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New Results  on the  Performance of a Well-Known 

Class of Adaptive Filters 
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Abstmct-We derive a broad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArange of  theoretical results concerning 

the performance and limit.tioas of a class of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArnJoe adaptive fikxs. 
Applicrtions of theae zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfilters have been proposed m many d i f f m t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
enginedng contexts which have in common the  Idlowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAidealized 
identificrtion  problem: A system has a vector  input x ( t )  and a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscrln 
output z( t )  = h’x(t), where h is an unknown timeinvariant  coeffi- 
cient  vector. From a knowledge of x( t )  and z(t)  it is reqM,to esti- 
mate h. The f i l ta considered here 8djusts an &ate vector h(t) in 8 

contrd loop, thus 

d h  - h KF[z(t) - ?(t)]  ~ ( t )  
dt 

where ?(t) = $x(t) ,  F is a sui-, m general nonlinear, function, and 
K is the loop gain. The effectiveness  of  the filta is detemim$ by  the 
conveqence p m p t i e a  of the m i d i g m e n t  vector, r = h - k. With 
weak nondegenency requirements on x( r )  we  prove  the exponential 
convergence to zero of  the norm IIr(t)II. For ail values of K, we  give 
uppet and lower bounds on the convergence rate which n e  tight in that 
both bounds have simh qualitative dependence on K. The depen- 
dence  of  these bounds on K is unexpected and imporhnt since it 
reveils bade limitations  of  the filters which rte not predicted by the 
conventional  approximate  method  of analysis, the  “method  of averag- 
ing.” By analyzing the  effects  of added forcing term u(t) in the  con- 
trol equation we obtain  uppes bounds to the effects on the convergence 
process of various important departures from  the idealized model as 
when  noise is present as an dditiod component of z(t), the coeffi- 
cient  vector h is time-vrrying, and the  integrators in a hardware  imple- 
mentation  have fdte menory. 

I. INTRODUCTION 

A .  The  Adaptation  Algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I N THIS PAPER, we  will derive a  broad range  of theoretical 

results concerning  the  performance and limitations of a 
certain class of analog adaptive filters. The results derived 

here are relevant to  the wide variety of  areas in which the filter 
has  been proposed.  In  Section I-B  we  give a  number of ex- 
amples  of communications-related applications. 

To introduce  the  adaptation  algorithms  studied here, let us 
first consider the following  idealized identification problem 
(see  Fig. 1): An unknown system (black  box) has a  continuous 
vector  input x ( t )  of known  dimension, and a scalar output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ( t )  
related through the equation 

z ( t )  = h‘x( t ) .  (1) 

Here h is an unknown time-invariant coefficient vector and 
’ denotes transposition. From  a knowledge  of x ( t )  and z( t ) ,  it 
is desired to estimate the coefficient vector h. 

The adaptive  procedure consists of  using an adjustable esti- 
mate ( t )  of the coefficient vector to generate the correspond- 
ing estimate 
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Fig. 1. (a) Schematic o f  the  identification  problem: In the idealized 
problem ~ ( t )  0 and h (r) is constant. In Sections 11-B-6 and 114-3 
theae restrictions are removed. As stated in the text s(r), shown here 
as observation  noise, may in fact  include  terms  due to plant noise. 
(b)  Schematic of the  adaptation  algorithm: In the idealized problem 
the  integrators are perfect. In Sections 11-B-6 and 11-C-3 leakage in 
the  integrators is allowed. 

of the  output.  The difference 

e( t )  = z ( t )  - P(t)  

is in turn used to adjust the  estimate $ ( t ) .  Of the many adjust- 
ment  algorithms that have  been proposed,  the  ones we will  dis- 
cuss here are 

d h  
- h = Ke(r )x ( t )  
d t  

- h = K F [ e ( t ) l   x ( t )  
d t  

(4a) 

d h  
(4b) 

where K is a  constant that adjusts the gain  of the  control loop. 
In (4b)  the scalar function F is assumed to be continuous and 
to satisfy both the Lipschitz condition and the following 
sector condition. For all u 

71 u2 < uF(u) < 7 2  0 2  (5) 
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for  some finite positive 71 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 2 .  Although  (4a) is a special zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
case of (4b), 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be convenient to treat it separately because 
it isl inearinh. 

We have also considered the related algorithm 

For clarity of presentation, however, we will discuss our re- 
sults for  (4’) in a  sequel to this paper. (Due to  the discon- 
tinuous right-hand side, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis equation needs  special treatment. 
The convergence  process is more  complicated and  in  some 
respects qualitatively different from that of (4a) and (4b). We 
are unable,  for this reason, to give a unified account of the 
results). 

It is useful to define a misalignment  vector’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArt as 

r t P  h - Ct (6) 

and to rewrite (4) in terms of rt. Noting’ that h = 0 and 

et = rixi 

equations  (4a)  and  (4b) become 

Our discussion in Sections I-B and I C  will indicate that  due 
to their simplicity  and versatility the algorithms (4) have 
found  a variety of applications. However, in spite of this 
popularity there is little in the literature that  sheds any  light 
on the limitations of the algorithms, or on the dependence of 
convergence rates on the gain parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. And no theoreti- 
cal results have  been reported which elucidate the require- 
ments on the  input Xt that would guarantee  a minimum con- 
vergence rate. 

In the sequel, we will present  a  number of results which help 
remedy this situation. Our objective throughout will be  to 
obtain results that are valid without imposing stringent require- 
ments on the  input, and which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  used without detailed 
knowledge about the  input. This is of utmost  importance 
for many applications where the input process X t  is derived 
from  a  complex signal  such as speech. 

In view  of this objective, the key restriction we will place 
on X t  is a nondegeneracy requirement  (Section 11-A) which 
we call the “mixing condition.” With this as the most restric- 
tive requirement, we will be  able to derive the following 
results: 

i) We will  prove uniform  exponential convergence to zero 
of the norm’ 11 rt)I of the misalignment vector. It was not 
known previously that this type of convergence is guaranteed 
under  conditions as  weak as those assumed here. 

ii) We will  derive upper and  lower bounds to  the conver- 
gence rate. These bounds are  valid for all K and  for all t .  

As we  will show, these bounds provide  valuable  insight for 
deciding  what the  loop gain K should be. For this reason, we 

have devoted considerable effort to obtain tight bounds. In 
particular, both  the lower  and upper  bounds that we derive 
have the same qualitative dependence  upon K ,  so that  room 
for improvement is limited. 

iii) The dependence of the lower  and upper  bounds on K, 
for large K ,  is rather unexpected and extremely interesting. In 
both bounds the rate of convergence is asymptotically  propor- 
tional to 1/K. This is important, as it illuminates a  funda- 
mental limitation of the filter which exists in addition to  the 
known limitations such as that  due  to  the presence  of noise. 
Earlier  investigators [ 9 1 ,  [ 141 appear to have  associated fast 
convergence with large  values  of K ,  in the absence  of noise. 
The only evidence to  the contrary  appears to have been  ob- 
served in simulations  with sinusoidal inputs  by Miller [ 3 1 I . In 
view  of our  bounds, this issue is resolved for a rather broad 
class  of inputs. 

iv) Partly in order to provide  convincing  evidence that  our 
bounds are quite realistic,  and partly for  its  independent value, 
we have constructed  a rather large  class  of  well-behaved input 
processes X t  in which the  components of the  vector are  re- 
stricted linear combinations of a fmed number of sinusoids 
with distinct arbitrary frequencies. For such inputs we will 
explicitly solve (8a) and  show that  the actual behavior  of the 
filter is, at least qualitatively, identical to our bounds. 

