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Abstract. Naor and Shamir ([1]) defined the basic problem of visual
cryptography by a visual variant of the £ oul ol n secret sharing problem:
how can an original picture be encoded by n transparencies so that less
than % of them give no information about the original, but by stacking
k of them the original can be seen? They described a solution to this
problem by a structure called & out of n secrct sharing scheme whose
parameters directly correspond to quality and usability of the solution.
In this paper a new principle of construction for such schemes is presented
which is easy to apply and in most cases gives much better results than
the former principles. New bounds on relevant parameters of k out of
n schemes are developed, too. Furthermore, an extension of the basic
problem is introduced and solved in which every combination of the
transparencics can contain indepcendent information.
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1 Introduction

Many cryptographic methods encrypt information represented as numbers by
using one-way [unctions. The values of the used one-way function represent the
encrypted information and to decrypt this information the original numbers
have to be computed. Without a secret key this computation should require an
enourmous amount of time to guarantee the security of the method. But even
when the secret key is known in most cases the computation of the original
information 1s very tedious, if not impossible, without computers.

In visual eryptography which was introduced by Naor and Shamir (sce [1]) we
are looking for ways to encrypt pictures, i.c. information which can be perceived
directly by the human visual system. For easier [ormalization we assume that
the pictures are black-and-white and rastered so that they consist of a finite set
of pixels which arc cither black or white. The encoded inlormation should have
the form of n rastered black-and-white pictures. To decode the information it is
necessary to have k pictures, print them on transparencies and stack them. Then
the original picture shall be recognizable. Therefore, encoded information can
be decoded simply by stacking & transparencies, i.c. without any computations.
But less than k pictures shall give no information about the original picture
even to an infinitely powerful cryptanalyst. Naor and Shamir have described
this problem by a structure called k out of n secret sharing scheme. Finding
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such a scheme directly resnlts in a solution for the k out of n secret sharing
problem whose quality and usability correspond to different parameters of the
scheme.

In this paper a new construction principle for secret sharing schemes is given
whose resulting schemes arc in most cases much better than the previously known
schemes, dircctly resulting in better solutions for the secret sharing problem.
New structural results about £ out of n schemes lead to new bounds on the
size and quality of schemes which are dependent on k and n (the best formerly
known bounds were dependent on k only). At the end of this paper an extension
of the original problem is introduced: how can n transparencies be created so
that cach combination of them results in a different picture? Solutions for this
problem which still guarantee the security of the scheme conclude this paper.
Although the value of visual cryptography may be small in practice, this paper
shows new interesting possibilities to encrypt information in a very casy bul
completely securc way.

2 The Basic Model

The solution of the visual variant of the & out of n secret sharing problem rclics
on encrypting cach pixel of the original picture separately by m subpixels in
each transparency. When printed in close proximity these subpixels are nol secn
scparately by the human visual system which rather averages the number of
black subpixels. Therefore, a black pixel of the original has to be represented by
more black subpixels in the stack of every k transparencies than a white original
pixel. The difference of the number of black subpixels determines the contrast of
the stack of the transparencies and shall be as high as possible. But the required
security rules out the more obvious medel in which every white original pixel
is represented by m white subpixels, as in this case a black subpixel in one
transparcncy enforces a black original pixel.

The m subpixels of the n transparencies can be represented as a n x m
Boolean matrix B = [B;;], where B;; = 1, il and only if the j-th subpixel of
the i-th transparency is black. The greyness of the stack of k transparencies is
determined by the Hamming weight of the OR of the corresponding & rows of
B. To ensure sccurity original black pixels have to be represented by the same
combinations of m subpixels as white original pixcls when considering less than
k transparencies. For this gives you no chance of determining the colour of any
original pixel and you caunot even determine a probability of an original pixel
being black or white. When all matrices representing black original pixels are
named as a multi-set /7 and all the others are named as a multi-set Co, the
following definition is straight-forward (sce also [1]):

Definitionl. Two multi-sets Co and (1 of n xm Boolean matrices are called a k
out of n secret sharing scheme, if there are constants « > [/mandd € {1,...,m}
so that the three following conditions are met:

1. For any B € (|, the OR. of any £ of the n rows of B has a Hamming weight
ol at least d.
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2. For any B € (U, the OR of any £ of the n rows of B has a Hamming weight
of al most d — - m.

