vk, where u1 = s1, uk =
t1, v1 = s2 and vk = t2. We made sure that l(s1) = l(s2) and
l(t1) = l(t2). So for any i, l(ui) = l(vi). As the paths are
vertex disjoint, ui �= vi. Hence, 〈ui, vi〉 ∈ V ′, for all 1 ≤ i ≤
k. Moreover, for 1 ≤ i < k, the pair of edges (ui, ui+1) and
(vi, vi+1) is not forbidden. Hence, (〈ui, vi〉, 〈ui+1, vi+1〉) ∈
E′. So p = 〈u1, v1〉, . . . , 〈uk, vk〉 is a path from 〈s1, s2〉 to
〈t1, t2〉 in G′.
For the other direction, assume that there is a path p =

〈u1, v1〉, 〈u2, v2〉, . . . , 〈uk, vk〉 from 〈s1, s2〉 to 〈t1, t2〉 in G′.
Consider the paths p1 = u1, u2, . . . , uk and p2 = v1, v2, . . . , vk.
It is clear that p1 and p2 are indeed legitimate paths in G,
from s1 to t1 and s2 to t2, respectively. We first show that
they are vertex disjoint. By our construction and as G is lay-
ered, for i �= j, ui �= vj . Moreover, as 〈ui, vi〉 ∈ V ′, ui �= vi.
Hence the paths are vertex disjoint. To show that no for-
bidden pair is used in p1 and p2, note that a forbidden pair
of edges will be in the same layer (by problem definition).
The presence of the edge (〈ui, vi〉, 〈ui+1, vi+1〉) implies that
the pair of edges (ui, ui+1) and (vi, vi+1) are not forbidden.
Hence p1,p2 is a valid solution to our problem.

119

Thus we have reduced the given instance to a question
of reachability in G′. Size of G′ is polynomial in size of
G and reachability can be solved in polynomial time (say,
via depth first search). Our reduction algorithm runs in
polynomial time. Hence disjoint paths with forbidden pairs
on layered graphs can be solved in polynomial time.

2.4 Concurrent Copy Propagation Problem
k-Concurrent Copy Propagation Problem (k-CCP):

Let k be a positive integer. In the k-CCP problem, we are
given a set of variables V , a set of constants (or values) C
and a set of statements S. We represent variables by capital
letters and constants by small letters. A statement can be
of two types: (i) X := a, for some X ∈ V and a ∈ C or (ii)
X := Y , for some X, Y ∈ V . Executing the former state-
ment assigns the constant a to X, whereas executing the lat-
ter statement copies the current value of Y to X. Consider a
set of goals G = {〈X1, a1〉, 〈X2, a2〉, . . . , 〈Xk, ak〉}, where Xi

are distinct. We say that G can be realized if there is some
finite sequence s1, s2, . . . , sr, with each si ∈ S, such that at
the end of executing this sequence, for each 1 ≤ i ≤ k, the
value Xi is ai. The solution λ of k-CCP is the set of all such
realizable sets of k goals:

λ = {s|s is a realizable set of size k}
If k can be arbitrary (and is part of the input) the decision

version of the problem is known to be PSPACE-Complete [9].
But when k is a constant, k-CCP can be solved in polyno-
mial time. For our purposes, we only need the cases where k
is either 1 or 2. When k = 1, it is easy to see that the prob-
lem can be reduced to a question of reachability in directed
graphs and hence can be solved in polynomial time.

Theorem 7. The 1-CCP problem can be solved in poly-
nomial time.

Theorem 8. The 2-CCP problem can be solved in poly-
nomial time.

