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ABSTRACT Long short-term memory (LSTM) has shown good performance when used with sequential
data, but gradient vanishing or exploding problem can arise, especially when using deeper layers to solve
complex problems. Thus, in this paper, we propose a new LSTM cell termed long short-time complex
memory (LSTCM) that applies an activation function to the cell state instead of a hidden state for better
convergence in deep layers. Moreover, we propose a sinusoidal function as an activation function for LSTM
and the proposed LSTCM instead of a hyperbolic tangent activation function. The performance capabilities
of the proposed LSTCM cell and the sinusoidal activation function are demonstrated through experiments
on various natural language benchmark datasets, in this case the Penn Tree-bank, IWSLT 2015 English-
Vietnamese, and WMT 2014 English-German datasets.

INDEX TERMS Long Short-Term Memory, Language Modeling, Neural Machine Translation

I. INTRODUCTION

RECENTLY, deep learning approaches including
feed-forward networks, convolution neural networks

(CNNs), and recurrent neural networks (RNNs) have shown
good performance in many fields. RNNs perform especially
well when applied to sequential problems such as video de-
scription [1], [2], speech recognition [3], [4], neural machine
translation [5]–[7], sentiment classification from text [8],
and detection from multidimensional data [9]. A RNN is a
recurrent network which uses the hidden state of the previous
time step as input for the current time step t as follows:

ht = λ(Wxxt +Whht−1 + b) (1)

where λ is the activation function; xt and ht are the input and
hidden state at time step t; and Wx, Wh, and b are trainable
weights.

Despite of the good performance of RNNs, real-world
problems are becoming more complicated, meaning that
plain vanilla RNNs cannot sufficiently solve them. The basic
approach to solving complex problems with deep learning is
to create a deeper network or a more complex network. This
is also true, in RNN research; i.e., the stacking of multiple
recurrent layers or the use of more complex cells, such as
long short-term memory (LSTM) [10], gated recurrent unit
(GRU) [11] and neural architecture search (NAS) [12] cells.
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FIGURE 1. LSTM and the proposed LSTCM. LSTM applies an activation
function to the hidden state. On the other hand, the proposed LSTCM applies
the activation function to the cell state. Thus, the proposed LSTCM cell can
maintain the same level of the complexity in time steps and while also
transferring larger gradient to the next layer.

Both LSTM and GRU, unlike a vanilla RNN, use a gate
based on sigmoid function to pass information to the next
time step. Due to the gate concept, LSTM and GRU can
represent complex cells and solve the gradient vanishing
problem. However, when we stack multiple layers using
LSTM or GRU to solve complex problems, the gradient van-
ishing problem arises. This occurs because the weights are
multiplied iteratively when we train RNNs and the activation
functions used in RNNs are usually hyperbolic tangent and
sigmoid functions which disturb the learning process given
that the derivatives of the hyperbolic tangent and sigmoid
functions are small.
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To solve the gradient vanishing problem in RNNs, several
approaches have been developed. Gulcehre et al. proposed
hard-sigmoid and hard-tanh activation functions to reduce
gradient vanishing in RNN [13]. Le et al. and Li et al.
proposed IndRNN, which uses ReLU instead of a hyperbolic
tangent as an activation function in RNNs [14], [15]. Le et
al. proposed IRNN, which uses an identity matrix and scaled
weight initialization to apply ReLU to RNNs [14]. Li et al.
proposed the independently RNN (IndRNN), which uses the
Hadamard product for independently learned neurons and
which also enables ReLU as an activation function [15].
Gonnet and Deselaers proposed independently long short-
term memory (ILSTM) which applies the IndRNN concept
to LSTM, resulting in better performance while also avoiding
the overfitting issue [16]. LSTM is expressed as follows:

ft = σ(W f
x xt +W f

h ht−1 + bf )

it = σ(W i
xxt +W i

hht−1 + bi)

ot = σ(W o
xxt +W o

hht−1 + bo)

jt = λj(W
j
xxt +W j

hht−1 + bj)

ct = ct−1 � ft + it � jt
ht = λh(ct)� ot

(2)

where xt and ht are correspondingly the input and hidden
state at time step t; � represents the Hadamard product; σ,
λj , and λh are the sigmoid function and activation functions
used to calculate jt and ht, respectively; and W and b are
learned parameters of LSTM cells. However, despite the su-
perior performance of ILSTM, the gradient vanishing prob-
lem can also occur in this case because it uses a hyperbolic
tangent for the activation functions of λj and λh.