3. For any subset {i),....4,} C {1.....n} with ¢ < &, the two multi-sets
obtained by restricting cach matrix in Cpy resp. 1 to the rows i1,...,14,
contain the same matrices with the same frequencices.

To generate the n transparencies from the original for every pixel of the
original one simply chooses independently and equally distributed a matrix of
the multi-set Cy resp. Cp, depending on the colour of the pixel. The first two
conditions, called contrast, ensure that the original can be seen when any k&
transparencies are stacked. The third condition, called security, ensures that less
than k transparencles give no information about the original, as the expected
value of appearances of a restricted matrix is the same, no matter if the original
pixel is black or white. The parameter «, the relative conirast, is probably the
most important, as it determines how well & transparencies reveal the original.
The paramecter m determines the number of subpixels which should be as small
as possible. Without loss of generality one can assumec that Cy and C; have the
same number r of elements (scc Lemma 8); as log(r) is the number of random
bits for each original pixel needed to generate the transparencies, r should be
as small as possible. The threshold d determines the minimal greyness of black
pixels; its value is less relevant so that one can allow it to vary depending on the
chosen k transparencics. As this relaxed condition has not led to better schemes,
it will be omitted.

3 Basic Results

Naor and Shamir {[1]) have shown how to construct a k out of k secret sharing
scheme whose parameter m i1s as small as possible and whose parameter « is as
large as possible. For easy specification, we call a column of a Boolean matrix
with an even number of 1’s even and otherwise odd. If B 1s a Boolean matrix, we
say that P({B) is the multi-set of matrices obtained by permuting the columns
of B, i.e. each permutation corresponds exactly (o onc element of P(B).

Lemma 2. Lel By resp. By be k x 28~ Boolean matrices whose columns are
exactly all even resp. odd columns of length k. Then P(Bg) and P(B;) are a k
out of k sccret sharing scheme with parameters m = d = 2871 qnd o = 1/2%~1.

Proof. The contrast is fulfilled, as By has exactly one column that contains only
0’s but By has none such column. Therefore, the Hamming weight of the OR
of all rows of By is 28=1 — I while 28~" for B3,. To show the sccurity consider
restrictions of By and 3 to &k — 1 rows. Both of them contain the same columns,
namely all Boolean vectors of length & — 1, as there is exactly one possibility to
extend such a column to an even resp. odd column of length k at a fixed position.
This means that the restrictions of P(53y) and P(By) to any ¢ < k rows contain
the same matrices with the same frequencics, which ensures the security. a
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Using a result of [2], it [ollows that in every & out of n scheme « is at most
1/28=1 and m at least 257", showing the optimality of this construction. Naor
and Shamir also have presented a basic construction principle for & oul of n
schemes with m = [ - 2%~ based on a set H of { functions from {1,...,n} to
{1,..., k} with special properties. Choosing H as the set of all functions from
{1,...,n} to {1,... k} guarantees a k out of n scheme with m = g™ . 2% 1.
Using Galois ficlds 1o construct H they claim m = n*.2¥=1 although this seems
to be only a lower bound. Using small-bias probability spaces to construct H
results in m = log(n) - 200 1°8(¥)) (see [1]). Apart from the complicateness of
construction the resulting schemes arc very large (for example, the resulting 4
out of 7 scheme has an m parameter of at lcast 19208 using Galois fields and 2°
using a small-bias probability space given in {3]).