Proof. Given a set of variables V , constants C and state-
ments S, we compute the solution λ using the idea of tran-
sitive closure. We start with

λ = {{〈X,x〉, 〈Y, y〉}|X �= Y and X := x and Y := y

are statements in S}
Now we iterate and add more elements to λ. For each ele-
ment {〈X, x〉, 〈Y, y〉} in λ,

1. For each statement Z := z in S, with Z �= X, add {〈X, x〉, 〈Z, z〉}
to λ.

2. For each statement Z := X, with Z �= X, add {〈X, x〉, 〈Z, x〉}
to λ.

3. For each statement Z := X, with Z �= Y , add {〈Z, x〉, 〈Y, y〉}
to λ.

A variable cannot hold two constants simultaneously. The
inequality checks in the above procedure are to ensure this
property. Now we apply the above procedure iteratively
and stop when we cannot add any more elements to λ. The
boundary condition in which X is the only variable that
gets a constant assigned to it directly has to be handled
separately. The details are omitted for brevity.
λ can have at most |V |2 × |C|2 elements. Thus the above

algorithm would need no more than that many iterations.
Hence it runs in polynomial time. One can prove the cor-
rectness of the algorithm using induction.

2.5 Main Algorithm
Given a set of pointers {p1, p2, . . . , pn} (with types) and a

set of statements S, we describe a polynomial time algorithm
to compute the realizability graph. Let the number of types
used by the pointers be L. Recall that the graph would
be layered with L+ 1 layers numbered 0, 1, . . . , L. We will
find the edges of the graph layer by layer, from L down to
1. For each layer i, we will also compute the set Fi of all
forbidden pairs of edges. By induction, assume that we have
computed the edges and set of forbidden pairs for layers L
down to l + 1 correctly and we want to compute the same
information for layer l.
The computation of edges and forbidden pairs in a given

layer l of G consists of four phases:

1. Direct Assignments: Analyze each statement of the
form ∗dp = &z and find the variables q, in level l, that
can be made to point to z by this statement.

2. Copying Statements: Analyze each statement of the
form ∗d1p1 = ∗d2p2 and find pairs of variables q1 and
q2, in level l, such that values of q2 can be copied to
q1 using this statement.

3. Edge Computation: Compute edges in layer l in this
phase.

4. Forbidden Pair Computation: Compute the forbidden
pairs of edges in layer l.

Direct Assignments: We consider each (direct as-
signment) statement of the form ∗dp = &z. As variables
in layer l can only point to those in layer l − 1, we ignore
the statement if layer(z) �= l − 1. So, assume that z is in
layer l − 1. Then, we claim that if there exists a path of
length d from p to q (in the graph constructed so far) then
〈q, z〉 is realizable (where, length of a path is the number of
edges used). Suppose there is such a path rd, rd−1, . . . , r0,
where rd = p, r0 = q. We have to exhibit a sequence that
realizes the pair 〈q, z〉. The edges (rd, rd−1), (rd−1, rd−2),
. . . , (r1, r0), are all in some layer higher than l. Thus, by
our induction hypothesis, each of these edges is realizable.
So there exist execution sequences, E1, E2,. . . Ed that re-
alize the pairs 〈r1, r0〉, 〈r2, r1〉,. . . , 〈rd, rd−1〉, respectively.
Because of the type restrictions, variables in a layer are not
useful in realizing any edge in a higher layer. Hence, without
loss of generality, we can assume that, for each 1 ≤ i ≤ d,
the sequence Ei does not use the variables ri−1,ri−2,. . . ,r0.
So, executing the sequence Ei will not change the value of
ri−1,ri−2,. . . ,r0. Now consider the sequence obtained by
concatenating E1,E2,. . . ,Ed (in that order

4). Executing
this sequence would realize the chain,

(p =)rd → rd−1 → · · · → r0(= q)

By appending the statement ∗dp = &z to the above sequence
we can realize the pair 〈q, z〉. Thus, we have proved the claim
that if there is a path of length d from p to q (in the graph
constructed so far), then 〈q, z〉 is realizable. So, if there is a
path of length d exists, we add the edge (q, z).

