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Abstract. N a o r  and Shamir ([l]) tlrfinc:d the hasic problcni of visual 
crypt,ography by a visual variant of the k UUI, o r  n secret sharing problem: 
how (:im an original picture I)(: c:ricoded by 12 transparencies so t,hat less 
t,han k of t,hem give no informaiion about the original, hut by stacking 
k of t,hem the original can be seen'! T h r y  described a solntion to  this 
problem by a st,ruct,nrc ci~llecl k out of 'n srcrvt. sharing schemc whose 
piiranieters direct,lg corrcxpond to qnalit,y and usability of the solution. 
In t,his pa.pc:r i~ new principle of const.riict,ion for such schemes is presenkd 
which is easy t,o apply and in most cases gives much better results than 
the former principlcs. N e w  bounds on relevant parameters of I;  out of 
11, scliernc:~ are developed, t,oo. Furthermore, an extc:rision of the basic 
problvrn is introduced a.nd solvcd in which every combination of the 
transparcncics can cont,airi indepcndcrit. inforinat,ion. 
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1 Introduction 

Many crypt,ographic ~rict~liocls encrypt  infbrrnatiori represerikd a.s niimbers by 
using one-way [unctions 'I ' l l? values of the uscd one-way fiirict,ion represent t h e  
encryptetl information and  t80 decrypt this information t h e  original numbers  
have to br computed. Wit,liout, a secret, key t,liis c.omput8atjion should require an 
eiiourrrioiis amoiint  of tsiiiie t,o giiarant,ee the security of t h e  m e t h o d .  But even 
when t h e  secret key is kiiown in most cascs t,he cornputatmion of t h e  original 
infor inat ion is very t,eclioiis, if riot impossible, without comput,ers. 

In visual crypt,ogra,phy w h i c h  was introduced by Naor and Shamir  (sce [ I ] )  we 
arc looking for ways t,o ciicrypt, pictiires, i .v. iiiforina.t,ioii which ca.n be perceived 
directly hy tlir hiiman visual systcm. For msier  formaliza.tmion we assume that, 
t h e  pic,t,iires a re  black-antl-wliit,c and rastereci so t,hat, t,hey corisist of a finite sct. 
of pixels wliicli are citl1c.r hlnck or white. The encoded iriforrnation should have 
t h e  form of 11 rast,cvd hl;ick-aritl-whit~c pict,ures. To decodc the information it is 
riecessa.ry t,o have k picliires, print, t,heiii on transparencies a n d  stack t h c m .  T h e n  
the original pictailre s l in l l  be recognizahlc. 'r'herefore, ciicoded iiiforrriatiori c a n  
be dccorlrtl s imply by st8ackiiig X: tmra.nspnrencies, i .c .  wi thout  any  computa t ions .  
B u t  less t,liari k pict8urrs shall give 110 informat,ioii a b o u t  t,hc original p ic tur r  
even to a n  iiifinit.ely pow>rfirl crypt.analyst,. N a u r  and Shamir  have described 
th i s  problem \ )y  a st8rucl , i i r i2 c.alltd k oi i l  of 71 svcrrt. sliaririg scheme. Finding 
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such a scheme tJirrc.t.ly resiilt,s in a solution for the k out of I L  secret, sharing 
problem whose quillit8y arid usability correspond t80 different, parairieters of the 
schcme. 

In this paper a iit'w cotistruction principle for srcrct sharing schemes is given 
whose resulting ~chciiics arc in most, cases iniicli better thari the previously Imown 
scherncs, directly rcsult,ing in bet8ter soliit,ions for the secret sharing problem. 
New st,riictiiral resnlt,s a.hont k out of n schemes lead to new bounds on the 
size and quality of scliem~s which are depeiideni, OII k and n (the best formcrly 
known bonnds were dependent on k only) .  At thc end of t,his paper an  ext,eiisioii 
of the original problem is introduced: how can n transparencies be created so 
that c x h  combiiia.t,ion of t,liem resiilt,~ iii a different pic.turc? Soliit,ions for t8his 
problem which still guarantee the securily of t,lie schmie conclude this paper. 
Although thc value of visual cryptography m a y  be small in pract,ice, this papcv 
shows new iiiterestiiig possibilities to encrypt ,  inforiiiat,ioii in a very easy but, 
cotiipletely securc \my. 

2 The Basic Model 
I \  l l i e  soluliuri uf t , l i ( -  visual variant of ' t8hc  k out of n serret sharing problem rclics 
on encrypting ca.cli pixel of the origiiial pict,ure separately by rri subpixels i r i  
each transparericy. Wlien printed in closc proximity these subpixels are not seen 
separately by the hiimnn visiial system which rather averages the riumber of 

black subpixels. 'I'herefore, a black pixel of t,hc original has to be represented by 
more black su bpixcls in tmIic s h c k  of ?very X: t,ransparencies than a white original 
pixel. ' lhe  difference of t,he number of hlack subpixels clctermines the contra.st, of 
t8ht. stack of t,hc (ri111spare11cies antl  shall he as Iiigh as possible. But, the  required 
secmrity rides out t . 1 ~  iiiore obvious iiiodcl i n  which every white original pixel 
is represerited by 172 w h i k  subpixels, as in this case a black subpixel in onc 
t,ranspa.rcncy cnforccs a black original pixel. 