4 A New Construction Principle for k out of n Schemes

‘The new construction principle is based on two rather simple results:

Lemma 3. Let By and By be two DBoolean matrices with m columns so lhat
P(Bgy) and P(B3)) are a k out of k secret sharing scheme with relative confrast
. Then for any Boolean matriz R with k rows and | columns the multi-sets
P([BoR]) and P([B1R]) are a k out of k secrel sharing scheme with relative
contrast a - m/f(m + 1) ([BoR?] is the concatenation of By and R).

Proof. The contrast of the new structure follows directly from the contrast of
the old, as the added Hamming weight is the same for matrices of both multi-
sets. Analogously, as every vestriction of [BoR] to ¢ < k rows contains the same
columns as the restriction of [ByR] to these rows, the security is guaranteed,
too. g

Lemma4. Let By and By, be two n x m DBoolean matrices so that for cach
subsel {i1,...,ix} T H{1,...,n} the mulle-sets of the resirictions of the elements
of P(Bg) and P(B1) to the rows iy, ... i are a k out of k secret sharing scheme
with constant parameters d and «. Then P(Bg) and P(B1) are a k out of n
secrel sharing scheme with the same relative contrast .

Proof. The contrast is ensured, as the restrictions to k& rows form a k out of &k
scheme and the parameters d and « are the same for all {i1, ..., }. The security
only checks restrictions of P(By) and P(B;) to ¢ < k rows which must contain
the same matrices with the same frequencies, because these ¢ rows belong to a

n-—

k out ol k scheme (strictly speaking to (k_g) schemes). O

Putting these results together with Lemma 2, one obtains:

Lemmab. Let By and By be twe n x m Boclean matrices so that there exist
m — 287 column vectors vy, ... Upm_or—1 € {0, 1}* with the following property:
for every {iy,.. . ix} C {l,...,n} the restriction of By (resp. B1) to the rows
,. .., 1 contains every even (resp. odd)} column of length k exactly once and all
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columns vy, ..., vy_ax—1. Then P(By) and P(By) are a k out of n secret sharing
scheme with relative contrast 1/m.

Proof. Lemmata 2 and 3 yield that for all {i;,... 4} C {1,..., n} the multi-

sets of the restrictions of P([3y) and P(H;1) to the rows i1,...,4 are a k out
of k scheme with relative contrast 1/m. As the columns vy, ..., v, _ax-1 are the
same for all restrictions, the parameters d and « are the same, too so Lemma 4
can be applied, stating that P(B(,) and P(5) are a k out ofn scheme. O

Hence, to construct a & out of n scheme one just has to construct twao n x m
Boolean matrices By and B; with the property that their restrictions to k rows
contain the same columns in addition to all even resp. odd columns. The number
of columns of both matrices should be as small as possible, as the relative contrast
is exactly [/m. The main idea for construction is o start with an empty matrix
(which has no columns) and, for various ¢ € {0,...,n}, add all (") columns
which have exactly ¢ 1's. Because of the symmetry of this construction with
respect to rows, all restrictions of such a matrix to k rows contain the same
columns. And one can exactly determine which columns they contain:

Lemma6. Forqg € {0,....,n} lel B be an nx (") Boolean matriz which contains
every column with q 1's e:t,a(,fly once. Then every restriction of B to k rows
{with k < n) contains every column with p 1’s exactly (11~P) -times (where p €

{max(0, ¢~ {n—k}),.. .. min(q, k)}).

Proof. A column of length © with exactly p 1's can be expanded to a column of
length n with exactly ¢ 1's on (’;_ J) different ways if the positions of expansion
are fixed. Hence, the restriction of B contains cvery column with p 1’s exactly
(qu) -times. In order to let this value be greater than zero p must not be less
than ¢ — (n — k), because otherwise the whole column contains too many 1’s
to have a restriction containing only p 1's. As p cannot be negative and greater
than ¢ or k, it has to be hetween max(0,q — (n — k)) and min(q, k). O

Lemma 6 shows a possibility to expand a matrix, if you want to add to all
its restrictions (restrictions always stand for restrictions to & rows, if not stated
otherwise) every column with p 1's exactly once: just add all columns with ¢
=porqg=p+n—4k I's to the entirc matrix, because in these cascs (” k) is
one. Choosing ¢ = p when p < k —pand ¢ = p+ n — k otherwise guaranteeq
that the smaller number of columns is added. So a subroutine ADD(p, B) can
be formulated, which adds to each restriction of B every column with p 1’s by
adding columns to the entire matrix:

ADD(p,B)
L. ifp <k —p, add every column with ¢ = p 1’s to 3.
2. Ifp >k —p, add every column with g = p+n — & 1’s to B.