In this paper, we propose two different novel activation
techniques for RNNs. In the first, we newly locate the activa-
tion function λc for the cell state instead of λh for the hidden
state, as shown in Figure 1. The newly applied position for
the activation function makes the proposed cell transfer larger
gradients to the next layer and retain the complexity in time
steps. Thus, the proposed cell is referred to as long short-
time complex memory (LSTCM). With this new activation
technique, the proposed LSTCM cell reduces the gradient
vanishing problem in the layers, thus creating and training
a deeper network for complex problems. The second tech-
nique is the novel application of a sinusoidal function as
an activation function for RNNs. Sitzmann et al. proposed
a sinusoidal function as an activation function for CNNs with
well initialized weights in implicit neural representations
such as natural images and 3D shapes [17]. Thus, we apply
the sinusoidal function as an activation function for LSTM
and the proposed LSTCM instead of a hyperbolic tangent.
Experiments on various tasks demonstrated that the proposed
LSTCM cell outperforms the LSTM cell in a deeper network.
Moreover, when using the sinusoidal function as an activation
function for LSTM and LSTCM cells, they outperform the
traditional hyperbolic tangent activation function.

This paper is organized as follows. Section II proposes
the new activation techniques for RNNs including LSTCM

cells and a sinusoidal activation function. In Section III, the
experiments conducted here, in this case a language modeling
task and a machine translation task, are described and the
results are discussed. Finally, concluding remarks follow in
Section IV.

II. METHODS

In this section, we propose novel activation techniques for
LSTM, including the LSTCM cell and sinusoidal activation
function. First, we explain backpropagation through time in
LSTM, which is the basis of the proposed LSTCM cell. Then,
the proposed LSTCM cell is explained in details. We also
explain how to apply the sinusoidal function as an activation
function for LSTM and LSTCM instead of the hyperbolic
tangent function.

A. BACKPROPAGATION THROUGH TIME IN LSTM

Despite the fact that LSTM has long been studied, the vanish-
ing gradient problem remains associated with it. Equation (3)
expressed backpropagation through time (BPTT) of LSTM
at time step t. In Equation (3), δx refers to ∂L/∂x where
L is the loss function; ∆ is the cumulative gradient from
the layers above calculated from all gradients of each state
vector; λ′ and σ′ are derivations of activation functions;
and {ōt, īt, j̄t, f̄t} are state vectors before the activation
functions. As shown in Equation (3), the gradients are cal-
culated through multiplication with λ′, which is less than
1, recurrently in time steps until t = 0, at which point the
gradient vanishing problem can occur. Additionally, all RNN
architectures stack multiple cells as layers to create a deep
network [18], implying that hn,t, which is the hidden state of
the n-th layer, becomes xn+1,t, which is the input to the n+1-
th layer and hn,t is calculated using cn,t after the activation
function λh. Thus, when we backpropagate the gradients in
LSTM, the small value λ′ is propagated through the layers
and the gradient decaying process accelerates.

δht =∆ +W j
hδjt+1 +W o

hδot+1

+W i
hδit+1 +W f

h δft+1

δct =δht � ot � λ′h(ct) + δct+1 � ft+1

δjt =δct � it � λ′j(j̄t)
δot =δht � λh(ct)� σ′(ōt)
δit =δct � jt � σ′(īt)
δft =δct � ct−1 � σ′(f̄t)

(3)

B. THE PROPOSED LSTCM CELL

The proposed LSTCM cell applies an activation function to
the cell state instead of the hidden state. This is described as
follows:
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ft = σ(W f
x xt +W f

h ct−1 + bf )

it = σ(W i
xxt +W i

hct−1 + bi)

ot = σ(W o
xxt +W o

hct−1 + bo)

jt = λj(W
j
xxt +W j

hht−1 + bj)

ct = λc(ct−1)� ft + it � jt
ht = ct � ot

(4)

As shown in Equation (4), the difference between LSTM
and the proposed LSTCM is that LSTCM applies the acti-
vation function λc instead of λh. When we stack multiple
LSTCM cells as layers to create a deep network, hn,t is
calculated using cn,t without the activation function λ. Thus,
the backpropagated gradients through ft, it, and jt exceed
those of LSTM.