Finally we  will study the effect of adding  a  vector forcing 
term U t  on  the right-hand  side  of (8a) and (8b); i.e., 

v) For  each of the equations  (9a) and (9b) we will  show that 
if a time averaged  value  of 11 U t  11 or 11 utll itself is bounded,  then 
so is llrt 11 and we  will obtain explicit expressions for the 
bound on 11 rt 11. 

vi) We will exploit this bounded-input  bounded-output  prop- 
erty by noting that the effect of many practical limitations 
which  prevent implementations of the idealized algorithms  (4) 
can  be represented by the  term U t .  Thus: a)  the effect of an 
added component S t  in the observed output Z t ;  b)  the effect 
of leakage in the integrators used in a hardware implementa- 
tion; and c)  the effect of slow variations in the unknown 
vector h ,  can  all  be lumped into  the term U t  in (9).3 We will 
obtain  estimates of the effect of each of these perturbations 
on the convergence  process. 

It is desirable to analyze the effects of the added component 
S t  (case a)  for  a  number of  reasons. First, it will generally 
be the case that some form of  noise,  perhaps only measure- 
ment noise, will  be present as an additional component of Z t .  

Noise in the measurement  of X t  may  be  similarly represented. 
Secondly, the number of coefficients required to completely 
characterize the unknown system  may  be quite high and the 
coefficient vector  h defied in (1) may represent only  a subset 
of all the coefficients. In this case S t  may  be taken to repre- 
sent the effect of the coefficients not directly taken  into 
account in (1). Thirdly, in certain applications as, for instance, 
during  “double  talk” in echo cancellation [ 141 a second  signal 

‘Whenever convenient,  we will denote  the independent variable as a is superimposed on the  output of the unknown  system. 
subscript. We will also use a dot above a variable to  denote  its  time 
derivative. 

r ’r .  to depend on xy and re 
By norm we will always mean the Euclidean norm. Thus Ilr 11’ = 3Note that in (9) ut is quite unrestricted. In particular, it is allowed 
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For  the last  of the perturbations, namely  c), our general 

result  provides an upper  bound on  the capability of the fiiter 
to track variations in the unknown system's characteristic; this 
bound is not hard to calculate since the only  information  on 
the variation that is required is a  bound on its derivative. 

The rest  of the paper is organized as follows: Following this 
paragraph, in Section I-B, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill discuss the motivation for 
considering the particular class  of adaptive fiiters described by 
(4),  and discuss  some applications that have  been proposed. In 
Section I C  we will give an overview  of known theoretical 
results and discuss our  contributions in the light  of  what is 
known. In Section 11-A  we will state  the main assumption on 
the  input process. Section 11-B will be  devoted to  the linear 
algorithm (4a), (8a), and (gal,  and  Section 11-C to  the non- 
linear algorithm  (4b),  (8b),  and  (9b). In these sections we will 
summarize our results and try to convey the key ideas by in- 
formal discussion. The  cumbersome details of a  number of 
proofs will be deferred to Appendices I-V. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Motivation  and  Applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An identification problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsimilar to  the  one outlined in 
Section I-A is encountered whenever one must infer the char- 
acteristics of a  system  without interrupting its normal opera- 
tion. This situation arises frequently  in practice, and conse- 
quently the problem  has  attracted  considerable  attention.  To 
get an idea of the variety of approaches to this problem we 
refer the reader to  the recent  book  by  Eykhoff I1 I .  Here we 
only  mention  two  types of solutions which  have  bearing on 
(and in a sense are precursors of)  the adaptive  algorithms (4). 

One  method consists of inferring the system impulse  response 
(equivalent, in  our case, to estimating h )  from the correlation 
between  input and output.  The  drawbacks of this approach 
are: i) a large amount of data must be processed in order to 
compute the requisite correlations; ii) the  input process  must 
be stationary so that  time averages are meaningful; iii) the 
final matrix inversion  can  be rather difficult when the dimen- 
sion  of the  vector h is large;  and iv) if h is slowly  varying, the 
whole procedure must  be  periodically repeated  in blocks, with 
the  assumption that h is constant  within  each block. 

The second approach is a continuous  multiparameter version 
of the classical  Robbins-Monro [21 stochastic approximation. 
It eliminates the computation of correlations and  yields a  con- 
tinuously  adjusted  estimate of h .  Again, a large number of 
variations on this theme have appeared in the  literature,  and 
we refer the reader to a recent survey article by  Tsypkin [3] . 
In its simplest form,  the  algorithm is exactly like (4) except 
that  the gain parameter K is replaced  by a scalar (or matrix) 
function r(t). The difference is crucial, however,  and worthy 
of comment.  The  function r(t) in the stochastic approxima- 
tion  method is a predetermined  function which  must approach 
0 as t -+ in a manner such that JFI'dt + and /,"r2dt < a. 

In such  case, it can ,be shown that with stationary input and 
fiied h ,  the estimate h converges to h in the mean-square  sense 
even in the presence of additive noise [e.g., as in (9)]. The 
fact that  the  estimate converges  in spite of noise is, of course, 
the most  remarkable  aspect of stochastic approximation. 
However,  convergence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  achieved only by a rigid  demand 
that h be strictly time-invariant (or, as in some recent work 
[4] ,  [ 5 1 ,  that  the  form of the  timedependence of h be 
known). Also the input must  be stationary. 

For many applications, the inability to track slow fluctua- 
tions in h can  be disastrous. Also the stringent stationarity 

requirement on the  input can  rarely  be met in practice. By 
using a gain parameter which does not approach zero as t --f 0, 

the adaptation  (4) are able to cope  with both these difficulties, 
as our results will show. This fact, plus  simplicity  of  imple- 
mentation, far outweigh  the limitations of (4) in  many  applica- 
tions. The basic limitations, as we will show later in this 
paper, are that  perturbations (e.g., as in (9)) result in a residual 
error in the estimate, and that  the convergence rate cannot be 
increased beyond a certain maximum,  even for the ideal, 
noiseless condition (8). Of these, the first limitation is unavoid- 
able in this type of algorithm.  The second limitation can be 
relaxed, in principle, by  making the right-hand  sides  of (4) more 
complicated.  Such  proposals have been made [ 61,  [7 I . They 
invariably require the  continuous  computation- of matrices, 
resulting in a  complexity  that increases as the  square of the 
dimension of h. For large  dimensional systems (and we might 
mention here that  such  algorithms have  been  realized in  hard- 
ware for a 20Odimensional  vector h [ 17 I ) these improvements 
are not feasible. 

In view of these advantages  over the  other available methods, 
it is not surprising that  the  adaptation scheme  of (4) has been 
used for  the identification of a wide variety of  systems [ 11 . We 
mention here a few salient communications-related applications. 

A version of (4) with  timediscrete4  adjustments was pro- 
posed by Widrow  and  Hoff [ 81 for adapting switching circuits. 
Narendra  and McBride [91 proposed  the  algorithm  for  a 
general  self-optimizing control  system. Lion [ 61 showed how 
a system with rational transfer function may  be  adaptively 
identified using (4). Widrow et  al. [ 101  have  designed  an 
antenna system adapted  according to a digitized  version  of (4). 
A time-sampled  version  has also been proposed by  Lucky [ 11 1 
and by Gersho [ 121 for equalization of telephone lines for 
data  communication and a  number of  equalizers [ 131  based 
upon these principles  have  been implemented.  Sondhi [ 141 
has described use of the algorithm for cancellation of echos  on 
long distance telephone  connections and both analog [ 151, 
[ 161, and  digital [ 171, [ 181  versions of the canceller  have 
been  realized  in  hardware.' Finally, the algorithm has  been 
used for identifying the linear predictor coefficients [20] , as 
well as the fundamental pitch period [ 2 1 ] of a speech  wave. 

C. Known Theoretical  Results 

It is well known that in the case  of (4), the error defined  by 
(3) asymptotically  approaches  zero  under very  weak restric- 
tions. This is easily  shown  by  considering the equivalent 
formulation  (8) in terms of the misalignment vector r. Pre- 
multiplying (8) by r' and  recalling that et = r ixt,  we  get 

and 

(8) and (9). The algorithms can be  discretized in a variety of ways. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'All results derived in this paper will be for the continuous  equations 

Properties of the  discretized version will differ  from  those presented 
here, in a manner dependent  upon  the particular quadrature formula 
used. 