This subroutine makes it easy to construct matrices By resp. B; whose
restrictions always contain cvery even resp. odd column. But besides these
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colutnns, every restriction of By and 3y can contain remaining columns (which
are the same for all restrictions of one matrix because of the construction prin-
ciple). To be appropriate for a & out of n scheme these remaining columns have
to be the same for By and B; (sec Lemma 5). So the remaining columns of
every restriction of Bq which are not remaining columns of every restriction of
By, called the rest of By, have to be added to every restriction of B; and vice
versa. In most cases these added columns will create new rests which cause new
columuns to be added.

The criterion for choosing ¢ in ADD(p, B) guarantees thal this process stops
after finitely many steps: If p < k — p, every column with ¢ = p 1’s is added,
otherwise every column with ¢ = p+n — k& 1's. Both decisions add each column
with p 1’s to cvery restriction by adding all columns with ¢ 1’s to the entire
matrix. In the first case the new remaining columns of every restriction have less
than p 1’s and in the second more than p 1’s (sce Lemma 6). So the adjustment
of these remaining columns is done by adding columns with even less resp. more
I’s to the entire matrix. As the column which contains only 0’s resp. 1’s creates
no new remaining columns in the restrictions, the adjustment uses at most [k /2]
steps. So the algorithm has the following form:

Algorithm 7.

1. For all even p € {0,. .., kY, add every column with p [’s to each restriction
of By by calling ADD(p, By).

2. For all odd p € {0,... k}, add cvery column with p 1’s lo each restriction
of By by calling ADD(p, By).

3. Whale the rests of By and By are not empty:
(0) Add to By all columns adjusting the rest of B by calling ADD.
(b) Add to B, all columns adjusling lhe rest of By by calling ADD.

For & = 4 and n = 5 the algorithm works as follows: in the first step every
column with zero, two and five 1’s is added to By and in the second step every
column with one and four 1's to By. Now every restriction of By resp. By contains
every even resp. odd column and besides that every column with one resp. zero
and four 1’s. So in the first run of step 3 every column with zero and five 175 is
added to By and every column with one 1 to By, Now every restriction of By
contains every cven column and every column with zero, one and four 1’s, while
every restriction of B; contains every odd column and every column with one
and four 1’s and two columns without 1’s. To adjust the rests in the second run
of step 3 a column without 1’s is added to By, resulting in matrices which fulfill
the conditions of Lemnma 3.

This algorithm can be implemented very easily and althongh the parameter
m of the resulting schemes is hard to describe by a formula depending on £ and
n, 1ts results are far better than those of Naor and Shamir for realistic values of
k and n with & < n. For example, it generates a 4 out of 7 scheme with m =
35 in comparison to at least 19208 and 2*° when using the former methods. An
overview for k& < n < 10 1s given by Table 1 in the appendix.
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'The following two results are rather simple, but nevertheless important:

Lemma8. If Cy and Cy are a k out of n scheme with |Cy| #
of n scheme C} and Cf wih |C],
parameters d, o and m.