Equation (5) shows the BPTT of the proposed LSTCM.

δht =∆ +W j
hδjt+1 +W o

hδot+1

+W i
hδit+1 +W f

h δft+1

δct =δht � ot + λ′c(ct+1)� ft+1 � δct+1

δjt =δct � it � λ′j(j̄t)
δot =δht � ct � σ′(ōt)
δit =δct � jt � σ′(īt)
δft =δct � λc(ct−1)� σ′(f̄t)

(5)

In Equation (5), δx refers to ∂L/∂x where L is the loss
function; ∆ is the cumulative gradient from the layers above
as calculated from all gradients of each state vector; λ′ and σ′

are derivatives of the activation functions; and {ōt, īt, j̄t, f̄t}
are state vectors before the activation functions. The greatest
difference compared to LSTM is δct. In the BPTT of LSTM,
δct is calculated by multiplying λ′h(ct) by δht, whereas
in the BPTT of the proposed LSTCM, δct is calculated
by multiplying λ′c(ct+1) by δct+1. Thus, in the proposed
LSTCM cell, the gradient through ct+1 becomes smaller,
but the gradient through ht becomes larger. Consequently,
the proposed LSTCM cell backpropagates a larger gradient
through the layers than LSTM and shows better performance
in deeper networks.

C. RECURRENT WEIGHT
In this subsection, we explain recurrent weights which are
the most important part in RNNs to maintain the information
from previous time steps to current one [19]. It means that the
past state (ht) and its gradient affect the current state (hT ) and
its gradient in RNNs. Thus, for a stable learning of RNNs,
the gradient must be in [ε, γ], i.e. ε ≤ ∂JT

∂ht
≤ γ where JT

is an objective function to minimize in time step T . In this
formulation, when the calculated gradient is less than ε, the
gradient vanishing problem occurs, and when the calculated
gradient is larger than γ, the gradient exploding problem
occurs. Therefore, if we initialize the recurrent weights in
a certain range to keep the gradient in [ε, γ], then RNNs

are learned in stable manner without gradient vanishing or
exploding problems. We conducted experiments to find out
the proper initialization for recurrent weights in LSTCM cells
and the results are explained in Section III-D.

D. USING AN ACTIVATION FUNCTION WITH A
SINUSOIDAL FUNCTION
Several studies have use a periodic function as an activation
function for deep neural networks [20], [21]. Particularly,
Sitzmann et al. held that a periodic activation function was
better than traditional activation functions in complicated
signal problems such as natural images and 3D shapes [17].
The natural language problem is also a complicated signal
problem, and LSTM and LSTCM as proposed in this paper
also use activation functions, specifically λh and λc, respec-
tively. Thus, we apply the sinusoidal function as an activation
function for LSTM and LSTCM, λh and λc, instead of a
hyperbolic tangent function. When we apply the sinusoidal
activation function and train the network for machine transla-
tion tasks, the gradient exploding problem occurs. Therefore,
we restrict the range of the sinusoidal activation function,
with the final activation function then defined as follows:

λ(x) = sin(x)


x = π, if x > π

x = −π, if x < −π
x, otherwise

(6)

III. EXPERIMENTS
In this section, we verify the proposed LSTCM cell outper-
forms LSTM on certain natural language tasks.

A. LANGUAGE MODELING TASK
We experimentally tested the proposed LSTCM cell on a
language modeling task using Penn Treebank (PTB) dataset
[22]. The purpose of the PTB dataset is to predict the
next word based on a previous sequence of words. The
training parameters were an initial weight of 0.1, an initial
learning rate of 1.0 (decay by half at 1/2 epoch and 3/4
epoch), a batch size of 512, 1000 hidden neurons, and a
dropout rate of 0.3. The experimental environment was based
on https://github.com/KangSooHan/LSTCM. In addition, to
prevent overfitting and to ensure stable learning, we applied
dropout [23], gradient clipping [18], and warmup steps in the
learning process.