The  m subpixels of the 1% transparericies can be represented as a 11, x 'rri 

Boolean mat,rix 13 = [Bi3], where H;j  = 1, if arid only if thc j-t,h subpixel of 
t,he i-t,h t,ranspa.rency is black. The  greyriess of the stack of k transparencies is 
determined by t,lie Hamming weight of  t,he OR of the corresponding k rows of 
B .  To cnsurc svcririt,y origina.1 bla.ck pixels have t,o be represented by the same 
coinhinat1ions of' 111 subpixels as whit,e original pIxcls when considering less than 
X: t,ransparcmcics. For t,his gives yoii i io cliaiice of detertiiining the colour of any 
original pixel and you caiinot eve11 det8erIiiinc-. a. proba.hilit,y of an origina.1 pixel 
being black o r  whiti-. Whrn all niatriccs represeritirig black original pixels a.re 
naiued as a iiiuli,i-sc.t, (','I and  all t.lie ot#licrs w e  named as a multi-set CO,  the 
followiiig definit<iori is st,raight-forwa.rtl (see also [ I ] )  : 

Definitionl. 'Two mult8i-sc-.ts CO antl ofn x m Hoolean matrices are called a k 
out, o f  n sccrrt, sharing scheme, if t,liere art' coiist8aritjs cr 2 1 / m  and d g { 1, . . . , m} 
so thatj t,lie three following conditioris are mct: 

1 .  For any B E 
of at least t l .  

, the  O R .  of any k o f  t,Iici 7) rows of H has a Haiiirriing weight 
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2. For any H £ (7n, the OR of any k of the n rows of B has a Hamming weight
of at most d — a • m.

3. For any subset {ii,...,i<,} C {1 n} with q < k, the two multi-sets
obtained by restricting each matrix in Co resp. C\ to the rows ii,...,iq

contain the same matrices with the same frequencies.

To generate the n transparencies from the original for every pixel of the
original one simply chooses independently and equally distributed a matrix of
the multi-set Go resp. C\, depending on the colour of the pixel. The first two
conditions, called contrast, ensure that the original can be seen when any k
transparencies are stacked. The third condition, called security, ensures that less
than k transparencies give no information about the original, as the expected
value of appearances of a. restricted matrix is the same, no matter if the original
pixel is black or white. The parameter a, the relative contrast, is probably the
most important, as it determines how well k transparencies reveal the original.
The parameter m determines the number of subpixels which should be as small
as possible. Without loss of generality one can assume that C'o and C\ have the
same number r of elements (sec Lemma 8); as log(r) is the number of random
bits for each original pixel needed to generate the transparencies, r should be
as small as possible. The threshold d determines the minimal greyness of black
pixels; its value is less relevant so that one can allow it to vary depending on the
chosen k transparencies. As this relaxed condition has not led to better schemes,
it will be omitted.

3 Basic Results

Naor and Shamir ([1]) have shown how to construct, a k out of k secret, sharing
scheme whose parameter rn is as small as possible and whose parameter a is as
large as possible. For easy specification, we call a column of a Boolean matrix
with an even number of 1 's even and otherwise odd. If B is a Boolean matrix, we
say that P(B) is the multi-set of matrices obtained by permuting the columns
of B, i.e. each permutation corresponds exactly to one element of P(B).

L e m m a 2 . Lei BQ resp. Hx be k x '2k~l Boolean matrices luhose columns are
exactly all even resp. odd columns of length k. Then P(Bo) and P{Bi) are a k
out of k secret sharing .scheme with, parameters rn = d = 2k~1 and a = 1/2 .

Proof. The contrast is fulfilled, as Bo has exactly one column that contains only
O's but B\ has none such column. Therefore, the Hamming weight of the OR
of all rows of /?(] is 2k~] — 1 while 2k~] for B\. To show the security consider
restrictions of Bo and 13\ to k• — 1 rows. Both of them contain the same columns,
namely all Boolean vectors of length k — 1, as there is exactly one possibility to
extend such a column to an even resp. odd column of length k at a fixed position.
This means that the restrictions of F'(BQ) and P(B{) to any q < k rows contain
the same matrices with the same frequencies, which ensures the security. •
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Using a result, of' [2] ,  it follows t8hatm in  very k out, of n scheme cy is at most 
1/2"' m c l  ni, at, I rnst  2 k - 1 ,  showing t,hc optinlalily of this construction. Naor 
and Sharnir also have present,ed a basic coristruction principle for k oul  of ri 
schemes with 111 = 1 . 2k-1, based on a set H of 1 functions from 11,. . . , ? a }  to 
(1, . . . , k }  with special propert,ies. Choosing H as the set of all functions from 
(1 , .  . . , n }  to (1 , .  . .~ k }  guarantees a. k out of n scheme with m = k n  2 k p i .  
Using Galois fields to construct H they claim m = nk . 2k-1, although this seems 
to  be only a lower bound. Using small-bias probability spaces to construct H 
results in m = log(n) . 2 ° ( k ' o g ( k ) )  (see [l]). Apa.rt from the complicateness of 
construction the result,ing schemes a.rr very large (for example, the resulting 4 
oiit, of 7 scheme has m i  m paramet,er of a t  least 19208 using Galois fields a.nd 245 
using a small-bias probability space given in [3]). 