In a recent paper [ 191, we considered a realization of the algorithm 

However,  the  analysis of the present paper does not apply to such a 
(4) in which  a particular type  of nonideal  multiplier is used exclusively. 

realization. 
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Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 rt1I2 is nonincreasing in (8), which is, of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcourse, the 
original motivation  for these adaptation algorithms.  Observe 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis monotonicity  property is true zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor all values o f  K and, 
as this is not true in discrete timeversions of the  adaptation 
algorithm, it constitutes an important distinction between the 
two versions. Integrating (lo), it is clear that  the quantities 
e2 and eF(e), respectively,  have finte integrals from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-00. 
From this it follows that  with  appropriate weak restrictions 
(seee.g., [141) lim ( e t l = O .  

r + -  
The fact that I et I + 0 is in  itself useful in some situations 

[ 141, [ 211. However, it is clear that  without  further restric- 
tions, (1 0 )  does  not imply that 11 rt 11 + 0, as t + OO. 

In  connection  with the problem of  convergence  of I et I, we 
digress  briefly to make  some observations on a facet which 
might not have  been properly  appreciated in the past. First, 
we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan show that in the noiseless situation, the  control of I et 1 
is trivial in that I et I c& be  made uniformly as small as desired 
by  making the loop gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK sufficiently large. The  complete 
statement of this result and the proof  may  be found in  Ap- 
pendix I. Secondly, we know  from the bounds that are pre- 
sented in this paper that  the effect of  increasing K, when K 
is sufficiently large, is to reduce the  rate of  convergence  of rt .  
Therefore we may conclude that,  for K sufficiently large, in 
the generic situation et is uniformly small  while the con- 
vergence of II t r  II is effectively stalled at some, possibly high, 

value. We cannot envisage an application where  such cir- 
cumstances are anything  but totally undesirable, because  slight 
departures  from the idealized assumptions will lead to large 
errors. Thus even in those cases  where the control of et is 
desired, the formulation  should be as an idenrificurion prob- 
lem with  the emphasis on the rapid  convergence of the mis- 
alignment vector r,. 

For the  timediscrete equivalent  of (8a), a number of investi- 
gators have  shown that  the expectation E(llr 11) -* 0 if the suc- 
cessive n vectors are independent  and identically distributed 
(see, e.g., [ 101, [ 121 1. Convergence (and in the case  of (9a), 
boundedness) have also been proved for stationary inputs by 
Jones [22] and for  Mdependent stationary inputs, by Kim 
and Davisson [ 231. Daniell [ 241 has also proved  convergence 
without requiring independence of the  input vectors. Instead 
he requires a form of asymptotic  independence. Among his 
other  requirements are ergodicity and the  uniform  bounded- 
ness  of a  conditional  expected value  of the  fourth power  of 
the norm of the  input vectors. 

For  continuous algorithms, the convergence  of II r II has been 
proved in  the case  of (4a) by  Lion [ 61 for periodic inputs, and 
convergence  of E [ 11 r 111 by  Kushner [ 251 for an appropriately 
restricted stochastic input. 

The  arguments used for proving  convergence in the case 
when  successive x's are independent are easily extended to 
apply to  the nonlinear  equation,  (8b). However, for carrelated 
inputs we  have not come across a convergence  proof for  the 
nonlinear algorithms, continuous  or discrete. 

As far as convergence rate is concerned, all published results 
are essentially  based upon averaging the right  hand side of (8) 
and  assuming r to be either constant or independent of x [ 141, 
[ 261 -[28]. The  method of  averaging  in the deterministic 
form is originally due to Bogoliubov [ 291 , while recent results 
on the extension to stochastic differential equations is due to 
Khasminskii [30]. For discretized algorithms the method is 
valid for independent inputs. For  the  continuous algorithms, 
it is valid [ 301 only over  intervals of order O( l / K ) .  Thus for 

correlated inputs  or for large K ,  no published estimates of con- 
vergence rate are to be found. 

In certain applications, e.g., equalization for  data transmis- 
sion, it is possible to justify the assumption that (x) is-a sta; 
tionary process (or even an uncorrelated  sequence). In  many 
other applications, e.g., when x is drived from a speech signal, 
this assumption is not justifiable. To the best  of our knowl- 
edge, there are no results in the literature which apply  once 
the stationarity requirement is relaxed. 

II. SUMMARY AND DISCUSSION OF RESULTS 

A.  The  Assumptions  About  the  Input Process 
As mentioned in Section I, for most of our results to hold 

we require that  the  input process  be nondegenerate in a spe- 
cific sense.  Essentially, what we  mean is that i f x t  (and  hence 
h and $) is N-dimensional, then xt should  not stay confiied to 
a subspace  of  dimension  less than N for  too long. There are 
several  equivalent  ways  of  specifying this property.  The  form 
in which we state  the  property will be referred to as the mix- 
ing condition. 

The input  function x t ,  t 2 0 ,  will  be  said to have  satisfied 
the mixing condition if there exist numbers T > 0 and a > 0, 
such that 

. r t + T  

for all t 3 0 and all fixed (i.e., time invariant) vectors d .  

the smallest  eigenvalue  of the scaled  Gramian matrix 
The mixing condition is equivalent to the  requirement that 

+ it+= x,.: d r  (1 2) 

is bounded  from below  by a positive number. Thus, by the 
well-known  equivalence  of  positive definite Gramians and 
linear independence of a set of functions, as well as from  (1 1) 
directly, it follows  that the mixing condition is equivalent to 
the  requirement  that x t  have components xt( i)  which  are 
linearly independent over  all  intervals  of a finite length T. We 
emphasize that  the condition makes no requirements of sta- 
tionarity when the  input is a stochastic process.  Observe,  how- 
ever, that in the event that  the  input is a stationary ergodic 
process, then  the mixing condition is satisfied  by  almost al l  
paths if the covariance matrix is positive definite. 

In addition to  the mixing condition, we will require that 
there is a positive number L ,  such that  for T as in  the mixing 
condition and r 2 0, 

The bulk of  our results will require no further properties of 
the process xt .  However, for the derivation of the lower 
bounds  (Sections 11-B-4 and  II-C-2), we will not require the 
mixing condition. Instead, we will require that dxt/dt exists 
and is uniformly  bounded and that 11 xt 11 has a uniform  lower 
bound. 

B. Results  for  the Linear  Algorithms 
1 )  Upper  Bound: We have  already  shown in Section I-C 

that  the  norm of the misalignment vector rt is a nonincreasing 
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function of time  for each of (8a) and (8b). Here we  will show 
that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX t  satisfies (1  1) and (1 3), then  for  @a), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t  11 is bounded 
from  above  by a decaying exponential  function. One  way of 
proving this is as follows. 

Integrating (8a) from to to (to + T)  gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
On the right-hand side, replacing rt by rto+T +rt - rro+T and 
rearranging terms gives6 

unexpected. Before  discussing this dependence, let  us derive a 
bound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsimilar to (21)  (with b l  replaced  by a slightly different 
exponent b 2 )  by a  rather  different type of  reasoning.  The ex- 
ponent b2 will turn out to be significantly larger than bl for 
large K. Also, the second method gives, in general, a much 
better bound in the  nonbear case. 