To verify the effect of a deeper network on the language
modeling task based on the PTB dataset, we compared one,
three, and six layers of LSTM, ILSTM, LSTCM, and IL-
STCM cells. We set 40, 80, and 120 epochs for the one-,
three-, and six-layer models by considering the overfitting
point when the training perplexity decreased but the vali-
dation perplexity increased. Each model underwent learned
three times independently, and the final experimental results
were calculated by averaging the perplexity of the three
outcomes.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3040405, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Results of word-level PTB for the proposed LSTCM model in
comparison with basic LSTM, in terms of perplexity.

No. of
Layers

Cell Train Val Test

LSTM 56.918 96.196 92.372
1 LSTCM 57.276 96.286 93.58

ILSTM 60.318 100.508 95.166

ILSTCM 62.691 101.831 96.481

LSTM 61.738 99.927 95.985

3 LSTCM 62.967 100.102 95.962
ILSTM 79.615 105.371 97.828

ILSTCM 77.886 104.925 96.911

LSTM 73.268 111.175 109.571

6 LSTCM 72.577 109.392 107.956
ILSTM 82.486 114.102 110.716

ILSTCM 83.772 110.098 108.285

Table 1 shows the results of the language modeling task
based on the PTB dataset. As shown in the result, the simplest
layer model shows the best performance. Because the lan-
guage modeling task is relatively simple, the deeper network
does not show an effect and the advantage of the proposed
LSTCM, which transfers more gradients between the layers,
is therefore not clear during the language modeling task.

B. MACHINE TRANSLATION TASK
Because the effect of the proposed LSTCM cell was not clear
in the relatively simple task described above, we applied it to
a more complex task, in this case a machine translation task.
We used the IWSLT2015 English-Vietnamese dataset [24]
and the WMT2014 English-German dataset for the machine
translation task. The training parameters were as 10 epochs,
an initial learning rate of 0.5 (decay by half at 1/2 epoch and
3/4 epoch), a batch size of 128, 512 hidden neurons, and a
dropout rate of 0.3. The experimental environment found at
https://github.com/tensorflow/nmt [25]. We used sequence-
to-sequence models [6] and the Google Neural Machine
Translation (GNMT) model [7] as the basis model, which
consists of RNN cells and shows the best performance on the
machine translation task.

Model. For the experiments, we used two backbone
networks based on a sequence-to-sequence model. For
the IWSLT 2015 English-Vietnamese dataset, we used a
sequence-to-sequence model based on a basic encoder-
decoder structure along with the Luong attention mechanism
[6]. The encoder layer consists initially of bidirectional cells
and then stacked unidirectional cells. The encoder layer
calculates the attention for the result of the encoder cells
using the Luong attention mechanism and then passes it
to the decoder layer. The decoder layer consists of stacked
unidirectional cells, and it predicts the next word based on
the attention value from the encoder layer and input words.
For the WMT 2014 English-German dataset, we used the

GNMT model. The GNMT model is a deep LSTM network
with encoder and decoder layers that also uses residual con-
nections along with attention connections from the decoder
to the encoder. The GNMT model calculates the attention
value of each unidirectional cell in the encoder layer, and the
decoder layer predicts the next word based on each previous
attention value from encoder layer. To observe the effect of a
deeper network on the machine translation task, we compared
model with one, four, and seven layers using LSTM, ILSTM,
LSTCM, and ILSTCM cells. The model with i layers refers
to the setting of i layers for the encoder, with last layer as the
bidirectional cell, while i − 1 layers are set for the decoder
without a bidirectional cell.

Datasets. The IWSLT data used here is from translated
TED talks and contains 133K training sentence pairs. The
dataset is provided by the IWSLT 2015 Evaluation Campaign
[24]. We applied a data preprocessing method [26] and
thus obtained 17.2K vocabulary items for English and 7.7K
vocabulary for Vietnamese. We validated and tested the
model using TED tst2012 and tst2013, respectively. The
WMT dataset contains approximately 4M sentence pairs.
Sentences were encoded by means of byte-pair encoding [27]
involving the use of a shared resource target vocabulary of
approximately 37K tokens.