C1l|, a new k out
=[] can be constructed, which has the same

Proof. Let r be the least common multiple of |Cy| and |Cy] and define C{ (resp.
(1) as the union of r/|Cy| (resp. r/|C1]) copies of Cy (resp. C1). Then both
multi-sets contain v elements and neither the contrast nor the security of the
new scheme is lost. c

Lemma 9. etk > k' > 2 and Cy and C| be a k out of k scheme with {Cy| = |C}|
and parameters d, o and m. For a subset {iy, ... ip_p} C{1,...,k} delete in
every matriz of (g (resp. £')) every row iy, ... iy_po and every column of this
matriz which has a 1 in one of these rows. If the multi-set Co(i) (resp. C1(7))
contains all of these new malrices with ¢ columns (i € {1,...,m}), then all non-
empty multi-sets Co(i) and C1(i) are a k' out of k' scheme with relative contrast

a-m/fi and |Co(2)] = |C1(1)].

Proof. 'The Hamming weight of the OR of ¥’ rows of an element of Cy(7) (resp.
Ci(2)) 1s at most d — o - — (m — i) (resp. at leasi d — (m — 7). Therefore, the
new relative contrast is o - m/i.

To show the security of Cy{é) and C'\(4) consider ¢ < &' rows ji,...,74 of
an element of Cpy(z), which are derived from ¢ rows of an element of Cp. By
adding the rows 71, ...,7._¢ the total number of rows is at most £ — 1. Hence,
the restriction of this clement of Cy to these & — &' + ¢ rows has an equivalent
in the restriction of (' to these rows. As the frequencies of the elements do not
change, the restrictions of Cy(2) and (1) to fixed g < k' rows are the same.
Therefore, the sccurity is guaranteed. a

If Cy and O are a & out of n scheme, let B(Cy) (resp. B(C1)) be the con-
catenation of all matrices of Cy (resp. (7)) in arbitrary order.

Theorem 10. If Cy and 'y are a k oul of k scheme with r .= |Co| = |C1], then
B(Cy) (resp. B({'1)) contains every even (resp. odd) column of length k at lcast
7 - - m-times.

Proof. First of all, cvery clement of €'y has to contain o-m columns with zcro 1's,
as otherwige the contrast cannot be fulfilled. For every row ¢ and every matrix
of C'; there have to be « - m columns in which the matrix has its only 1 in row
7, because otherwise the Hamming weight of the OR of all the other rows would
not, increase when adding the ¢th row. Butl this must happen, as the Hamming
weight of all rows has to be at least d and of £ — | rows at most d — o - m.
Furthermore, if & is even, B(Cp) has to contain 7 - « - m columns filled with
U’s and, if k is odd, B(() has to contain r - & - m such columns. To show this
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we define sets Rf C {I,...,m}x{1,.. rtfort € {0,1}andic {l,...,k} by
(7,1) € R, if and only if the [-th matrix of C;, has a 1 in the section of its i-th
row and j-th column. The Hamming weight of the OR of all & rows of B(C}) is
now equal to |74 U ... U RL]. The principle of inclusion-exclusion says:

‘)\.
(REU. U R =D IR =Y RN R+ + (=DM [Ri . N RE.
1=1 1<j

As the restrictions of B(CY%) and B(C4) Lo less than k rows contain the same
columns, the sections of less than k sets have to be of the same sizge for ¢ = 0
andt =1, 1.e.:

IRiU. URL RV URY = (=D PRI nREH— (=D RN N R

As the size of the union of all scts is the Hamming weight of the OR of all
rows of B(C}), their difference has to be at least - « - m. Hence, if & is even,
B(Cy) has to contain r -« -m columns filled with 1’s and, if £ is odd, B(C") has
to contain 7 - o - m columns filled with 1’s. Using Lemma 9 by deleting the rows
which correspond to the 0’s, it follows that B(CYy) (resp. B(C})) contains every
even (resp. odd) column at least » -« - mn-limes. O

As every restriction of a k out of n scheme 1o k rows is a k& out of k scheme
and obscrving Lemma 8, one can easily conclude:

Corollary 11. Let (& and C'y be a k out of n scheme and C§ (resp. C1) be a
restriction of Cy (resp. Cy ) to k rows. Then B(C)) (resp. B(C1)) contains cvery
even (resp. odd) column of length k at least |Cy| - - m-times {resp. |Ch] - - m-
lomes).