4 A New Construction Principle for k out of n Schemes 

' 1 % ~  ncw constroction principle is based on two rather simple results: 

Lemma3. L d  l?" and HI he t w o  l3oolean intllriccs mzth 'in co lumns  so that 
P ( B 0 )  and P(H1) are a k out  of k secret sharing scheme with relative contrast  
LN. l 'hrn,  f o r  n n y  Boolrnn inatr iz  R with k rows and 1 co lumns  the m.iilti-sets 
P([&R,]) a n d  P([BlX,]) are a !i oui of k secret sh,aring scheme  wzth relalive 
contrast a . r n / ( i n  + I )  ([Bol?] zs th,a concatenation of BU and R). 

Proo~. The contrast, o f  the new st,ructurt: follows directly from the contrast of 
t,hc old, as the i~dtlcd Hariiriiing weighi, is the same for matrices of both multi- 
setss. Analogously. as evrry restriction of [BrlR] t80 q < ,k rows contains t8he same 
coluinris a.s t81ir. rc~t~rict~iori of [ H I  R] t,o t,hese rows, the security is guarant'cccl, 
t>oo. 0 

Lemrna4. Le t  uird Bl he two 72 x Tri Boolean nra.trtces so that  f o r  e a c h  
subset { i l ,  . . . , i k )  C (1,. . . , n }  t h e  mullr-sets of th,e rcstrictroris of the elcrncnbs 
of P(B0)  and P (  B1) l o  /he roi~is i l ,  ~ ik are a k out  of k secret sharing scheme  
with constant  parameters  d a n d  a .  'l 'hen P(B0)  a n d  P ( H I )  are a k ou t  o f  n, 
s e c r e l  sharing .schcni( wzth, th,e sanic rrlalzve confrasl a .  

Proof. The coritrast. is ensured, as t,hc restrictions to  k rows forin a k out, of k 
scheme and the paramet,ers d and cr a.re the same for all { i l ,  . , . ik 1. 'I'he security 
only checks rest,rict,ions of P ( H I I )  and PjB,) tlo q < k rows which must conta.in 
t,he sa.mc matrices with t,hc same freqiiencies, because these q rows bclong t80 a. 

0 k out ol k schemr (st,rictly speaking t,o (;I,") schemes). 

Piit,t,iiig these results t,oget,lier with 1,rmma 2 ,  one obtains: 

Lernma5. Let 110 n n d  B1 be fwo TI x 771 Boolean matrices  so t ha t  fheye er is t  
ni - 2k-1 colunrn riectors ' t i l ,  , , . , w,n-2r-1 E (0, l}k wzth, th.e fol lowing property: 
f o r  every {iIl.. . , i k }  C { I , .  . ,, 7 1 )  I h c  restr ic t ion o f  Bo ( r w p .  B l )  t o  the rows 
? I  , . . . , i k  contailis ruery c w n  (resp. odd)  c-olumn 01 length k exact ly  once a n d  all  
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columns vj, . . . , wm_2*-] • Then lJ(B{j) and P{B\) are a k out of n secret sharing
scheme with relative contrast \/m.

Proof. Lemmata 2 and 3 yield that for all {M , . . ., ijt} C {1, . . ., n} the multi-
sets of the restrictions of P(Do) and P(B-[) to the rows i i , . . . ,ijt are a k out
of fc scheme with relative contrast 1 fm. As the columns v\, . . ., ^m~2k-1 a r e ^ l e

same for all restrictions, the parameters d and a are the same, too, so Lemma 4
can be applied, stating that P(BQ) and P{B\) are a k out, of n scheme. D

Hence, to construct a /r out of n scheme one just has to construct two n x m
Boolean matrices Bo and 5i with the property that their restrictions to k rows
contain the same columns in addition to all even resp. odd columns. The number
of columns of both matrices should be as small as possible, as the relative contrast
is exactly 1/m. The main idea for construction is to start with an empty matrix
(which has no columns) and, for various q <E { 0 , . . . , n } , add all (") columns
which have exactly q l's. Because of the symmetry of this construction with
respect to rows, all restrictions of such a matrix to k rows contain the same
columns. And one can exactly determine which columns they contain:

Lemma 6. For q £ {(),. . ., n} let D be an n x (") Boolean matrix which contains
every column with q I's exactly once. Then every restriction of B to k rows
(with k < n) contains every column with p 1's exactly ("~k)-times (inhere p 6
{max(0, (/ — (n —&)),... , inin(<j\ k)}).