Training Parameters. The training parameters were an
initial weight of 0.1, an initial learning rate of 0.2, a batch
size of 100, 512 hidden neurons, and a dropout rate of
0.3. Additionally, to prevent overfitting and to ensure stable
learning, we applied dropout [23], gradient clipping [18], and
warmup steps during the learning process. For the IWSLT
2015 English-Vietnamese dataset, which is a relatively small
dataset, we utilized 60,000 training steps, and the learning
rate decayed by half at 1/2 and 3/4 training steps. For the
WMT 2014 English-German dataset, we utilized 350,000
training steps, and the learning rate decayed by half at every
17,500 steps after half of the training steps.

C. COMPARISON RESULT WITH LSTM
As shown in Section III-A, the proposed LSTCM cell did
not show an advantage compared to the LSTM cell on the
language modeling task because the language modeling task
is relatively simple and does not require a deeper network.
However, in a more complex task, in this case the machine
translation task in Section III-B, the proposed LSTCM cell
outperformed the LSTM cell. We used IWSLT2015 and
WMT2014 datasets to compare the proposed LSTCM and
LSTM cells on the machine translation task.

IWSLT 2015 English-Vietnamese. Table 2 shows the re-
sult of the sequence-to-sequence model with Luong attention
using the proposed LSTCM and ILSTCM cells as well as
LSTM, ILSTM, and GRU cells trained based on the IWSLT
2015 dataset. We utilized two, four, and seven layers to
compare the performances according to the layer depth. Each
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TABLE 2. Performance outcome of the proposed LSTCM on IWSLT 2015
English-Vietnamese dataset based on sequence-to-sequence model with
Luong attention in terms of the BLEU score.

No. of Layers Cell Train ppl tst2012 tst2013

LSTM 4.098 21.43 23.16

2 LSTCM 4.196 20.89 22.82

GRU 4.978 14.62 15.43

ILSTM 4.927 23.67 26.68
ILSTCM 5.016 23.59 26.49

LSTM 3.768 22.42 25.23

4 LSTCM 3.859 22.67 24.97

GRU 4.653 12.58 12.72

ILSTM 4.787 24.50 26.71

ILSTCM 4.967 24.37 26.84
7 LSTM 8.291 12.49 12.80

without LSTCM 7.726 16.92 16.28

skip GRU 9.911 8.12 10.09

connection ILSTM 5.877 22.64 24.64

ILSTCM 5.392 23.29 26.13
7 LSTM 2.928 16.82 17.24

with LSTCM 2.901 20.71 21.57

skip GRU 3.362 15.61 16.23

connection ILSTM 3.105 23.58 25.93

ILSTCM 3.062 23.71 26.11

model underwent three independent learning trials, and the
final experimental results were calculated by averaging the
perplexity and BLEU scores of these three trials.

As shown in Table 2, the four-layer model showed the
overall best performance. The tst2012 BLEU scores of four
layers using ILSTM and ILSTCM cells were 24.50 and
24.37, respectively, and the corresponding tst2013 BLEU
scores were 26.71 and 26.84. Accordingly, there were no
major differences between the ILSTM and ILSTCM cells.
On the other hand, the tst2012 and tst2013 BLEU scores for
seven layers without or with a skip connection using ILSTM
and ILSTCM cells showed that the proposed ILSTCM cell
outperformed the ILSTM cell at a meaningful level. Also,
ILSTM and ILSTCM cells, which applied the aforemen-
tioned independent approach, outperformed vanilla LSTM
and LSTCM cells, respectively, because the independent
cells mitigated the overfitting problem.

WMT 2014 English-German. Table 3 shows the result of
the GNMT model using the proposed LSTCM and ILSTCM
cells, as well as LSTM and ILSTM cells trained based on the
WMT 2014 dataset. We utilized two, four, and seven layers to
compare the performance capabilities according to the layer
depth. Each model underwent three independent learning
trials, and the final experimental results were calculated by
averaging the perplexity and BLEU scores of these three
trials.

As shown in Table 3, the seven-layer model with a skip

TABLE 3. Performance outcome of the proposed LSTCM on WMT2014
English-German dataset based on GNMT model in terms of the BLEU score.