The  derivation  of this second  bound starts with the represen- 
tation 

where v is the vector  The  left-hand side can  again  be bounded from below by  using 
the mixing condition. The first term  on the right is obtained 
by integrating (1 Oa) from to to to + T. Thus 

V =  x7xir7 d r   d t .  (16) 

1 
If (15) is premultiplied  by rio+T, the left-hand side zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be (x; rtI2 dt  = - 2K [II ' to 11' - II rto+T112 1 . (25) 
bounded  from below by the mixing condition, and r; +T v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
be  bOunded from above by  repeated U s e  of  the SCgWarz in- The other  two  terms are bounded  from above through use of 
equality. basically  Simple but somewhat  cumbersome the system ( 8 4  and  repeated  application of the  Schwan in- 
derivation is shown in Appendix 11. The  end result is equality. The details are given in Appendix 111. The result is 

where so is the unique positive root of the quadratic  equation where 
2 %KT 

(1  +KTa)' (1 - s2)  = (1 +: (KTLz)3/2) . (18) P =   1 + K L 2 T + i K 2 L 4 T 2 '  

In (18), Lz is the average  power bound of (13). The substitu- 
tion leading to (1 5) can be  used once more and, as shown in 1 
Appendix 11, the bound of (17) is obtained again,  with so as 
the  unique positive root of the  quadratic 

Thus the bound (22) follows, with b replaced  by 

bz = - -  2T In (1 - PI. (28) 

1 2 Z We summarize the above results in the following. (I +KTa+-K2Tza2)  (1 - s 2 ) =  (1 +i(KTL')'/') . Theorem 1: Suppose X t  satisfies the mixing condition (1 l), 
2 and (13). Then the solution  (8a) satisfies the following: 

By repeated  use  of inequality (17) we  get for n = 1,2, * * , 

llrto+nTII ~ ( 1  - s:)"" IIrto 11. (20) 

This geometrically  decreasing  bound  can be converted directly 
to a  continuous  exponential  bound when  we use the fact that 
1) is nonincreasing. Thus  for t > to 

and 

1 b* = - -  
2T 

In (1 - s Z ) > O .  

(For t - to Q T,  of coum, the bound might just as well be re- 
placed by II ' to 11.1 

The  dependence  of b l  on  the gain parameter K as well on 
the  other parameters a, Lz , and T, is interesting and  somewhat 

'The identify matrix is denoted  by I .  

Here a = ebT and b = max ( b l ,  b 2 )  > 0, with bl = -{In (1 - 
s2)}/2T  and b2 = -{In (1 - p)}/2T; so is the unique positive 
root of the quadratic (1 9),  and p is explicitly given in (27). 

21 Dependence of Bound on K:  Assuming a, Lz,  and T 
fiied,  the dependence on K of the  exponential decay  param- 
eters b l  and b2 can be explicitly computed. Note f i t  the be- 
havior as K + 0 and K + = respectively. From (27), as K + 0, 
p + 2aKT, and as K + 00, p + 4a/(KL4 T). In  these limiting 
cases b2 is clearly just p/2T. 

By inspection  of the quadratic  (20), it is easily established 
that b l  has the same qualitative behavior. Plots of bT = 
T max ( b l ,  b2 ) are shown in Fig. 2 as functions of KTL2  for 
various  values  of a/L2. To our knowledge  these are the only 
known bounds valid for all values of K. 

Fig. 2 can  be  used to adjust K so as to guarantee the upper 
bound  with the fastest convergence.  Note that a and L2 are 
both,  in general, functions of T.  If these functions are un- 
known,  then the optimum K is obtained  from the curve corre- 
sponding to  the given  value of a/Lz. The  value  of  KTL 
where this curve  peaks,  gives the optimum K and the corre- 
sponding  value of b gives the best exponential bound. If the 
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Fig. 2. Upper bound for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconvergence  rate (Section 11-B-2): Curves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
show bTvenus KTLa for various values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQIL’. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dependence of a and L2 on T is known, this procedure must 
be repeated  for various  values of T till the optimum is found. 

3) Comparison of Bounds to Actual  Behavior: It is natural 
to ask at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis point  whether  or not  the worsening of the con- 
vergence rate of the bounds for large K is a technical limitation 
of our  methods. Or do these bounds reflect the qualitative 
a s p e c t s  of the actual convergence  process? Further, even  if 
such  behavior cannot be ruled out, is it exceptional  and, 
perhaps, dependent  on some  pathological property of the 
input process? 

Here  and in Section IEB-4, we provide  some  answers. We 
begin  by synthesizing a realistic and well-behaved  class  of  in- 
put vectors { X t )  in which X t  satisfies the mixing condition and 
is such that  for almost all initial conditions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 rtII decays 
asymptotically as exp ( - c t ) .  Furthermore, c is proportional 
to K as K -+ 0 and to 1/K as K -+ *. Thus  any bound which 
uses no  more  information  about x, must have the same quulita- 
tive behavior as the ones derived  here. 

Our  proof of this fact started with an observation by H. J. 
Landau, for which we are grateful to him. For  a  two dimen- 
sional system, Landau noted  that if x [a  cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ut zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+e) ,  
a sin ( u t  + e ) ] ,  and 11 r 11 = esp (-9 ( t ) ) ,  then for certain initial 
conditions p ( t )  = cc, where c has the above dependence on K .  
Although  Landau’s  proof does not appear to generalize, it is 
nevertheless  possible to generalize the  input  to N dimensions. 
Specifically, let N = 2P, and let u1 - up be arbitrary dis- 
tinct,  nonzero  frequencies and ul  - * up arbitrary nonzero 
constants. Then if the  components of X t ,  are, with arbitrary 
ei’s: 

x t ( 2 i -  1 ) = q  sin (ui t+ei) ,  i =  l ; * * , P  

x r ( 2 i ) = a i c o s ( u i t + 0 i ) ,  i = l ; * * , P   ( 2 9 )  

we can show that  for almost  all initial conditions, 11 I t  11 asymp- 
totically decays as exp ( - c t )  with c as above. In  fact,  the same 
conclusion holds when the  input  vector is generalized to  Mx,,  
where Xt is def i id  in ( 2 9 )  and M is any fixed orthogonal 
matrix (i.e., M‘ M = I). This is because the solutions to (8a) 
for the two cases  (corresponding to inputs X t  and MXt,  respec- 
tively) are themsehes related through M. AU these results also 
hold for N = 2P + 1, with  a  constant  component x t ( 2 P  + 1) 
appended to the  ones in (29) .  

What makes the generalization from 2 to arbitrary dimension 
N possible,  is the fact that when X t  is as defined by (29) ,  the 
error et  is obtained from the solution of a set of P linear 

second-order  constant-coefficient differential equations. Thus 
et (and hence from (loa), II r,ll) can  be explicitly solved in 
terms of the roots, Xi, of the characteristic equation of this 
system  of differential equations. Appendix IV shows the 
derivation of the differential equation and the properties of 
the characteristic roots. In summary: 

As K -+ 0, the characteristic roots become - K a f / 2  f ioi, 
i =  1 , 2 , * . - , P .  

As K -+ 00, there are two real roots X, = - K Z a )  and X1 = 
-(l/K)(l/Z(u~/of));therestarecomplexconjugate,-p,/K f 
jGi, i = 1,  * * , P - 1. Here the p’s and G’s are positive con- 
stants  independent of K ,  and the Gis interlace with the ai’s. 
Now e ( t )  is a linear combination of the form Zdie*‘ where 

di depend  on the initial conditions, and hi are the characteris- 
tic roots with the above  behavior.  Depending upon the initial 
conditions, some  of the di’s may be zero. 

As K -+ 0, therefore, the envelope  of I et1 asymptotically 
decays as exp (-4 Ka&int) where a&in is the smallest  of the 
numbers a:, * , a;. 

As K -+ the envelope  of I et1 decays asymptotically as 
exp (- p t / K ) ,  where p is the smallest  of the numbers pi and XI. 
The only  exceptional case arises if the initial conditions are 
chosen so as to eliminate all but the  exp (hot) mode. 

From (1 Oa) it follows that  the  asymptotic value  of 11 11 has 
the same  envelope as 1 et I, which completes the proof. 

In conclusion, we might mention  that  the existence of a 
value  of K beyond which  convergence  becomes  worse,  has 
been  observed in simulation studies [ 31 1.  A  remark to this 
effect is also made in [ 3 2 ] .  

4)  Lower  Bound: A. simple  lower bound is obtained by 
using the Schwarz inequality to bound  the right side of (loa). 
Thus 

2 -K II r 112 II x 112.  ( 3 0 )  

From ( 3 0 )  we  get 

t 

11 rt 11 2 11 ‘to II exp (- K I1 x7 112 dT), t 2 to. ( 3  1 )  

As K + 0, this bound has the same qualitative behavior as our 
upper  bound, so we would not expect too much room  for im- 
provement. As K + 00, however, this lower  bound goes to zero 
at an  ever  increasing rate, in sharp contrast to  the behavior  of 
the  upper  bound. 