Proof. A column of length k with exactly p l's can be expanded to a column of
length n with exactly q l's on (n~3) different, ways if the positions of expansion
are fixed. Hence, the restriction of B contains every column with p l's exactly
(™Zp)-times. In order to let this value be greater than zero p must not be less
than q — (n — k), because otherwise the whole column contains too many l's
to have a restriction containing only p l's. As p cannot be negative and greater
than q or k, it has to be between max(0,</ — (n — k)) and min(q,k). D

Lemma 6 shows a possibility to expand a matrix, if you want to add to all
its restrictions (restrictious always stand for restrictions to k rows, if not stated
otherwise) every column with p l's exactly once: just add all columns with q
= p or q = p + n — k l's to the entire matrix, because in these cases (n~ ) is
one. Choosing q — p when p < k — p and q = p -\- n — k otherwise guarantees
that the smaller number of columns is added. So a subroutine ADD(p, B) can
be formulated, which adds to each restriction of B every column with p i ' s by
adding columns to the entire matrix:

ADD(p,B)

1. Tf p < k — p., add every column with q — p 1 's to B.
1. If p 5 k — p, add every coluiiiii with q = 1 1 n = k 1 's to 13.

This subroutine makes it easy to construct matrices Ba resp. Bi whose
restrictions always contain every even resp. odd column. But, besides these
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columns, every restriction of Bo and B\ can contain remaining columns (which
are the same for all restrictions of one matrix because of the construction prin-
ciple). To be appropriate for a k out of n scheme these remaining columns have
to be the same for Bo and B\ (sec Lemma 5). So the remaining columns of
every restriction of Ba which are not remaining columns of every restriction of
B[, called the rest of BQ, have to be added to every restriction of B\ and vice
versa. In most cases these added columns will create new rests which cause new
columns to be added.

The criterion for choosing q in ADD(p, B) guarantees that this process stops
after finitely many steps: If p < k — p, every column with q = p 1 'a is added,
otherwise every column with q = p+n — k Vs. Both decisions add each column
with p 1's to every restriction by adding all columns with q l's to the entire
matrix. In the first case the new remaining columns of every restriction have less
than p l's and in (lie second more than p l's (see Lemma 6). So the adjustment
of these remaining columns is done by adding columns with even less resp. more
l's to the entire matrix. As the column which contains only O's resp. l's creates
no new remaining columns in the restrictions, the adjustment uses at most [k/2\
steps. So the algorithm has the following form:

Algor i thm 7.

1. For all even p £ {0, . . ., k}, add every column with p l's to each restriction
of Bo by calling ADD(p,B0).

2. For all odd p € {0, . . . , & } , add every column with p l's to each restriction
of By by calling ADD(p, By).

3. While the rests of Bo and B\ are not empty:

(a) Add to Bi_) all columns adjusting the rest of Bi by calling ADD.
(b) Add to H\ all columns adjusting (he rest of Bo by calling ADI).

For k = 4 and n — 5 the algorithm works as follows: in the first step every
column with zero, two and five l's is added to Bo and in the second step every
column with one and four l's to B\. Now every restriction of So resp. B\ contains
every even resp. odd column and besides that every column with one resp. zero
and four l's. So in the first run of step 3 every column with zero and five l's is
added to Bo and every column with one 1 to S i . Now every restriction of BQ
contains every even column and every column with zero, one and four l's, while
every restriction of B\ contains every odd column and every column with one
and four l's and two columns without l's. To adjust the rests in the second run
of step 3 a column without l's is added to Bo, resulting in matrices which fulfill
the conditions of Lemma 5.

This algorithm can be implemented very easily and although the parameter
m of the resulting schemes is hard to describe by a formula, depending on k and
n, its results are far better than those of Naor and Shamir for realistic values of
k and n with k < n. For example, it generates a 4 out of 7 scheme with m —
35 in comparison to at least 19208 and 245 when using the former methods. An
overview for k < n < 10 is given by Table 1 in the appendix.
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5 Structural Results

The following two results are rather simple, but nevertheless important:

L e m m a 8 . If Co and C\ are a k out of n scheme with |C'u| / \Ci\, a new k out
of n scheme C'o and C[ with |C',| = jC'JJ can be constructed, which has the same
parameters d, a and m.

Proof. Let r be the least common multiple of |C'o| and jCi| and define C'o (resp.
C[) as the union of r/|Co| (resp. r/\C\\) copies of Co (resp. C\). Then both
multi-sets contain r elements and neither the contrast nor the security of the
new scheme is lost. D

L e m m a 9. Lei, k > k' > 2 and Co and(.\ be a k out of k scheme with j Co I = |Ci
and parameters d, a and m. For a subset {? ' ] , . . . , j^-fc'} C {1 , . . . , & } delete in
every matrix of C'o (resp. C\) every row ii, • • • ,'ik-k' ar>d every column of this
matrix which has a ./ w one of these rows. Jf the, multiset CQ(I) (resp. C\(i))
contains all of these new matrices with i columns (i G {1, • • .,ni}), then all non-
empty multi-sets C'o(i) and C] (?') are a V out of k' scheme with relative contrast
a-m/i anrf|C0(i)| = K-'i (01 -

Proof. The Hamming weight, of the OR of k1 rows of an element of CQ{I) (resp.
C\{i)) is at most d — a • m — (rn — i) (resp. at least d — (rn — i)). Therefore, the
new relative contrast is a • m/i.