Copying Statements: Next we consider each (copy-
ing) statement of the form ∗d1p1 = ∗d2p2. We first check if

4Here is where we use the fact that we are doing flow insen-
sitive analysis. If there is a input control flow graph that
regulates the ordering among statements, we cannot execute
the statements in the order we want.

120

layer(p) = l + d1 or layer(p2) = l + d2. If not, the state-
ment is not relevant at layer l and we ignore it. Then, we
consider each pair of pointers q1 and q2 in layer l. We want
to check if the above statement can copy values of q2 to q1.
It is tempting to say that this is the case if there is a path
from p1 to q1 and a path from p2 to q2. But these paths
should satisfy two necessary conditions.
Condition 1: The paths should be vertex disjoint. Sup-
pose the paths are not vertex disjoint. Let the paths be
p1, . . . , x, x1, . . . , q1 and p2, . . . , x, x2, . . . , q2. At any point
during an execution, x can point to either x1 or x2, but not
both. Hence, though these two chain of pointers can be re-
alized individually, they cannot be realized concurrently. So
we need to make sure that the two paths are vertex disjoint.
Condition 2: As forbidden pair of edges cannot be re-
alized simultaneously, we need to make sure that the paths
do not use them. That is, for every pair of forbidden pair of
edges e1 and e2, if one of the paths uses e1, the other path
should not use e2.
We illustrate the need for the second condition, using Fig-

ure 3 and the associated example. That graph has vertex
disjoint paths of length two from p1 to y2 and p2 to y1.
But, the pair of edges (p1, x2) and (p2, x1) cannot be re-
alized simultaneously. So the edges (p1, x2) and (p2, x1)
form a forbidden pair. Hence, even though the two chains
p1 → x2 → y2 and p2 → x1 → y1 can be realized individ-
ually, they cannot be realized simultaneously. If we do not
check for Condition 2, while processing the input statement
∗ ∗ p1 = ∗ ∗ p2, we will add the edge (y2, q1). But the edge
(y2, q1) cannot be realized by any sequence.
Based on above discussion, our algorithm to process the

statement ∗d1p1 = ∗d2p2 is as follows. We consider each pair
of pointers q1 and q2 in level l. We claim that values of q2 can
be copied to q1 if there is a path from p1 to q1 and a path
from p2 to q2 such that the paths are vertex disjoint and
they respect the forbidden pair of edges in layers L through
l + 1. Suppose such paths exist. Let the paths be

(p1 =)xd1 → xd2−1 · · · → x0(= q1)

and

(p2 =)yd2 → yd2−1 → · · · → y0(= q2).

Assume that d1 ≤ d2 (the other case is similar). By our
induction hypothesis, there exist execution sequences E1,
E2,. . . ,Ed2 such that, for d2 ≤ i < d1, Ei realizes the pair
〈yi, yi−1〉. Moreover, by our induction hypothesis, for each
d1 ≤ i ≤ 1, Ei realizes the pairs 〈xi, xi−1〉 and 〈yi, yi−1〉
simultaneously, because they are not forbidden. Then the
sequence obtained by concatenating E1,E2,. . . ,Ed2 (in that
order) would realize the two chains of pointers. We can copy
values of q2 to q1 by appending the statement ∗d1p1 = ∗d2p2

to the above sequence.
Edge Computation: From the Direct Assignments

phase, we have identified the set of pairs 〈q, z〉 such that q
is layer l, z is in layer l − 1 and q can be made to point
to z. From the Copying Statements phase, we have pairs
〈q1, q2〉 with both q1 and q2 in layer l such that values from
q2 can be copied to q1. We use the above information to
compute the edges in layer l by solving a copy propagation
problem. The set of pointers in layer l correspond to the
variables for the copy propagation problem and the set of
pointers in layer l − 1 correspond to the constants. More
precisely, construct a set VCCP by adding a variable Xq