Analogously, for & out of n schemes P(Bg) and P(By) every element of a
restriction of P(Bg) (resp. P(Bj)) to k rows contains every even (resp. odd)
column at least o - m-times.

6 New Bounds on the Values of &« and m

If 'y and Cy arc a k out of n scheme with r := |Cy| = |C)], Corollary 11 can
be applied by counting the restrictions of B(Cy) and B((1) to k rows and the
columns with ¢ 1's i these restrictions: there are (2) possible restrictions of
B(Ch) (resp. B{('1)) and the number of columns with ¢ 1’s has to be at lcast
({1) -7 -m, when g 1s even (resp. odd). ‘Therefore, the sum over all restrictions
of B(Cy) (resp. B(C1)) to k rows of the number of different columns with ¢ 1’s
in this restriction has to be at least (7)) - (2) -7 @ m, when ¢ is even (resp. odd).

A column with exactly i 1’s can be restricted in (f:;) : (;) different ways such

that the restricted column contains ¢ 1’s: there are (2’:;) ways to choose the 0’s
i
. q . . .
this number is zero. Letting m! be the number of columns in B(Cy) with exactly

and (°) ways to choose the Us. If 7 is less than ¢ or if i is greater than n —k + ¢,
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i 1’s, one can compute the sum over all columns of the number of restrictions to
k rows such that the actual column has exactly ¢ 1’s in these restrictions:

n—k+q . .

Z (u ——z) - (1) o,

= k—gq q

As the sum over all columns of the number of different restrictions is equal

to the sum over all restrictions of the number of different columns, the above
sum has to be at least (;[) ‘ (g) -7 - -m for all even ¢, if t = 0, and for all odd
q, if t = 1. Because restrictions of B(Cy) and B(Cy) to fixed k£ — 1 rows contain
the same columns, the above sum has the same value for t = 0 and t = 1 when
replacing & by & — 1. As the number r - m of columns of B(() is the sum of
all m! over i € {0,...,n}, a lower bound on r -m is given by the minimum of a
lincar integer program. By allowing real values for m! all values can be divided
by - m resp. r, resulting in the following bounds on the parameters o and m
of k out of n schemes (which arc valid for schemes with |Co| # |C1] because of
Lemina 8):

Theorem 12. If Cy and (' arc a k out of n secret sharing scheme, o ts at most
L/MIN(k,n) and m 1s at lcast [MIN(k,n)], where MIN(k,n) is the mimimal

value of the objective function of the following linear programming problem.:

Mintmize m§ + ... + m), under the constraints:
0 .| 1
my + .o+ 7”‘91 =my+ ...+ m,

0 0.1 ol
G, ey My Mg, -ty 2 0

For all even ¢ €40,...,k}: Z;’:—qk“ (f:;) : (;) -md > () - (1;)
For all odd q € {0.... .k} - 02 (2 - () oml > (1) ()

Forallqg e {0,....k—1}: Z;’;f“” (L'_’qu) : (;) (md —~m{)=0

As MIN(k, k) is exactly 28=1, the bounds of Naor and Shamir also can be
concluded [rom this theorem. An overview of [MIN(k,n)] for k < n < 10 is
given in the appendix. Furthermore, it is possible to construct linear integer
programming problems with 27! + (’]Z) + | variables, whose solutions describe
optimal k& out of n schemes P(By) and P(B;) with respect to m.