To see  what improvement might  be  possible at large K ,  it is 
instructive to solve (8a) for  the case when x is a  constant 
vector. In that case  if at is the component of rt along X t  and 
bt the component  perpendicular to it, then it is easily  seen 
that bt is constant and IIat}l goes to zero as Ilao 11 exp (-Kx’xt). 

A constant  vector x is, of course, disallowed by the mixing 
condition. However, it is clear that if x has  a  bounded deea-  
the  it  cannot change  appreciably during  a time interval of 
order 1/K, f o r  sufficiently large K .  Thus for large K ,  the com- 
ponent of rr in the initial direction of X t  goes rapidly to zero, 
after which r converges to zero at  a slower rate, which  de- 
creases as K is increased. This is just the behavior  displayed  by 
our improved  lower  bounds. The derivation proceeds as fol- 
lows.  With the definition 

lo 

f r  P (x; rt) /  II t t  II ( 3 2 )  
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and  assuming that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX t  is continuously differentiable, a simple 
derivation using (8a)  and (loa) gives the differential equation 
satisfied  by fr: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- f t = K f 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- K ( x b t ) f t  +~;rt)/lldl. 
dt 

(33) 

Also, in  terms of fr we have 

d 
-lIrtII=-KftZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllrtll (34) dt 

whence 

L 4 

We will now  show that (33) implies an  upper  bound on f t ,  
which  when substituted into (35)gives alower  bound  for IIrtll. 
We will assume that  for all t ,  there exist  positive constants m 
and I ,  such that 

11&11 Q m  (36) 

and 

IIxtll 21. (37) 

From these assumptions  and (33), it follows that 

i - f ? < i f t l [ K l f t i ’   - K 1 2 1 f t l + m l  k i f r l G K ( l f t 0 .  (38) 

We have denoted the cubic  polynomial  with  a  parameter K by 

The central idea  in the derivation of our bound is contained 
in a  boundedness  property of ft and certain simple properties 
of the  cubic CK which are summarized in Propositions  1 and 
2, respectively. First, from (38) we have that whenever 
C ~ ( l f ~ l ) <  0 it follows that df:/dt < 0. This together  with 
the  continuity of fr allows us to bound f t  as  follows. 

Proposition 1: Suppose C is a positive constant such that 
GK (C) Q 0. Then I f t , l Q  C implies lftl Q C for al l  t > to. 

To proceed to our final bound we have to determine  whether 
there are bounds  on fr, like C in the above proposition, which 
have the additional property of being proportional to 1/K.  
The  following  shows that under certain conditions such 
bounds  do exist. 

Pro oaition 2: Let a be  any constant satisfying g >  
(3$/2) (mi l ’ ) .  Then: i) G g  ( * ) has exactly  two positive 
roots, g r  (1) and gf), and the  roots are distinct; say 0 <&I < 
g$), and ii) define the positive constant a in terms of K thus 

d 

dt 

GK(*) .  

a P Egg). (39) 

ThenforallK>K,GK ($GO. 
Proof: CK(U), for U >  0, always  has a  unique minimum (at 

u = 1 / 6 ) .  Also, the value at the minimum is negative  when- 
ever K > ( 3 6 / 2 )  [ (m/13)  in which case there exist two posi- 
tive,  real, distinct roots and i) follows. Further, GK (u) > 
0 for u <gp) and GK (u) < 0 for gg)  < u < gg) .  Also, for 
K > K  

GK ( : ) = s - 1 2 a + m G q  a’ a’ - l Z a + m = G z  
K 

so that ii) is proved. Q.E.D. 

We summarize our lower  bound  in the following theorem. 
Theorem 2: Suppose xt has a  continuous derivative for all 

t ,  Il&ll satisfies the uniform  upper  bound  in (36), and IIxt I1 
satisfies the uniform  lower  bound  in (37). 

Let E be any constant satisfying a> ( 3 6 / 2 )  ( r n / 1 3 )  and 
define the positive constant a in  terms of a as in (39). Then 
for t 2 to 

I1 rt I1 2 II rto 11 exp [- $ ( t  - t o  )I (40) 

for all K > E  and all initial conditions satisfying Ix;orto I/ 
II I t ,  II Q a/K.  -” 

Roof: Identify a/K with C in Proposition 1 and note  that 
we have  shown in Proposition 2 that GK (C) < 0 for all K > a. 
From  the first proposition, for t Z to : 

a 
I f t I= I+tI/IIrtIIQF, (41) 

so that from (35) 

which completes the proof. Q.E.D. 
Using  basically similar ideas and (33) and (35), we can  derive 

another  lower  bound  with  a different emphasis,  which  pro- 
vides additional insight into  the actual convergence  process. 
To derive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis lower bound we construct an auxiliary contin- 
uous function 7, for t 2 to which is the solution to  the differ- 
ential equation 

- - f ,=~z  d -  - K 1 2 f , + m  
dt 

= G K ( ~ , ) ,  with f,, = Ift, I. (42) 

Ift I G ,  t 2 to .  (43) 

The  key observation is that 

This follows from inequality (38) and the fact that 

Ift 1 = f ,  implies that - d 

dt f; <;7;. (44) 

Inequalities (43) and (35) thus give a lower bound  on IIr, II 
which  may  be  summarized in the following theorem. 

Theorem 3: Suppose IIxt 11 and 11 xt 11 satisfy the uniform 
bounds (36) and (37). Then 

where ft is the solution of (42). 
The  bound of Theorem 3 is, of course, valid for all K and 

Ifr, I .  However, its qualitative properties are of greatest 
interest if K is restricted as  in  Theorem 2 (i.e., K > 3 6  
m/213) and 

Ift, I <&I. (46) 

If K and Iftolare restricted in this manner,  then as t goes 
from to to 00, f t  goes monotonically  from I f t o  1 to gp).  his 
assertion is a simple consequence of the properties of the cubic 
GK (-) derived in Pro osition 2. Thus for Ift, I <&I, since 
GK(u)> 0 for u<g;), P it follows from (42) that & increases 
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1.0, I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) 
t- 

Fig. 3. (a) Lower bound for convergence rate (Section 11-B-4): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACurves 
show &/I versus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt for m/l = 1, 3, = 0.75  and various values of K P  . (b) 
Lower bound (Section II-B4): Curves show llrt~/Hr, I1 versus t for 
m/I = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, = 0.75 and various values of KIa . 

monotonically to g t ) .  Similarly 7, decreases monotonically to 
( l )  i f g t )  < I f t ,  I <&I. Therefore,  the  bound of Theorem 3 

?initially [i.e., for small  (r - r,)] proportional to exp [ -Kf ; ,  
(r - r,)] and asymptotically [i.e., for large  (r - t o ) ]  to exp 
[ -K (g$ ) )2  ( t  - r,)]. As g g )  -m/K12 for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,  the 
asymptotic behavior is much  like that of the  upper  bound of 
Section 11-B-1. Sample plots computed  from (42) and (45) 
are shown in Fig. 3. 

5)  Analysis With Forcing Term Included:  In this paragraph 
we will estimate  the effect of the inclusion of the forcing 
term Ut. Since (9a) is a linear  time-varying equation,  the 
general solution of the  equation is [33], 

t 

rt=Ip(r,o)r, +I Ip(f,T)u7d7, t > O  (47) 

where e (r, T) is the transition matrix of the equation (8a). 
Now the upper bound on the solution of the  homogeneous 
equation, given in Theorem 1  (Section 11-B-1) is equivalent 

0 

to ' 
IlcD(r,7)11<exp [-b(t- 7 -  T ) ] ,  t 2 7 .  (48a) 

(Here b is the largest of the decay constants of (23) and (28) 
and T is the constant associated with the mixing condition.) 

Euclidean  vector nom. 
'For a matrix M we denote  by IIM (1 the matrix norm induced by the 

The derivation of the results that we obtain here  are actually 
simplified if we also use the earlier  results in (17) and (26) 
which imply  that 

114(t,7)l l<exP  [-b(i-   1)Tl,   for( i-   l )T<r-  7<iT, 

and i = 1,2, * . (48b) 

Thus (47) gives 

II II G lie (r, 0 )  II II r, II + II W , 7 )  II  II u7 ll d7 I' 
and,  on using (48a), 

II rt II Q II r, II e-b('-T) + ut (49) 

where 

t 

ut 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 11 e (r, 7) 11 II 1 1 ~ 1  d7. 