for each pointer q in layer l. Then construct a set CCCP by
adding a constant cz for each pointer z in layer l−1. Define a
set of statements SCCP for the copy propagation problem as
follows. For each pair 〈q, z〉 identified in Direct Assignments
phase, add a statement Xq := cz to SCCP and for each
pair 〈q1, q2〉 identified in Copying Statements phase, add a
statement Xq1 := Xq2 to SCCP . Then using the algorithm
claimed in Theorem 7 we solve the 1-CCP problem with
VCCP as the set of variables, CCCP as the set of constants
and SCCP as the set of statement. For each pair 〈Xq, cz〉 in
the solution to the 1-CCP problem, we add the edge (q, z)
to the graph.

Forbidden Pair Computation: If (q1, z1) and (q2, z2)
are edges in layer l, whether they can be realized simulta-
neously is determined solely by the way copy propagation
works in layer l. So using the algorithm claimed in Theo-
rem 8 we solve the 2-CCP problem with VCCP as the set of
variables, CCCP as the set of constants and SCCP as the set
of statements. For any 〈〈Xq1 , cz1〉, 〈Xq2 , cz2〉〉 in the solu-
tion to the 2-CCP problem, we can realize the pairs 〈q1, z1〉
and 〈q2, z2〉 simultaneously. Every other pair of realizable
edges in layer l is declared forbidden.
The algorithm is presented in Figure 4. It is easy to see

that the algorithm runs in polynomial time. Our discus-
sion shows that if the algorithm includes an edge (u, v) in
its output graph, then pair 〈u, v〉 is indeed realizable. One
can prove the claim formally, by using an induction on the
layer number of (u, v). On the other hand, suppose a 〈u, v〉
is realizable. Then, we can prove that (u, v) will be an edge
in the output graph by using induction on the length of the
shortest sequence realizing the pair 〈u, v〉. Though straight-
forward, these proofs are somewhat lengthy. For want of
space, we omit them.

3. UNDECIDABILITY OF FLOW-SENSITIVE
ANALYSIS WITH SCALAR VARIABLES

In this section we prove Theorem 2.
Problem Definition: We are given a set of pointers, a
program (or say, its control flow graph) and two pointers p
and q. Three types of assignment statements are allowed
in the program: (1) ∗ ∗ ∗ . . . ∗ x = &y, (2) ∗ ∗ ∗ . . . ∗ x =
∗∗∗ . . .∗y and (3) ∗∗∗ . . .∗x = New . The third statement
creates a new unnamed variable and makes ∗∗∗ . . .∗x point
to it. Two types of control flow statements are allowed:
if(..)then...else... and while(..).... Now the goal is to check
if there is some path from the start node to the exit node
in the control flow graph, such that, at the end of executing
the statements along the path, p points to q.
As it is traditionally done, we make the conservative as-

sumption that every path in the program is executable. This
means that, no matter through which path we arrived at an
if(..)then...else... statement, we can proceed through either
the if part or the else part. In other words, we ignore the
conditional expression. A similar assumption is made about
the While(..) statement. One can see that relaxing this
assumption makes the problem even harder.
A variation of the problem where variables could be struc-

tures is known to be undecidable. Landi proved this the-
orem by giving a reduction from the halting problem [7].
Ramalingam gave a simpler proof using a reduction from
the Post’s correspondence problem [10]. Here we prove the
undecidability making use of only scalar variables.

121

Input: A set of n pointers with L types and a set of statements S.
Output: Realizability graph G of S.

For l from L to 1 do

1. Let VCCP = {Xq |q is a pointer in layer l}.
2. Let CCCP = {cz|z is a pointer in layer l − 1}.
3. Let SCCP = {}.
4. For each statement ∗dp = &z, such that, layer(z) = l − 1 and layer(p) = l + d

For each each pointer q in layer l
If there is a path from p to q then add the statement ‘‘Xq := cz’’ to SCCP .