7 S-Extended n out of n Schemes

The so far used model of visual cryptography is the visual variant of the secret
sharing problem. The only given information here is the information of the orig-
inal picture; it is not possible to construct the » transparencies in such a way
that they reveal picturcs, too. Now an extended model is introduced offering
the possibility to give the stack of each combination of the n transparencies a
different information without any hints of the resulting pictures when stacking
further transparencies. A subset S C P({1,...,n})\ {0}, 1.e. a set of non-empty
subsets of {1,...,n}, defines which combinations shall reveal a picture, i.e. the
stack of the transparencies 7q,.. ., i, reveals one, if and only if {iq1,..., iq} €5s.
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Again the construction of the n transparencies will be done pixel-wise, as-
suming that all pictures have the same resolution in pixels. To construct the
transparencies for cach pixel a matrix will be chosen of an appropriate multi-set,
where this matrix determines the subpixels of the n transparencies. As there
are |S| combinations of the transparencies to consider, there are 2151 different
combinations of black and white pixels. To handle these 2!5! combinations of
pixels one has to deal with 2151 different multi-sets C7 of matrices. They are
indexed by subsets T' C S, where the meaning of an index T is the following:
for every element {i;,...,i,} €T the stack of the transparencies iy, ..., 1, shall
appear black, while the other stacks shall appear white. So the Hamnming weight
of the OR of the rows i;,...,4; of a matrix B € CT has to be greater for
{ir, ... ig} € T than for {iy,... 7} ¢ T.

To guarantee the security one has to demand that the restrictions of the sets
C7 to the rows iy,. . ., iy (with ¢ < n) have to contain the same clements with
the same frequencies for all T C S which are equal when restricted to subsets of
{iy....,i,}. If T' contains a subset of {#;,...,4,} which 77 does not, the stack
of the corresponding transparencies has to appear black when using C7 and
white when using "' so the restrictions of €7 and " cannot contain the
same elements. But if 7" and 77 contain the same subsets of {iy,..., iz}, the
colour of the stack of every subset of the transparencies iy, ..., 4, is independent
of using T or ™ So the equality of the restrictions of T and 7 1o these
rows guarantees that no onc can determine whether the subpixels come [rom a
matrix of CT or of (7"

Given these conditions the same algorithm to generate the transparencics can
be used: pixel for pixel a matrix is chosen independcntly and equally distributed
from the multi-set €7 where 7' matches the combination of the black pixels
and this n x m matrix determines the mn subpixels of the n transparcncies.
When given less than n transparencies even with infinite computing power one
cannot gain information about any picture that reveals when stacking further
transparencies. As these schemes make it possible to give only the combinations
of transparencies represented by S an information, they are called S-extended n
ont of n schemes:

Definition13. Let S be a subset of P({1....,n})\ {0}. Multi-sets C* (for all
T C S) of n x m Boolean matrices are called an S-extended n out of n secret
sharing scheme, if the {ollowing three properties are met:

L. For all {iy,...,1,} € 9, there is an d({i1,...,1,}) € INT such that the
Hamming weight of the OR of the rows iy, ..., 7, is at least d({i1,..., 1))
for all matrices of C* where {#1,...,4,} € T

2. For all {i1,...,4,} € S, there is an «({iy,...,i;}) € IRY such that the
Hamming weight of the OR of the rows 41,...,i, is at most d({¢1,...,7,}) —

a({t1,...,i,}) - for all matrices of C7" where {i;,...,i,} ¢ T.
3. For all {iy,....i,} C {1,... n}, the restrictions of the multi-sets CT (o the
TOws iy, ...,4, contain the same elements with the same frequencies for all

T which are the same when restricted to subscts of {i1,...,4,}.
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Again the first two conditions guarantee the contrast of the scheme while the
third one ensures the security. Naor and Shamir gave an example of an {{1}, {2},
{1,2}}-extended 2 out of 2 scheme (see [1}):

W p 01O qiay _ pf0 101
C"“[lom)‘( =P

: _
cti o p PO ey p([] 10 1})

100 1] LO1o
i JT0 101 . . 0101
2 .~ p Hehine)l - p
¢ '““_1101])*( | ]([1110)
‘ (110 1] o1 J1r1o1
HOL2N . p RN
¢ =P o ¢ 'P([lllo})
This was the previously only known real extended scheme (when choosing
S ={{1,...,n}} an S-extended n out of n scheme is equivalent to a “normal”
n out of n scheme). Now a construction principle for S-extended n out of n
schemes 7 = P(BT) is presented, using the ¢ out of ¢ schemes P(B{) and

P(BY) for all ¢ € {1,....n} which are obtained by Lemma 2 (where By := [0]
and B} = [1]).