No. of Layers Cell Train ppl tst2013 tst2014

LSTM 6.542 23.12 24.06

2 ILSTM 7.656 23.73 24.91
LSTCM 6.654 23.01 23.89

ILSTCM 7.421 23.55 24.76

LSTM 6.271 23.41 24.68

4 ILSTM 6.690 24.04 25.02

LSTCM 6.268 23.39 24.53

ILSTCM 6.702 23.94 25.06
7 LSTM 17.66 10.32 10.16

without ILSTM 20.98 9.43 8.20

skip LSTCM 8.17 15.37 14.61

connection ILSTCM 10.39 19.31 19.75
7 LSTM 6.193 22.55 23.98

with ILSTM 6.567 23.98 25.15

skip LSTCM 6.186 22.83 24.11

connection ILSTCM 6.632 24.09 25.26

connection using the ILSTCM cell showed the best per-
formance overall in terms of both the tst2013 and tst2014
BLEU scores (24.09 and 25.26, respectively). Unlike the
IWSLT 2015 dataset, the seven-layer model showed the best
performance on the WMT 2014 dataset, confirming that a
deeper network is better on complex and large datasets. As
in the experiment with the IWSLT 2015 dataset, ILSTM and
ILSTCM cells, which applied an independent approach, out-
performed the vanilla LSTM and LSTCM cells, respectively,
and the proposed LSTCM cell showed better performance
than the LSTCM cell on a deeper network.

Additionally, Figures 2 and 3 depict the average gradient
when we train the seven-layer GNMT model using ILSTCM
and ILSTM cells without and with a skip connection for
the WMT 2014 dataset, respectively. As shown in Figures
2 and 3, the average gradient for the ILSTCM cell is greater
that for the ILSTM cell. This result verifies that the better
performance by the proposed LSTCM cell stems from the
greater level of gradient transference compared to that in the
LSTM cell after applying the activation function to the cell
state instead of the hidden state.

D. WEIGHT INITIALIZATION IN LSTCM
For the stable learning of RNNs, the recurrent weights need
to be initialized properly to keep gradients in [ε, γ], i.e. ε ≤
∂JT

∂ht
. Thus, we found the proper weight initialization range

experimentally. Figure 4 shows the result of the sequence-
to-sequence model with Luong attention using the proposed
ILSTCM cell in change of weight initialization. As shown in
Figure 4, when the weights were initialized greater than 0.22,
the model was not learned because the gradient exploding
occurred. In this case, the BLEU score was NAN, thus it is
represented as 0 in the graph. Moreover, when the weights
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● ILSTCM

● ILSTM

FIGURE 2. Average gradient of the seven-layer GNMT model using ILSTCM
and ILSTM cells without a skip connection for the WMT 2014 dataset. The
blue and orange lines represent the average gradient of the ILSTCM and
ILSTM cells, respectively.

● ILSTCM

● ILSTM

FIGURE 3. Average gradient of the seven-layer GNMT model using ILSTCM
and ILSTM cells with a skip connection for WMT 2014 dataset. The green and
magenta lines represent the average gradient of the ILSTCM and ILSTM cells,
respectively.

were initialized less than 0.01, the BLEU score was very
low compared to other weight initialization cases because
the gradient vanishing occurred. Thus, we can conclude
the proper weight initialization range for stable learning of
LSTCM cells is [0.01, 0.22].

E. SINUSOIDAL ACTIVATION FUNCTION
PERFORMANCE
Table 4 shows the result of the sequence-to-sequence model
with Luong attention using the proposed ILSTCM cell and
the ILSTM cell with the sinusoidal activation function with
training based on the IWSLT 2015 dataset. We compare the
results between those with the sinusoidal activation function
and those with the hyperbolic tangent activation function.
As shown in Table 4, every layer combination with the si-
nusoidal activation function outperformed the corresponding
cases with the hyperbolic tangent activation function. The
proposed ILSTCM cell especially showed an improvement
than ILSTM cell when we applied the sinusoidal activation
function, and the overall best performance was achieved
by the four-layer model using the ILSTCM cell with the
sinusoidal activation function (tst2013 BLEU score: 24.71
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FIGURE 4. Performance of the proposed ILSTCM with different weight
initializations on IWSLT 2015 English-Vietnamese dataset based on four-layer
of sequence-to-sequence model with Luong attention in terms of BLEU score
on tst2013.