5. Let F =
SL

i=l+1 Fi

6. For each statement ∗d1p1 = ∗d2p2 such that layer(p1) = l + d1 and layer(p2) = l + d2

For each pair of pointers q1 and q2 in layer l
Use algorithm in Theorem 6 to check if there are vertex disjoint paths

from p1 to q1 and p2 to q2 that respect the set of forbidden pairs F.
If such paths exist add the statement ‘‘Xq1 := Xq2’’ to SCCP .

7. Use algorithm for 1-CCP (Theorem 7) with VCCP as variables, CCCP as constants

and SCCP as statements and compute the solution λ1−CCP .

8. For each pair 〈Xq, cz〉 in λ1−CCP , add the edge (q,z) to G.
9. Use algorithm for 2-CCP (Theorem 8) with VCCP as variables, CCCP as constants

and SCCP as statements and compute the solution λ2−CCP .

10. Let Fl = {}.
11. For each 〈Xq1 , cz1〉 and 〈Xq2 , cz2〉 in λ1−CCP , with q1 �= q2,

If {〈Xq1 , cz1〉, 〈Xq2 , cz2〉} is not in λ2−CCP , add {(q1, z2), (q2, z2)} to Fl.

Figure 4: Algorithm to compute realizability graph

The problem of checking whether a multivariate polyno-
mial has integer roots is known to be undecidable. In this
problem, we are given a polynomial P (x1, x2, . . . , xn) over
the variables x1, x2, . . . , xn. A sequence of (positive or neg-
ative) integer constants a1, a2, . . . , an, not all zero, is called
an integer root of P if P (a1, a2, . . . , an) = 0. Given the
polynomial, the problem is to check if it has any integer
roots. The problem is also known as the Hilbert’s tenth
problem. Building on the work of Davis, Putnam and Robin-
son, Matijasevic̆ proved the undecidability of the Hilbert’s
tenth problem [8].
We prove our undecidability result via a reduction from

the above problem. The polynomial P (x1, x2, x3) = x1 +
x1x2 − x2x3 is used as a running example to illustrate our
reduction. The output program for this example is given in
Appendix A. Here we explain the ideas used. Our output
program starts with the following piece of code:

D = &Success;
Zero = temp = New ;
While(..) { *temp=New ; temp=*temp;}

The first statement makes D point to Success. We will
make sure that the polynomial has integer roots if and only
if there is an execution path in which D remains pointing to
Success at the exit statement of the program.
This would prove the required undecidability. The next

few statements in the above code create a singly linked list
with Zero as the head. This would simulate the positive
integer number line, with the kth node representing integer
k.
The next segment of the output program simulates choos-

ing constant values for each variable xi. The value has a
magnitude and a (positive or negative) sign. To choose the

magnitude of xi we use a pointer Xi and traverse the linked
list. For our example polynomial, the next segment of code
is:

X1 = Zero;While(..) {X1 = ∗X1; }
X2 = Zero;While(..) {X2 = ∗X2; }
X3 = Zero;While(..) {X3 = ∗X3; }

If a path iterates the first loop a1 times, X1 would point
to the ath

1 node in our linked list. This corresponds to as-
signing x1 = a1. In general, let X1,X2, . . . ,Xn point to
nodes a1, a2, . . . , an of the linked list. Then, this simulates
choosing these values for the variables.
Recall that we want to check if there is a nonzero integer

root. Thus, we need to ensure that at least one variable is
assigned a nonzero value. The next segment of output our
program, ensures that by using a multiway branch with n
branches. The code segment for our example would be:

Switch(..) {
Case: X1 = ∗X1;
Case: X2 = ∗X2;
Case: X3 = ∗X3;

}
As one of the branches must be executed, not all variables
can point to node zero of the linked list.
Next we simulate choosing signs for the variables. As each

of the n variables can be positive or negative, the signs can
be chosen in 2n possible ways. We use a multiway branch 5

(a “switch” statement) with 2n branches to do the simula-
tion. Each branch represents choosing a particular combi-
nation of signs for the variables. Consider any one branch
with one such fixed combination of signs. Then the sign
of any term in the polynomial also gets fixed. The sign
of a term is determined by the its sign in the input poly-

5The multiway branch can easily be translated into a se-
quence of if(..)then...else... statements.