As we shall see  below, the specification of u, will generally 
depend  on the application. In one of the cases  considered 
below u, will be known as a  function of T. Most often, how- 
ever,  all that is known  about u7 is a bound in 11 u,ll, or  on the 
time averaged  value  of II u, 11. Suppose then  that either 

IIu,lld7<u, r > O  

or 

IIu711 Q ii, r > 0. 

For these specifications V t  in (49) can  be uniformly  bounded 
by using (48b) 

T 
V t Q U 1 - e - b T '  t > O  (50a) 

and 

respectively. The above, then, is a general bound  on the norm 
of the ultimate (r -* 00) misalignment  vector (=h - &), which is 
sometimes referred to as the residual error. 

6) Applications of Bounded-Input  Bounded-Ourpur Resulr: 
As mentioned in Section  I-A, a  number of practical limitations 
to the implementation of the algorithm  (4a) can  be represented 
by the term U t  in (9a). We mention here three such limitations 
and  use (49) and (50) to bound  the  perturbations due to these 
limitations. 

a)  Additional  component in the observed  signal: For a 
variety of reasons,  some of which  are mentioned in Section 
I-A, it is desirable to bound  the effect of a signal S t  which 
appears as an additional component of the measured signal 
Z y .  Equation  (1) is replaced  by 

Z t  = h'xt + s t .  

Here  we shall  assume that 
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Tracing the effect of the additional component through (2)- 
(4), we see that  (9a) results with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -KSpt. (5 1) 

Note that  in  this case  we have, by an application of Schwarz's 
inequality 

IIu,IIdr<KSL 

where L is the average  power bound (13) on the  input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX t .  

From (50a), therefore,  the residual error is bounded thus: 

Recalling from Section 11-El  that b is proportional to K as 
K + 0, and to 1/K as K + 00, we see that  the bound in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(52) 
is independent of K  for small K, but grows as K2 for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. 
The  above behavior, with respect to K ,  is to be expected at 
least when the correlations between S t  and the  components of 
Xt are large. When these correlations are large this behavior, 
for small K, is in agreement with results from the method of 
averaging (Section 14).  

b )  Variations in the  coefficient  vector: As mentioned in 
the  introduction,  the algorithms considered here have  an 
ability to track slow variations in the target vector h. An 
explicit bound on  the  error due to the variation in h may be 
obtained by noting that  in going from (4a) to (8a) dh/dt was 
assumed to be zero. If t h i s  had not been done, we would 
have obtained (9a) with 

Again  if 11 6 11 is bounded by K, we get from (SO) that 

T 
v ( t ) < L .  (54) 

In this case the bound increases both as K -* 0 and as K +a. 

This is to be expected because we are bounding worst-case 
behavior. When K is very  large or very small, the convergence 
is slow and h could  change  by  large amounts before the system 
has a chance to converge. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c )  Imperfect  integrators: Any practical implementation 
of (4a) would, of course, use integrators. Thus the algorithm 
would  be implemented as 

t 
A h  

ht = h,  + K e,xr dr .  (55) 

However, perfect integration is impossible in practice. If the 
integrators have exponential impulse response e+' (i.e., the 
so-called RC integrators), then the effect of this imperfection 
is to change (4a) to 

- h + f i  = K ( r 'x)x.  
d n  A 

d t  

Subtracting f i  from both sides gives 

d 
- r + b = - K ( r ' x ) x + f i .  (57) 
d t  

Equation (57) reduces to the form (9a), if we defineqt e@',,. 

Substitution of this into (57) gives 

(59) 

and,using(48b),forNT<t<(N+l)TandN=0,1,2,-.-, 

IIqt II < 11q0 II + 2' I I  h II (1 - 

Finally, multiplying out by e-Br gives the bound: 

11 rt 11 < 11 r, 11 eb  e-@+ @ I t  + 11 h 11 

, (1 - e+T) ( l  - e - ( N + i ) ( b + @ ) T )  
(1-- . (61) 

The residual error (as t + 00 and consequently N + a) is 

11 h II (1 - e-@=)/(l - 

The residual error is thus  proportional to 11 h 11 and  goes to zero 
as p+  0 (i.e.,  as the integrators become more nearly ideal). At 
the  other  extreme, as /3 + a, as expected, IIrt 11 + II h 11. Also 
for small T, the  asymptotic bound is 11 h l l /(b + B). 
C. Results for the Nonlinear Algorithm 

All but one of the results derived in Section 11-B generalize 
to (8b) and (9b), respectively. The only exception is that we 
have not  attempted to solve these equations explicitly for any 
general  class  of inputs such as the one defined in  (29). 

Qualitatively the results are very similar to those for  the 
linear case. Most  of the derivations are also similar. Therefore, 
we need only point out the few  places  where differences arise. 

I )  Upper  Bound: When I t  is a solution of (8b), an upper 
bound for IIrt 11 can  be obtained by first transforming (8b) 
into an equation of the same form as (8a), and then using 
the results of Section 11-B-1. Such a transformation is possible 
by the following  simple observation. For r;xt # 0, equation 
(8b) can be rewritten as 

From the  sector  condition (5), at all points t such that I ; X t  # 
0, we have 

O < Y ,  <A(t )<r2.  (65) 

At the time instants  for which r;xt is zero, (64) is identical 
to (8b) with any fmite value for A( t ) ,  in particular the value 
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ts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(o)/o. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWith zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis specification, A ( t )  satisfies (65)  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall 
t .  Defining the  vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

yt P 4& (66) 

(64) becomes 

d 
- I t  = -K( rb t )y r  dt 

(67) 

which is  the same as (8a)  with xt replaced  by yr. Further, if 
xt satisfies the mixing condition  then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso does yt. In fact, 
from (65), ( l l )and.( l3) 

and 

t+T il IIY,II~ d7g72L2 (69) 

for all t and all fixed vectors d .  Thus all the analysis  of  Sec- 
tion 11-B-1 applies with Q replaced  by y l a  and L2 by 72 L 2 .  In 
particular the  bound of  Theorem 1 follows immediately  with 
the identification 

b=max(bg ,b4 )>0  (70) 

where 

b3 = - {In (1 - s?)}/2T  (7  1) 

b4 = -  {In (1 - P1)} /2T (72) 

and 81 and p1 are obtained  from SO and p, respectively,  by 

When r1 = 72 = 1,  the value of b in  (70) coincides with that 
for  the linear case. Thus  for 7 2  -71, this is the best  value 
we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan attain, unless we can find improved bounds for the 
linear case.  However,  when 72 is much larger than y l ,  a much 
better  bound can be obtained by a generalization of the method 
based on (24). Again the left-hand side is bounded  from below 
by the mixing condition. The first and  second terms  on  the 
right  can be bounded  from  above by a procedure very  similar 
to  that used in the linear case. Finally, the third term is 
bounded  from  above in terms of the bounds  on  the first two 
terms, by  using Schwan's inequality. The details are listed in 
Appendix V, which has  a  pattern very  similar to  that of 
Appendix 111. The result is again (26), with p replaced by 

replacing Q by 7 1 ~  and L2 by 7 2 L 2 .  

(73) 

Thus fiially we may  replace (70) by 

b=max(bg,b4 ,bs)>0 (74) 

where b3 and b4 are as in  (71) and (72)  and 

b5 = - {In (1 - p2)} /2T.  (75) 

It is easily  verified that  for any  given  values of rl and 7 2 ,  

b5 > b4 for sufficiently large K .  Also, if 7 2  > 271, then 
b5 > b4 for all K. 

2 )  Lower Bound:  The derivation is again similar to  that in 
the linear  case. Thus applying the condition (5 ) ,  and Schwarz's 

inequality to  the right side of  (lob), we get 

from which it follows that 

t 

11 rt II 2 II ?to I I  ~ X P  (-72 K II x, 112 dr). 