To show the security of C'o(i) and (J\(i) consider q < k' rows ji,-.-,jq of
an element of C'o(i), which are derived from q rows of an clement of CQ. By
adding the rows i\, . . ., //,_/;•' the total number of rows is at most k — 1. Hence,
the restriction of this element of Co to these k — k' + q rows has an equivalent
in the restriction of Ci to these rows. As the frequencies of the elements do not
change, the restrictions of Co(i) and C\(i) to fixed q < k' rows are the same.
Therefore, the security is guaranteed. •

If Co and C'i are a k out of n scheme, let D(C'o) (resp. B(C\)) be the con-
catenation of all matrices of Co (resp. C\) in arbitrary order.

Theorem 10. If Co and (\ are a k out of k scheme with r := |Co| = |Ci|, then
B(CQ) (resp. B((\)) contains every even (resp. odd) column of length k at least
r • a • m-times.

Proof. First, of all, every clement of Co has to contain a-m columns with zero l's,
as otherwise the contrast cannot be fulfilled. For every row i and every matrix
of Ci there have to be a • m columns in which the matrix has its only 1 in row
i, because otherwise the Hamming weight of the OR, of all the other rows would
not, increase when adding the fth row. But this must happen, as the Hamming
weight of all rows has to be at least d and of k — 1 rows at most d — ex • m.

Furthermore, if k is even, Z?(Co) has to contain r • a • m columns filled with
l's and, if k is odd, B(C-\ ) has to contain r • a • rn such columns. To show this



we define sets Hi c { I ~. . . ,7n) x { I , ,  , . , ? - }  for t E { U ,  I}  and i E { I , .  . . , k }  by 
( j ,  I )  E R:, if a.rid only if t,hc Lt8h inat,rix of Ct has a 1 in the sectiori of its i-t,h 
row arid j-Lh coliinin. Thp Hanirnirig weight of t,he OR of all k rows of B(Ct) is 
now equal to I I?: I J  . . . U Hi. 1 .  Thc principle of inclusiori-esclusion says: 

I: 

1 ~ 1 ,  u . . . u n:. I = C l ~ j l -  C l ~ j  n H; 1 t . . . + (-I)"+' in: n 
1 = 1  2 1 3  

As the restrictions of R(C&) and 13(Cl) t,o less than  k rows contain the same 
columns, the sec(.ioris of less than  k sct,s have t,o l x  of thc sairic sizc for -I = 0 
a n d  f. = 1, i.e.: 

In; u . . . u R; I ~~ 1 R; u . . . u R: 1 = ( -  1 l k + + '  H I  n . . . n if,; 1 - (-  1 l k t l  1 K: n . . . n R: 1 .  
As the size of (lie union of a.11 sctss is t,he Hamming weight of the OR of all 

rows of H ( C t ) ,  t,licir difference has t,o be at, least, r n nz. Hence, if k is even, 
B(C0) has to  coni,ain I' Q 171 colurrins filled with 1's and, if k is odd, B(C1) has 
tlo cont,airi r . o . 111 columns filled with 1's. 17sing Lernrna 9 by deleting the rows 
which correspond t80 t,he O's, it  follows that, H ( C : o )  (resp. B(C1)) contains every 

0 even (resp. o d d )  coliitrin at, least 1' . (Y . / i i -h i e s .  

As evcry rcst,rict,iori of a k out of n scheme 1.0 k rows is a k out of k scheme 
and observing Lritiriia 8, one c m  ea.sily concludc~: 

Corollaryll. L i t  I,',, nn.d ('1 hc n A: oiit of 11 schern,? a n d  C& (resp. C:)  be n 
r.cslr.icliorr u J C i ,  ( r r ~ q ) .  C1) t o  k rows. T'hcri B(C[l) (rcsp. B ( C ; ) )  con.tarns every  
ezieii (resp.  o d d )  r o l ~ r n r n  o,f lerrylh k a t  l m r t  lCol I IY m-t in t e s  (resp. IC1 I . Q . in- 
1 irtr  es). 

Analogously, h r  k out, of 71 sclieriies ] ' ( D o )  arid P ( B l )  every element of a 
rest,rict,ion of P(Hil)  (resp. P ( H 1 ) )  t o  1. rows contains every even (resp. odd)  
coluiiiri at least, (I . in-t,irnes. 

6 New Bounds on the Values of a and m 

If C'o and t i r ~  ;I k o u t  of 11. schcnic. wit,Ii r := lCnl = lL'll' Corolla.ry 1 1  can 
bc applied by counting t,he rcTst,rict,ioiis of' B(CU)  aiid U(C7,) tn k rows arid t8hp  
colniiiiis with (1 1's in t,liese rest.rict,ions: t,tiere m e  (;) possiblc rcstrictions of 
B(C:o) (resp. [ I ( (  '1  ) )  and t h e  n1iinhcr of columns with q 1's has Lo he  at, least, 
(:) '1- N .  m ,  wlicii q is eveii (resp. o d d ) .  'rlierefore, the sum over a11 rcstrictions 
of D(C0) (resp. H ( C , ) )  t,o k rows of (,lie number of different columns with q 1's 
in this restrict,ioii has t,o he at, least, ( i )  ( I : )  . r a m, when q is even (resp. odd) .  