122

nomial and the combination fixed by the branch. In our
example, consider the branch that fixes x1, x3 to be posi-
tive and x2 to be negative. Then, sign of the term −x2x3

would be positive. We separate the terms of the polynomial
into groups of positive and negative terms and get two poly-
nomials P1 and P2. Then, a1, a2, . . . , an is an integer root
of P iff if P1(a1, a2, . . . , an) = P2(a1, a2, . . . , an). In our
example, consider a branch that represents choosing x1, x3

to be positive and x2 to be negative. Now, irrespective of
the magnitudes, the terms x1 and −x2x3 would be positive,
whereas the term x1x2 would be negative. So P1 = x1+x2x3

and P2 = x1x2.
Before proceeding further, we define a macro 6 used in the

remainder of our program. The macro takes two parameters
A and B and checks if they point to the same location:

ALIAS− CHECK(A,B) :
temp1 = ∗A;
temp2 = ∗B;
∗A = &D;
∗B = &dummy;
∗ ∗ A = &Failure;
∗A = temp1;
∗B = temp2;

Ignore the first two and the last two statements for the mo-
ment. Then, if A and B point to different locations then
the variable D would point to Failure. On the the other
hand, if they point to the same location then D would re-
main pointing to Success and only a dummy variable will
be made to point to Failure. The first two and the last two
statements ensure that no other variable is affected by this
macro.
Recall that we want to check if the polynomials P1 and

P2 evaluate to the same value. For this purpose, we use two
pointers p1 and p2. We first set p1 and p2 to point to node
zero of the linked list. Then we consider the terms of the
polynomial one by one. A term would contribute to P1 if it
is positive and to P2 if it is negative. The sign of the term
is determined by two factors: the sign given to the term in
the polynomial and which branch of the Switch statement
we are dealing with. Suppose the term contributes to P1. In
that case we would move p1 forward on the linked list. If it
contributes to P2, we would move the pointer p2. In either
case, the number of nodes by which the pointer moves is de-
termined by the chosen values a1, a2, . . . , an. For example,
let us take the term x1x2. Suppose we are writing code for
the branch that represents choosing x1 and x3 to be positive
and x2 to be negative. The term x1x2 would be negative.
So, we move p2. We need to move it by a1 × a2 number of
nodes. We use nested loops to achieve this:

r1 = Zero;
While(..) {

r1 = ∗r1;
r2 = Zero;
While(..) {r2 = ∗r2; p2 = ∗p2; }

}
The problem with the above code is that the loops may be
executed arbitrary number times. But we want the inner
loop to run for exactly a2 iterations and the outer loop for
exactly a1 times. To ensure this, we use the fact that X1

and X2 are pointing to a1 and a2 and do alias checks. The
new program fragment is:

6Using macros is not an issue, as they can always be ex-
panded.

r1 = Zero;
While(..) {

r1 = ∗r1;
r2 = Zero;
While(..) {r2 = ∗r2; p = ∗p; }
ALIAS− CHECK(X2, r2);

}
ALIAS− CHECK(X1, r1);

Now either p2 points to node numbered a1 × a2 or D points
to Failure. Our program will make sure that it never goes
back to Success.
After evaluating all the terms of the polynomial we finally

check whether p1 and p2 point to the same location, using
the macro ALIAS− CHECK. Thus D can point to Success
at the exit of the program iff the polynomial has integer
roots.

4. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we proved two main results. We showed that

flow sensitive pointer analysis is undecidable even if the in-
put programs have only scalar variables, provided dynamic
memory is allowed. This extends the previously known re-
sult that required non-scalar variables as well [7, 10]. Our re-
sult presents a complete classification of flow-sensitive anal-
ysis as shown in Figure 1.
Unlike flow-sensitive analysis, the complexity of flow in-

sensitive analysis is less understood. When arbitrary levels
of dereferencing is allowed in pointer expressions and vari-
ables are scalars, the problem in known to be NP-Hard [5].
Except for this result, we know little about the complexity of
the problem. In this paper, we showed that the above prob-
lem can be solved in polynomial time, with a further restric-
tion that the variables have well-defined types. In contrast,
it is known that flow-sensitive analysis is PSPACE-Complete
even for two levels of types. Though there has been empiri-
cal evidence that flow-insensitive analysis is computationally
easier than flow-sensitive analysis, this result gives, to the
best of our knowledge, the first theoretical evidence. More-
over, while most of the results pertaining to the points-to
analysis problem are undecidability and hardness results,
our result is a rare instance of a non-trivial points-to analy-
sis problem solvable in polynomial time.
There are several open problems related to flow-insensitive

analysis:

• When dynamic memory is not allowed but arbitrary
number of levels of dereferencing is allowed, the prob-
lem is NP-Hard [5]. Is it in NP?

• Consider the above problem but with bounded number
of dereferences. Is this problem in P?

• When dynamic memory is allowed, is the problem de-
cidable?

5. ACKNOWLEDGMENTS
I thank Jin-Yi Cai, Susan Horwitz, Raghav Kaushik and

Rajasekar Krishnamurthy for extensive discussions and help-
ful comments. I thank Rajasekar Krishnamurthy and the
anonymous referees for their suggestions on improving the
presentation of the paper. I thank an anonymous referee
of an earlier paper for suggesting the problem considered in

123

Theorem 5. This work was supported in part by the Na-
tional Science Foundation under grants CCR-9634665 and
CCR-0208013.

6. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization

for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994. (DIKU report
94/19).

[2] M. Burke, P. Carini, J.-D. Choi, and M. Hind.
Flow-insensitive interprocedural alias analysis in the
presence of pointers. In K. Pingali, U. Banerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors,
Language and Compilers for Parallel Computing, 7th
International Workshop, LNCS 892, pages 234–250.
Springer-Verlag, Aug. 1994.

[3] J. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In ACM
Symposium on Principles of Programming Languages,
pages 232–245, Jan. 1993.

[4] S. Fortune, J. Hopcroft, and J. Wyllie. The directed
subgraph homeomorphism problem. Theoretical
Computer Science, 10:111–121, 1980.

[5] S. Horwitz. Precise flow-insensitive alias analysis is
NP-hard. ACM Transactions on Programming
Languages and Systems, 19(1), Jan. 1997.

[6] W. Landi. Interprocedural Aliasing in the Presence of
Pointers. PhD thesis, Rutgers University, 1992.

[7] W. Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems,
1(4):323–337, 1992.

[8] Y. Matiyasevic̆. Hilbert’s 10th Problem. MIT Press,
1993.

[9] R. Muth and S. Debray. On the complexity of
flow-sensitive dataflow analyses. In ACM Symposium
on Principles of Programming Languages, pages
67–80, 2000.

[10] G. Ramalingam. The undecidability of aliasing. ACM
Transactions on Programming Languages and
Systems, 16(5):1467–1471, 1994.

[11] M. Shapiro and S. Horwitz. Fast and accurate
flow-insensitive points-to analysis. In ACM Symposium
on Principles of Programming Languages, Jan. 1997.

[12] B. Steensgaard. Points-to analysis in almost linear
time. In ACM Symposium on Principles of
Programming Languages, pages 32–41, Jan. 1996.

[13] S. Zhang, B. Ryder, and W. Landi. Program
decomposition for pointer aliasing: A step toward
practical analyses. In ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 81–92,
1996.