This reduces to  the bound  of  (31) for  the linear case,  when 
7 2  = 1. 

Again  as before, defining f t  = (x;rt) / lJ rt II a differential 
equation satisfied  by fr is first derived  and from this equation 
we obtain 

io (77) 

(78) 
The corresponding  equation for II rt II is 

The sector condition (5) then gives 

(79) 

from  which 

t 

II rr I I  2 I I  ' to I I  ~ X P  ( - K ~ z  f: d ~ ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2 to.  (8 1) L 
The lower  bound  for I I  rt II again  follows from an upper  bound 
for ft. 

As in  the linear case, we will assume the  uniform  bounds on 
(xi+) and I I i t l l  given  by (36) and (37). Thus  from (78) 

From  the sector condition ( 5 )  it, therefore, follows that 

Comparing (81) and  (83) to (35) and (38), respectively, it 
follows that  the main results derived for  the linear equations, 
(40) in Theorem 2 and (49 ,  are also valid for  the  nonlinear 
equations  with K replaced  by K72 and l2 replaced  by yl12 /yz . 

3) Analysis With Forcing Term Included: The  bounded- 
input-bounded-output  property follows trivially from  our 
analysis  of the linear case. This is because the  transformation 
used in deriving (67)  from  (8b) may  obviously  be  used to 
transform (9b)  to 

Here y is as defined in (66). Equation (84) is of the same form 
as (9a). In view  of (68) and (69), it is thus obvious that  the 
entire analysis of Sections 11-B5  and 11-E6 applies to  the pres- 
ent case verbatim.  The  only difference is the value of the param- 
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eter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb.  For  the nonlinear  case it has the value  given  in (74), 
while for  the linear case it has the value  given in Theorem 1. 

APPENDIX I 

L o o p  GAIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE DEPENDENCE OF THE ERROR ON  THE 

Here we  will prove the assertion made in Section I C  that  in 
the ideal algorithms (4a) and (4b),  the  error et defined in  (3) 
can be made  uniformly as small as desired, by  making the  loop 
gain K sufficiently large. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill prove this for  (4b). The 
proof for  (4a)  then follows as a special case. 

In this Appendix we will assume that Xr is continuously 
differentiable and satisfies the following bounds.  For t > 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l l x t l l <m < m  (Al-1) 

APPENDIX I1 
UPPER BOUND FOR LINEAR EQUATIONS: 

DERIVATION OF EQUATIONS (1 7)-(19) 

To derive (1  7) we premultiply ( 15) by ri0 + T, which gives 

(A2-1) 

where the vector u is defined in (16). Now from the mixing 
condition, the left-hand side of  (A2-1) is bounded as follows: 

rio+T ~ + K J r ~ + T x r x ~ d . ]  rto+T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (1  +KaT)IIrto+TII. 

(A2-2) 
From (7), which  represents et in  terms of the misalignment 
vector rt given in  (6), we get Thus (A2-1)  becomes 

d  (1  +KaT)IIrro+TI12 QIIrro+TII IIrr,II +K21rio+TvI (A2-3) 
- et = i ;xt +';it. (Al-3) 
d t  where we have  bounded the f i i  term on the right by Schwarz's 

inequality. It remains to bound the second term from  above. 
Substituting  for it from (4b) and  multiplying (Al-3) by  e, From Schwa's  inquality 
gives 

d 
- e: =-2KetF(er) I I~t  112 + 2 ( r i & ) ( r ; ~ t ) .  (A1-4) I'io+Tv12 <io (r$+TX?)'  dtJro g: dt (32-4) 

to+T to+T 

dr 

The  right-hand  side  can be bounded from  above as follows. where 
The sector  condition (5) and the bound (Al-2) give 

-2KerF(er)II~r11~ <-2K7112e:. (Al-5) gt =Jro+T (xix,) (x:r,> dr. r 

The bounds (Al-1) and (Al-2) give Again, by Schwan's inequality 

2(ri~t>(r;;t> < 2 II rr 112 IIxt II II II to+ T 

Q 2 11 rt 1 1 2  mL g: Q Ilxt1I2 1 IIx,lI' d T r + T  ( ~ : r ~ ) ~  ds 

(A2-5) 

-e: + 2 K ~ ~ l ' e :  < 2mL Ilr, 11'. d 

dt  
(Al-7) 

Multiplying (Al-7) by exp (2K7112r) and  integrating gives 

mL 
e: <e: exp ( - 2 K l Z 7 1 r ) + 7  llro 11', t > 0 .  

KT1 1 

(Al-8) 

Thus for every initial condition e,, r,, and arbitrary positive 
numbers t ' ,  E ,  there exists a K' which  depends on  the above 
quantities  and such that  for K 2 K' and r > r ': 

ef < E .  (Al-9) 

As mentioned above, the derivation specializes to the linear 
equation (4a), by setting r1 = 1. 

(A261 

where we have  used (loa)  to evaluate the final integral. From 
(A2-6), therefore, 

Substituting into (A2-4), and bounding the fmt integral on 
the right side of (A2-4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso by Schwan's  inequality, we get 



1594 PROCEEDINGS OF THE IEEE, NOVEMBER 1976 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Substituting (A2-8) into (A2-3), dividing out by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArto 11  11 rto + T 11, 
and defining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 =  ~ ~ ~ z o + T ~ ~ / ~ ~ ~ t o ~ ~  (A2-9) 

we get 

(1 + KaT) 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 1 + 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd v .  (A24 0) 

As 7 goes from 0-1,  the left-hand side of (A2-10) goes mono- 
tonically from 0 to some  positive number, and the right-hand 
side  from.  some  positive number to 0. There is, therefore, a 
unique positive number -yo such that 

( l + K a T ) 7 , = 1 + 4 ~ ~ d ~ .  (A2-11) 

Clearly (A2-10) implies 7 <-yo. The derivation of (17) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis thus 
complete, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsince ( 1  8) follows trmially from (A2-11) by substi- 

The derivation of (19) is a bit more  cumbersome,  but uses 
essentially the same technqiues. As mentioned in the  text,  the 

moreon(l5)togive I+ K l ; + '  x t x i  dt  + K2 

tuting 7 2  = 1 - 9 .  

step Of replacing rz by rto+ T + r t  - 'to+ T c8n be  used Once 

rTL t0+ '  x t x ; x , x ~  drdt 1 
rto+T =rto - K'w (A2-12) 

where 
to+T  to+T  T+to 

w &Lo d t l  dT[  d A x t x i x , x : x k x ~ r ~ .  

withg, as defined in (A2-5). Thus 

d o  d r J  
to+T  to+T  to+T 

( X ~ X , ) ~  dr J] g: dr. (A2-20) 

Analogously to  the derivation of (A2-6) we see that 

*ito+T dr ( X ~ X ~ ) ~  dA (A2-21) 

to+T 

4 

(A2-22) 

Calling the term in square  brackets in (A2-22) as D ,  we see 
that 

Q 4 L4T2 (A2-23) 

(A2-13) C<- La T4 tIIrto112 - IIrto+T1121. (A2-24) 
16K 

When (A2-12) is premultiplied by ri +T,  the f i t  two  terms  on 
the left are identical to those  in cA2-2). The third term is Substituting (A2-18) and (A2-24) into (A2-17) gives 
bounded as follows: 

L ~ O T S  
to+T  Irio+Tw12 < - 16K Ilrto+T112[Ilrtoi12 - Ilrq,+T1121. 

( r$+TXt )  x i  dt [ T x,)  dT 
(A2-25) 

K2a2  T2 
2- 

2 

Substituting (A2-25) into (A2-151, and d e f i i g  7 as in (A2-9) 
we get 

A y  < 1 + + d w .  (A2-26) 

( ~ 2 - 1 4 )  This equation is of  the same form as (A2-10). Thus as before, 
7 < ro, where r0 is the unique positive root of 

APPENDIX III 
UPPER BOUND FOR LINEAR EQUATIONS: 

DERIVATION OF EQUATION (26) 

FrQm the mixing condition, the left-hand  side  of (24) is 
bounded as follows: 

The f i i  term on the right-hand  side  of (24) has already been 
evaluated in (25). The  second  term on the right is bounded 
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as follows: APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV 

(A3-2) 

L 

(A3-4) 

where  (A3-2)  follows from (loa) and  (A3-3) from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnonin- 
creasing property of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 rf 11 also implied by  (loa). 