A colurnri wit>li exactsly i 1's can IIO restrict,ed in (PI:) . (i') different ways such 
t,iia,t> thc  rcstrictetl column c,ont,a.iiis p 1's: t,iicrc arc (TI;) ways t,o clioosc the  0's 

aiid (:) ways t,o choose t,hc 1's. If i is less than q or if i is greater than 72 - k + y, 

t,liis number is zi 'ro. T,et,t,ing nit he Lhe tiuriiher o f  c,olurnns i n  H(Ct) with exac.tly 

Y 
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i l 's, one c i m  compute (,lie siiiii over all coluin~is of t,he number of restrictions to 
k rows such that, t,he a.ct,\i;+l colurriri has exactly q 1's in t,hese restrictions: 

As the  s u m  over all coluiiins of t,he niintber of different restrictions is equal 
t o  the  sum over all restrictions of t,he iiurnher of different columns, the above 
s u m  has tmo be at, least ( i )  (i) . r .  LY . nr for a.ll even q ,  if t = 0, and for all odd 
q ,  if t = 1. Because restricl.ions of H(Co) and B(C1 ) to fixed k - 1 rows contain 
the  same columns, tlie almvp siiiii 1ia.s the same value for t = 0 and t = 1 when 
replacing k by k - 1 .  As the nuiiiher r . of columns of B ( C I )  is the sum of 
all ,mt over i E { ( I ,  . . . , n } ,  a lower l ,ound on T ,177 is given by tlie minimum of a 
1inea.r integer pr0gra.m. Hy allowing real values for rnf all values can be divided 
by 'r . 7 r ~ .  rcsp. r ,  resultiiig in t,he followirig bounds OII the parameters CY and nz 
of k out of 71. scliemcs (wliich arc valid for scherncs with ICnl # lCll beca.iise of 
Lemma 8): 

Theorem 12. l f  Cf0 cr,nd ( U R  a k oirf of ri  sccrct sharing scheme, CY i s  at most  
l / h / l I N ( k ,  n )  and rn 2s ( [ I  l e a s t  [,A.! I N ( k ,  n ) ] ,  1 u h . m  M I N ( k ,  n)  zs t he  mzninzal 
va1u.e vj t h e  objective Jurrction of th,c Jolloiuirrg linear programming problem: 

Mzniniiz 771,: + . . . + n~:, under l h c  con,straints: 
m): + . . . + rrr: = 771: + . . . + n ~ : ~  

? t # ,  . , . , ??I ; ,  m,;,, . . . , m,1, 2 0 
Zor. a l l  e i i e n  q E ( 0 , .  . . , k.1 : ( k ~ q )  . (6) my 2 (2j . (i) 
For al l  o[lcl 4 E ( 0 . .  . . li.1 : ,yi:+q (:I:) . (i) n?,: 2 (!) (tj 

12 - k + l  +y ( k z ~ ~ q )  . (;) (774 '  - v;) = o Fo7 c t l l q  E ( 0 , .  . . k - 1 )  : C1=() 

7 1 - k + q  71 i 

As M J / V ( k ,  k )  is cxact,ly 2k-1,  t,he bounds of Naor and Shamir also can be 
concluded from this thporern. An overview of [ M l N ( k ,  n)] for k 5 n 5 10 is 
given in the appendix. Furt,hcrmore, it. is possible to construct linear integer 
programming problems wit,li 2n+' + (T) + 1 variables, whose solutions describe 
optimal k out, of 'n schenics P (  Ho)  a.nd I'(B1 ) wit11 respect, to 111. 

7 S-Extended n out of n Schemes 

The  so far  uscd model of visual crypt,ograp]iy i s  t,lie visual variant of the secret' 
sharing pmblem. The oiily given iriEorma.t,ioii here is t,he information of the orig- 
inal picture; it8 is not possible t,o construct the 7) t,ransparcncies in such a way 
that, they reveal pic.turcs, too. Now an cxtmded model is introduced offering 
the possibility to give t h c  st.aclc of each combinatiori of t,he n transparencies a 
different, information withoiit any liints of the resulting pict,ures when stacking 
further hmsparencies.  A subset S 5 P ( {  1 . .  , . , n } )  \ {@}, i.e. a set of non-empty 
subsets of { 1 ,  . . . , l a } ,  defines which combiiiations shall reveal a picture, i.e. t,he 
stack of thc transparencies i ,  . . . . i ,  rvvc-als one, i f  a.nd only if {;I, . . . , i q }  E S. 
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Again the construction of the n t,ransparencies will lie done pixel-wise, as- 
suming tha t  all pict'nres have tmhe same resolut,ion in pixels. To coristruct lhe 
t,ransparencies foor cacli pixel a matrix will I i c  chosen of an  q p r o p r i a t e  multi-set., 
where this rnat,rix dcterrniiies t,hc subpixels of the TL transparcncies. As there 
are IS( rombinalions of the  transparencies to consiclcr, there are 21'1 differcnt 
combinations of black and white pixels. To liaridle t,liesc 21sl combinations of 
pixels one has t.o dcal with 21'1 different. multi-sets CT of matrices. They are 
indexcd by s i ibs~t~s T C 5') where the meaning of an index T is the following: 
for every element. { i ,  . . . , i q )  E 'I' t8hc s h c k  of the t,ransparencies 2 1 ,  . . . , i q  sha l l  
a.ppear black, wliile (,he ot,licr stacks shall appear whit,e. So the Hamming weight 
of t.hc OR, of t , h p  rows i l ,  . . . , i ,  of a rnat,rix B E c" has to be greater for 