APPENDIX

A. APPENDIX A
This Appendix is related to Section 3. Here we take

P (x1, x2, x3) = x1 + x1x2 − x2x3 as an example polynomial
and present the complete program output by the reduction
given in Section 3. For ease of understanding we use a few
macros. The first macro is as follows:

ALIAS− CHECK(A,B) :

temp1 = ∗A;
temp2 = ∗B;
∗A = &D;
∗B = &dummy;
∗ ∗A = &Failure;
∗A = temp1;
∗B = temp2;

The macro checks if A and B point to the same node. If they
are aliased a dummy variable is made point to Failure. If
not, it makes D to point to Failure. The other pointers A,
B, ∗A and ∗B are not affected by the macro.
For each term of the polynomial, we define a macro. The

macro takes a parameter p. Suppose the the value of the
term at the chosen constants is v, Then the macro either
moves forward p by v nodes on the linked list or makes D
point to Failure.

TERM1(p):
r1 = Zero;
While(..) {r1 = ∗r1; p = ∗p; }
ALIAS− CHECK(X1, r1);

TERM2(p):
r1 = Zero;
While(..) {

r1 = ∗r1;
r2 = Zero;
While(..) {r2 = ∗r2; p = ∗p; }
ALIAS− CHECK(X2, r2);

}
ALIAS− CHECK(X1, r1);

TERM3(p):
r1 = Zero;
While(..) {

r1 = ∗r1;
r3 = Zero;
While(..) {r3 = ∗r3; p = ∗p; }
ALIAS− CHECK(X3, r3);

}
ALIAS− CHECK(X1, r1);

Now we are ready to present the code:

Variables : D, Success, Failure;
Variables : X1,X2,X3;
Variables : p1, p2;
Variables : r1, r2, r3, temp, dummy;

/* Initialize D */
D = &Success;

/* Setup number line */

Zero = temp = New ;
While(..) { *temp=New ; temp=*temp;}

/* Choose values */
X1 = Zero;While(..) {X1 = ∗X1; }
X2 = Zero;While(..) {X2 = ∗X2; }
X3 = Zero;While(..) {X3 = ∗X3; }

/* Make sure not all values are zero */

124

Switch(..) {
Case: X1 = ∗X1;
Case: X2 = ∗X2;
Case: X3 = ∗X3;

}
/* Initialize p1 and p2 */
p1 = Zero;
p2 = Zero;

/*

Choose signs and evaluate the two polynomials.
Each branch chooses a particular combination of
signs. In any branch, we consider all the three
terms. And move p1 if the term is positive and
move p2 if the term is negative Whether a term is
positive or negative is determined by the sign of
term in the input polynomial and the combination
of signs represented by the branch.

*/
Switch(..) {

Case: : TERM1(p1); TERM2(p1); TERM3(p2);
/*+X1,+X2,+X3*/

Case: : TERM1(p1); TERM2(p1); TERM3(p1);
/*+X1,+X2,−X3*/

Case: : TERM1(p1); TERM2(p2); TERM3(p1);
/*+X1,−X2,+X3*/

Case: : TERM1(p1); TERM2(p2); TERM3(p2);
/*+X1,−X2,−X3*/

Case: : TERM1(p2); TERM2(p2); TERM3(p2);
/*−X1,+X2,+X3*/

Case: : TERM1(p2); TERM2(p2); TERM3(p1);
/*−X1,+X2,−X3*/

Case: : TERM1(p2); TERM2(p1); TERM3(p1);
/*−X1,−X2,+X3*/

Case: : TERM1(p2); TERM2(p1); TERM3(p2);
/*−X1,−X2,−X3*/

}

/* Finally check if p1 and p2 point to same node
in the number line */

ALIAS− CHECK(p1, p2)

The polynomial has non-zero integer roots if and only if
there is a execution path in the program such that at the
last statement D points to Success.

125