For any {i1.... 4} € S and 1 € {0,1} the Boolean matrix By(i1,...,4,) is
defined as follows: it has n rows and its i,-th row is the p-th row of B} (for all
pe{l,...,¢}) while all other rows consist only of 1’s. As B has 2¢7! columns,

Bi(#y, ..., i,) has 2971 columns, too. For any 7" C S and {iy, .. i) € S, the
matrix B(T, {i1,...,1,}) is defined as:
e v [ Baliy, .., i) il {dn,. i, ér
‘B(I!{“’H."q}) o { H](Y‘],...‘qu) 3if{7‘lu"')iq} GT
For fixed n and 5 € P({1,...,n})\ {0} and any T C S the Boolean ma-

trix B” is defined as the concatenation of the wmatrices B(7', {i1,...,4,}) for all
{i1,..., 44} € S (in arbitrary order). Therefore, the number of columns of BT is
Z:;:l 2¢7! . b, where b, is the number of elements of S which contain exactly ¢
elements.

The rather technical proof of the correctness of this construction is omitted
to clarify the idea of this principle. The new matrices B consist of |S| matrices
B(T,{i1,...,%4}), which contain the matrices B] cxpanded by n — q rows con-
sisting only of 1’s. Such a matrix Is responsible for the stack of the transparencies
1, -..,%; and as the appropriate t is chosen dependent on ') the contrast of the
stack of these transparencies is guaranteed. The security of the extended scheme
follows directly from the security of the old ones.

To give a concrete example two matrices BT of the {{1},{2},{3},{1,2},
{1,3},{2,3},{1,2, 3} }-extended 3 out of 3 scheme will be constructed, using the
2 out of 2 and 3 out of 3 scheme given by Lemma 2 (the only purpose of the
lines is a better general view of the construction):

0
0
1

1
1
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— —

1
L
1
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Another example is given by Naor and Shamir’s {{1}, {2}, {1, 2} }-oxtended
2 out of 2 scheme, as the above principle constructs the given multi-sets of
matrices.
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Appendix

To elucidate the good results of the algorithm presented in Section 4 a table of
the parameter m of the k out of n schemes which were computed by the algo-
rithm follows. As one can easily show that columns of length n contained by both
matrices By and 3y can be deleted, this improvement has been added to the al-
gorithm. So this table shows slightly better results as a concrete implementation
of the algorithm iu Section 4 would do. In parentheses the values [MIN (&, n)]
according to Theorem 12 are given for comparison (which are printed in italics,
if MIN(k,n) is nointeger). As the relative contrast of the schemes is exactly

K\n| 2 3 4 5 6 7 8 9 |
22(2) 3 4(3) 50 64 T sH 9@ 10
3] - 4(4) 6(6) 8&8(6) 10(7) 12(7) 14(7) 16 (7) 18 (8)
4| - - 8(8) 15 (13) 24 (14) 35 (14) 48 (15 63 (15) 80 (15)
50 - - - 16 (16) 30 (25) 48 (27) 70 (30) 96 (30) 126 (31)
6] - - - - 32(32) T0(53) 128 (59) 210 (61) 320 (62)
T - - - - - 61 (64) 140 (105) 256 (117) 420 ([21)
& - - - - - - 128 (128) no (217) 640 (238)
9] - - : - - - - 56 (256) 630 (434)
| 10| - : - . - - - - 512 (512)

Table 1. The parameter m of the resulting & out of n schemes (and [MIN(k,n)}).

1/m, this table also gives information ahout the quality of the corresponding
solution of the secret sharing problem. As 1/|MIN(k,n)| is an npper bound on
«, an overview of the best possible relative contrast is given, too.

The next three pages give an example of an {{1, 2}, {1,3}, {2, 3}}-extended
3 out of 3 scheme: when copied on transparencies and stacked carelully each
combination of two transparencies reveals a different picture.
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