TABLE 4. Performance outcome of the proposed LSTCM with the sinusoidal
activation function on the IWSLT 2015 English-Vietnamese dataset based on
the sequence-to-sequence model with Luong attention in terms of the BLEU
score.

No. of Layers Cell Activation Train ppl tst2013 tst2014

4 ILSTM tanh 4.787 24.50 26.71

ILSTM sin 5.091 24.68 27.43

ILSTCM tanh 4.967 24.37 26.84

ILSTCM sin 5.047 24.71 27.96
7 ILSTM tanh 5.877 22.64 24.64

without ILSTM sin 7.447 21.68 23.88

skip ILSTCM tanh 5.392 23.29 26.13
connection ILSTCM sin 6.336 23.55 26.12

7 ILSTM tanh 3.105 23.58 25.93

with ILSTM sin 3.532 24.17 26.92

skip ILSTCM tanh 3.062 23.71 26.11

connection ILSTCM sin 3.394 24.36 27.10

and tst2014 BLEU score: 27.96). Thus, we can conclude that
the sinusoidal activation function is better than the hyperbolic
tangent activation function on complicated networks.

F. DISCUSSION
In this subsection, we discuss the experimental results and
advantages. The results show that a deeper network for rel-
atively simple task, such as a language modeling task based
on PTB datasets, showed low performance compared to those
on a shallow network. On the other hand, for a more complex
task, such as a machine translation task, a deeper network
using four or seven layers showed better performance than
those on a shallow network. More specifically, because the
IWSLT2015 dataset contains fewer words and sentences than
the WMT2014 dataset, the four-layer model outperformed
the seven-layer model on the machine translation task based
on the IWSLT2015 dataset, whereas the seven-layer model
with a skip connection outperformed on the machine trans-
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TABLE 5. Training time for the proposed LSTCM and and LSTM in terms of
words per second.

Task LSTM / LSTCM ILSTM / ILSTCM

(wps) (wps)

PTB 96000 / 95000 83000 / 81000

IWSLT(4layer) 176300 / 178400 158300 / 159600

WMT(4layer) 164200 / 166200 147200 / 148900

lation task based on the WMT2014 dataset. Additionally,
ILSTM and ILSTCM, which apply independent concepts to
LSTM and LSTCM, showed worse perplexity performance
during the training phase. However, better perplexity during
the training phase did not guarantee a model with better
learning. On a language modeling task based on the PTB
dataset, the difference between the perplexity level between
the training and the test datasets was less when the ILSTM
and ILSTCM were applied as compared to when LSTM
and LSTCM were applied, meaning that the independent
concept prevents the network overfitting problem. Moreover,
on the machine translation task, the model using LSTM
and LSTCM showed better perplexity in the training phase,
whereas the model using ILSTM and ILSTCM showed a
better BLEU score in the test phase. Thus, we can conclude
that applying the independent concept to LSTM and LSTCM
cells causes the network to train to the proper direction and
prevents the overfitting problem.

The basic structure of proposed LSTCM cell is similar to
LSTM cell. Thus, the well-studied approach for LSTM, espe-
cially distributed learning approach from multiple clusters or
multi GPUs and performance improvement approach includ-
ing dropout and layer normalization, also can be applied for
LSTCM in the same manner. Moreover, as shown in Table 5,
the training time for the proposed LSTCM and LSTM were
not much different, therefore the existing applications of
RNNs can use LSTCM cells instead of LSTM cells with ease.

IV. CONCLUSION

This paper proposed what is termed a long short-time com-
plex memory (LSTCM) cell to solve the gradient vanishing
problem in recurrent neural networks (RNNs) and long short-
term memory (LSTM), especially when the network is deep.
The proposed LSTCM cell applied an activation function to
the cell state instead of the hidden state to transfer more of the
gradient to the next layer. Moreover, we applied an sinusoidal
function as an activation function of LSTCM cell instead of
a hyperbolic tangent function. We conducted experiments on
language modeling and machine translation tasks based on
the PTB, IWLST2015, and WMT2014 datasets. The experi-
mental results showed that the proposed LSTCM cell outper-
formed the LSTM cell on deeper networks for complex tasks.
Furthermore, ILSTCM with the independent concept applied
to LSTCM showed more stable training by preventing the
overfitting problem.
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