To g1iarant)c.r. tlic: seci~ri t~y one has to dcniand that t8hc rcstriclions of the sets 
CT t,o t8he rows i l ~  . . . , i, (with y < n )  have to  contain the sa.me clements with 
Ihe saiiic freyur:ncir.s f(or all 7~'  ,S which are e ~ p ; t l  when rest,ricted t,o suhset~s of 
{ i l , .  . . , i 4 } .  If 7 c.ont,nins a subset, of' { i l  ~, . . , i , }  which T' does not,  the stack 
of t>hc corresponding t~raiisparciicies has t,o appear black when using CT and 
wliit,e whcn using {,''/' so the restrictmioils of iJT a.nd C"'" cannot, contain t,he 
smnr eleinent,s. But i f  T a n d  T' contaii i  t,he same subsets o f  { i i ,  . . . , iq}! the 
c.olour of the stack of every subset, of thc transparencies i l ,  . . . , i ,  is indepeiitlent, 
of iisiiig or c ' ~ ' .  so t81ir equality o f  t,he restrictions of c ' ~  a n d  c'" tn t8iiese 
rows guarantees t.hil(, no onr can deterrninc wtiet,lier the siihpixels coriie from a 
inat.rix of C~ or of  ( T' . 

Civpri  these coiitliiiotrs tlie same algorit.lim t,o ppierate t i c  i.tansparcncic-s can 
1-w iiscti: pixel for pixcI i t  ma.t.rix is c,lioseii independcnt81y and equally distmribiitcd 
froin the mult,i-sel. C7' whcre T mnt,chcs t,he combination of the black pixels 
and  this n x t 71  inat.rix deterniiries t,he r n  subpixels of the ?J t,ranspa.rcncics. 
When giveri less t81ran 72 transparencies even with infinite computing power one 
carinot, gain iriforiiiat,ion about any pictiire that, reveals when stacking furt,Eier 
t<ransparencies. As t h e  schemes make i t  possible to  give only the combinations 
of transparencies represeiit,cd by S an information, they are called 5'-extended n, 
out of 71 schemes: 

DefinitioIi 13. I,vt8 ,S bc a subset, of T (  { I .  . . . ~ rt } )  \ { 0) .  l\.lulti-sei,s C1' (for all 
T 2 S )  of n, x 171 13ooIean matrices arc called an S-extjendcd ri out of n secret 
sharing scliemr., if tmhc following t,hree properties are met: 

{ i l , .  . . , i q )  E T t>han for { i l , .  . . , i q }  @ 7 .  

1. For all ( 2 1  ~. . . ~ i,,} E ,$, there is ;in d ( ( i 1 , .  . .,i,}) E INf such tha t  the 
Hamrriirig wi,ight, of ltie OR of t,lie rows i t ,  . . . , i, is at least, d ( { i l  
for all rnahices of (,"' where (11 . . . ~ i n )  E T. 

2. For all { i l , .  . .,iy} t S ,  there is an t r ( { i l , ,  . . , i q ) )  E IR,' such tha t  the 
Hamming weight, of the OR of t3he rows 1 1 , .  . . , i ,  is at most, d( { i l ~ .  . . , i , } )  - 
~ ~ ( { i l , .  . . , i q ) )  111 for all matrices of c:'" where { i ,  ~. . . ~ i,} 4 T .  

3.  For all { 2 1 > .  . . , i q }  c (1  ~. . . , n } ,  the  restrictioiis of t,he multi-sets CT to the 
rows i l ,  . . . , i ,  cont,airi the same clerrients with ttic same frequencies for all 
T which are t,lic- smie  when restricted t,o subscts of { il , . . . ~ i q } .  
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Again t.lie first t.wo contlit,ioris giiaranter the cont,rast. of the sc l leme while the 
third oiic cnsures l,he securily. Naor arid Shaniir gavP an example o f  an  {{l}, {2}, 
{ 1,2}}-txt,cricIed 'L out of 'L scheme (see [ 13 ) : 

This was the  previoiisly only known r e d  exlendecl scheme (when choosing 
,5' = { { 1, . . . , I ! } }  an S - ~ x t p n d p d  71 out of 71. schcrnt. is equivalent to a "normal" 
n out o f  71  schernc). Now a corist,ructiori principle for S-ext,ended n out of 72 

sclierncs C7' = / ' ( H T )  is prescnt#ecl, using the y o u t  of q schemes P(@) and 
P(Hy)  for all (I E { 1. . . ~ r i }  which are ohi.airied by T,enima 2 (where HA := [O] 
and B: := [I]). 