The third  term on the right-hand side of (24) is bounded as 
follows: 

2 J - r + T  birr)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Xi(r to - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArr)l dt  

H' 

t 

= 2KJrr+T ( x i r t ) x i l o  ( x i r s )xs  ds dt 

= K (x i r t )x r  dr 

Q K (lr+T II xtl12 dt )  (Iro (xb t ) '  

ro+T 

(A3-5) 

Substituting (A3-11, (A3-4), (A3-51,  and (25)  into  (24) gives 

(A361 

Upon rearranging terms 

Equation (A3-7) is equivalent to (261, with p defined in  (27). 

PROPERTIES OF THE LINEAR SYSTEM IN RESPONSJZ 
TO THE SPECIAL INPUT 

In this Appendix we will derive an explicit solution  of  (4a), 
when the  input is the special vector defined in  (29). We will 
also discuss  some  of the qualitative aspects  of this solution,  in 
particular, its dependence on the loop gain K.  It will be con- 
venient* to split up  the  input vector x and the misalignment 
vector r into P two-dimensional vectors, and to define partial 
errors for each  such pair. Thus  let 

xi & {ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin (air + ei ) ,  ai cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( q t  + e i ) } I ,  i = 1, - - , P 

(A4-1) 

ri & {r(2i - 11, r(2i)}', i = 1, - a: , P (A4-2) 

ei&r'r(xj, i =  I ; * * ,P (A4-3) 

Then the  total error 

P 
e =  ei 644-4) 

1 

and (4a) can  be written as 

d 

d t  
-ri=-Kexi, i = l ; . - , P  644-5 1 

Using these equations we get 

i i  = i'r(xi + rixi I .  

= -Kea? + r i i i ,  i = 1, * * , p ( A 4 4  

where  we  used the fact that xixi = a?. Differentiating (AM)  
we get 

6 = -Kafgj + rj% 

=-Ka;i - ofe,., i =  1, - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, p  (A4-7) 

From (A4-7) ei, i = 1, , P can  be  solved in terms of e and 
the initial conditions.  The  easiest  way is via the Laplace  trans- 
form. Noting that 

ei(O) = r i(O)xi(O), i = 1, - - - , P (A4-8) 

and 

i i ( 0 )  = -Ka;e(O) +xi(O)ri(O), i = 1, * * , P (A4-9) 

we get, from  (A4-7) 

s2Ej(s)  + Ka;sE(s) + o;E i (s )  = (sx i (0)  + i i(0))'rj(O) 

(A4-IO) 

where the  upper case  symbols denote the Laplace transforms 
of the corresponding  lower  case  symbols.  Summing  (A4-10) 
over i and using (A4-4), we therefore, get 

(A4-11) 

not use the subscript t. 
*To keep the notation reasonably  simple in this Appendix, we  will 
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Equation (A41 1) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE(s) as a ratio of two polynomials in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. however, with the small parameter K replaced  by 1/K,  and Q 
Thus e ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be explicitly obtained in terms of the poles of  by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg. The result is 
E(#);  i.e., the zeros of the polynomial 1 

Q K ( s ) = n ( s ) + K s c a f  H i ( $ ) .  (A4-12) ri zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
2@q' ( -S)=  K 

A - h  (A4-21) 

Here 

and 

where the p's are independent of K .  In summary, therefore, 
the  roots of & (8)  are, for large K 

P n&)= n ( 2  + Wi'). (A4- 1 4) &+2 =-- t + J G i ,  i =  I , . . - , P -  1 

I + i  
i=1 

If &, i = 1, - , 2P  are the  roots of Q K ( ~ ) ,  then &+l+P = - 2- JGi ,  i = l , . . * , P -  1. (A4-22) 

e ( t )  = dieAit 
2P 

(A4-15) 
i l l  

where di are constants  dependent on the initial values xi(O), 
&(O) and ri(O), i = 1, - - * , P. The  computation of the d;s is 
straightforward  though  cumbersome. However, as pointed out 
in the  text, we need not  compute  the X's and the d's explicitly 
in order to infer the qualitative properties of e( t )  and Ilr(t)ll. 

All we need is the qualitative behavior  of the &s as functions 
of K .  

i) Behavior of the  roots as K +O. When K is small, the 
roots of QK ( 8 )  are close to the  roots of n(s), i.e., to  the values 
s = kiwi, where j = a. Thus,  for small K the  roots are 

& = * j w i + q ,  i =  l , . . * ,P .  (A4-16) 

The  perturbations ~i are obtained  by setting 

(A4-17) 

These  values  of the characteristic roots give the qualitative 
properties of e ( t )  and IIr(t)ll derived in  the  text. 

We observe parenthetically that  the above  analysis does not 
explicate the particular behavior  of e( t )  with respect to K that 
is proven in  Appendix I ,  for it is necessary to also have the de- 
pendence on K of the residues  associated with the poles of the 
Laplace transform E(s), which for  the sake of brevity we do 
not give here. 

APPENDIX v 
UPPER BOUND FOR THE NONLINEAR EQUATION: 

DERIVATION OF EQUATION (73) 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis Appendix we will  prove for  the nonlinear  equation 
(8b)  the upper  bound on the  rate  of convergence  given  by (73) 
and (26), i.e., 

Ilrto+Tl12 - P2)llrtol12 (26) 

where 

where the derivatives are evaluated at the point K = 0, s = PZ = + 1 K T / [ f i + d F Z R L 2 T l 2  > O  (73) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*jut. This gives €1 = - (Kaf ) /2 .  Thus as K ' 0  

and 71,72 are the positive constants associated with the sec- 
Kaf tor condition ( 5 )  on the nonlinearity F. The other  assump 

kiwi, i =  l , . . * , P .  

bound (1 3). 

&=--  
2  (A4-18)  tions are the mixing condition (1  1) and the average power 

ii) Behavior  of the  roots K +-. When K is large, it is Note that, from the m- condition, 
more convenient to  study  the  roots of 

1 

K 
A-+sq(sZ)  (A4-19) 

which,  of course, are identical to those of Q K ( s )  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall f inte 
K .  By settings = K u  it is easily  established from  (A4-19), that 
one  root is - -K  Z a:. Similarly,  by setting s = u/K it is estab- 
lished that a second root is -- 1 / (K  Z af  /a?). The remaining 
roots are close to  the  roots of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (s'). If  we set s2 = z, it is seen 
that q (s) has  poles at z = -a:, and dq (z) /dz < 0 for all real Z. 
Then clearly q ( z )  is zero for z = -G?, where G: are positive 
numbers interlacing with the a?, i.e., 

a: <G? <a?+l, i = l ; . * , P -  1. (A4-20) 

Thusq(s2)iszerofors=+jGtfori=1,*.*,P- 1,andthere- 
fore the roots of & (s) close to these are et f $&. The pertur- 
bations ei are obtained by an equation analogous to (A4-17); 

Each  of the three terms in (A5-1) is now bounded  from above. 
First 

to+ T 

(x;rt l2 dt =G $lo ( x b t ) F ( x i r t )  dt  
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For the second term, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-I 

(A5-3) 

Finally, the  third  term in (A5-1) is bounded by using the 
bounds (AS-2)  and  (A5-3).  Note that because of the nonlin- 
earity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ,  we are not able to bound this  term as tightly as was 
possible in Appendix 111 for the linear equation. 

2 l;+T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x ; r t> [x ; ( r to  - r to+T) l  dt  

< 2  
to+ T 

( X i r r ) 2  dt  Jlo [X;(rtO - r r )12 dt 1 lt2 

The bounds  for the three  terms of  (A5-1) yield, 

(IIrroI12 - IIrto+TI12) 

which upon rearrangement  give (26)-and  (73). 
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