For any { i l  . . . , i y  } F ,>' and t E { 0,  1 } i t i?  Boolean matrix Bt(il . . . , i Y )  is 
defined as follows: it, has  77 rows arid its i , - th  row is the p-th row of B: (for all 
y E { 1, . . . , y } )  while  all ot,licr rows consist only ol  1's. As Bj has 2q-I columns, 
~ ~ ( i l , .  . . , i q )  has ~ l - ~  c.t~riurrins, tjoo.  or arty T 2 s and { i l , .  . . ~ i4) E S, Llie 
matrix B(T, { i l ,  . . . , i ,  } ) is dtfiried as: 

B o ( i l ,  . . , i,,) , i f  {il,. , , ,  i q ' }  @ 'I' 
H i ( i l  . . . .  , i f { i l ,  . . . ,  i 4 }  E T  

U ( T ,  { i l ,  . . . ~ i<,},) := 

For lixed 7 1  iiiicl S' C_ T (  { 1 ,  . . . , 1 1 . ) )  \ { @}  and m y  T C S t,hc Boolean ma- 
trix Rr is defiiied as tlic concat,enat,ion of thc tiiat,ricrs B(r/', { i l ,  . . , , i q } )  for all 
( i 1 ,  . . . , iy} E S ( in  arhit~rary order). Therefore, t,he number of columns of B" is 
C',"=, Z Y - ~ '  h, wherr h,! is t>lie number of clcrnent,s s wliicli contain exactly Q 

elements. 
The  rather technical proof of the correctness of' th i s  construct,ion is omitted 

to cla.rify t>he idea of t3his principlc. The new matarices B" consist, of (S( matrices 
H(T, { i l ,  . . . , , i q } ) >  which cont,ain the matrices B: rxpanded by n - q rows con- 
sisting only of 1's. Snch a matrix is responsible for t h e  stack of thc transparencips 
i l ,  . . . , %* and as lfie appropria,tc t is chosen dependent, on 'I,, the coritrast of the 
slack of t81icsc t>ransparencies is guara.iiteed. T h c  srciirity of the extended scheme 
follows directly from tmhc seciirit,y of the old ories. 

To givc a concrete exaniple two niatriccs UT of the { { 1) I { 21, { 3 ) '  { 1,2], 
{ 1 , 3 } ,  {2,3},  (1, 2 ,  R))-est~endcd 3 out o f3  scheme will he constriicted, using the  
2 out of 2 arid 3 out, of 3 sclieine given by Lerrima 2 (the only purpose of the 
lines is a bct>t,er general view of tlie construction): 

~ i " i ~ ~ ~ I ~ ~ ' ~ ' ' ~ ~ ~ 1  
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" 1
1
1

1
0
1

1
1
1

0
0
1

1
1
1

0
1
1

i
1
0

1
0
0

1
1
1

0 0 1 1
0 1 1
0 1 1 0

Another example is given by Naor and Shamir's {{1}, {2}, (1, 2}}-extended
2 out of 2 scheme, as the above principle constructs the given multi-sets of
matrices.
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Appendix
To elucidate the good results of the algorithm presented in Section 4 a table of
the parameter m of the k out of n schemes which were computed by the algo-
rithm follows. As one can easily show that columns of length n contained by both
matrices Bo and B\ can be deleted, this improvement has been added to the al-
gorithm. So this table shows slightly better results as a concrete implementation
of the algorithm in Section 4 would do. In parentheses the values \MIN(k,n)~\
according to Theorem 12 are given for comparison (which are printed in italics,
if MIN(k,n) is no integer). As the relative contrast of the schemes is exactly

k\n
2

3
4
5

6
7
8

9
10

2 3
2 (2) 3 (3)

- 4 (4)
-
-
-
-
-
-

-

4
4 (3)

0 (6)

8 (G)

-

-

-

-

5

5 (4)
8 (4)

15 (13)

15 (13)

-

-

-

-

-

6

10

24
30

32

6

(4)
(4)
(7)
(14,)
(26)

-
-
-

-

7

12

35
48

70
64

7

U)
O
(7)
(14)
(27)
(53)

-
-

8

14
48
70

128
140
128

8

(4)
(4)
(7)
(1.5)
(30)
(59)
(105)

-

-

9

16

63

96

210
256
315
256

9

(4)
(4)
(7)
(15)
(SO)
(61)

(117)

(217)

-

]

10

18
80
126

320
420
640

630
512

L0

(4)
(8)
(8)
(14)

(31)

(62)
(121)

(238)

(512)

Table 1. The parameter m of the resulting k out of n schemes (and \MIN(k,n)\).

1/m, this table also gives information about the quality of the corresponding
solution of the secret sharing problem. As ]_/\_A4IN(k,n)\ is an upper bound on
a, an overview of the best possible relative contrast is given, too.

The next three pages give an example of an {{1, 2}, {1, 3}, {2, 3}}-extended
3 out of 3 scheme: when copied on transparencies and stacked carefully each
combination of two transparencies reveals a different picture.
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Fig. 1. Transpa.rency 1 
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Fig. 2. Transparency 2 
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Fig. 3. Transparency 3 
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