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/is paper puts forward some rough approximations which are motivated from topology. Given a subset R⊆ U × U, we can use 8
types of E-neighborhoods to construct approximations of an arbitrary X⊆ U on the one hand. On the other hand, we can also
construct approximations relying on a topology which is induced by an E-neighborhood. Properties of these approximations and
relationships between them are studied. For convenience of use, we also give some useful and easy-to-understand examples and
make a comparison between our approximations and those in the published literature.

1. Introduction and Preliminaries

/e problem of imperfect knowledge became a crucial issue
for computer scientists, especially in the area of information
system and artificial intelligence [1, 2]. /ere are various
approaches to manipulate and understand imperfect
knowledge, among which is rough set theory. Rough set was
proposed by Pawlak [3, 4] in 1982 which has been gener-
alized in many ways [5–13]. What we are concerned about
are those methods whose ideas are motivated from topology,
for example, methods constructing the lower and upper
approximations by using different kinds of neighborhoods,
such as right and left neighborhoods [10, 14], minimal right
neighborhoods [15], and intersection and union neighbor-
hoods (see [16, 17]). In fact, a combination of rough set
theory and topological theory became the main goal of many
studies (see [18–25]).

/e present paper is a continuation to these works where
we initiate new types of neighborhoods (namely,
Ej-neighborhoods) to give lower and upper approximations
of an arbitrary set X directly or indirectly. In Section 2, we
apply Nj-neighborhoods to establish the concepts of
Ej-neighborhoods and discuss the main properties.With the
help of examples, we show the relationships between them as

well as with Nj-neighborhoods and Pj-adhesion neigh-
borhoods. In Section 3, we formulate and study the concepts
of Ej-lower and Ej-upper approximations, Ej-boundary
region, Ej-positive and Ej-negative regions, and Ej-accuracy
measure of a subset and make comparisons between them
with respect to different types of j. In Section 4, we study the
previous concepts from a topological view and explore their
main properties. In Section 5, we give some conclusions and
make a plan for future works.

Now, we recall some basic properties and results of
rough set theory, particularly those related to some types of
neighborhood systems.

Definition 1 (see [3, 5, 16])

(1) A subset R⊆ U × U (also called a binary relation on
U) is said to be an equivalence relation if it is reflexive
(i.e., (v, v) ∈ R for each v ∈ U), symmetric (i.e.,
(u, v) ∈ R if (v, u) ∈ R ), and transitive (i.e.,
(u, w) ∈ R whenever (u, v) ∈ R and (v, w) ∈ R). It is
said to be a preorder (or quasi-order) if it is reflexive
and transitive. It is said to be a partial order if it is an
antisymmetric (i.e., u � v whenever (u, v) ∈ R and
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(v, u) ∈ R) preorder. It is said to be a diagonal if
R � (v, v): v ∈ U{ }. It said to be serial if for every
v ∈ U, w ∈ U such that (v, w) ∈ R (also written as
vRw).

(2) (See [4, 26] for a special case). For an equivalence
relation R on U and a subset X⊆ U, the two related
sets R (X) � ⋃ A ∈ U/R: A⊆X{ } and R (X) � ⋃
A ∈ U/R: A⊆X≠∅{ } are called the Pawlak lower
approximation and upper approximation of X, re-
spectively (where U/R � [x]: x ∈ U{ } is the set of all
equivalence classes).

Proposition 1 (see [3, 4] for a special case). ,e lower
approximations and the upper approximations have the
following properties ( E, F{ }∪ Ei{ }i∈I⊆ 2U, the power set of U ):

(1) R(∅) � R(∅) � ∅ and R(U) � R(U) � U.

(2) R(E) ⊆E⊆R(E) and R(E) � [R(Ec)]c.

(3) R(∪ i∈IEi) � ∪ i∈I R(Ei) and R(∪ i∈IEi) � ∪ i∈I
R(Ei). Particularly, R(E)⊆ R(F) and R(E)⊆ R(F) if
E⊆F.

(4) R[R(E)] � R(E) and R[R(E)] � R(E).

Definition 2. A subsetJ⊆ 2U is called a topology on U (and
(U,J) is called a topological space) if it is closed under
arbitrary union and finite intersection. A topology satisfying
that every open set is also closed is called a clopen topology.
We will use Ao to denote the interior of A (i.e., the union of
all open sets that are contained in A) and A− to denote the
closure ofA (i.e., the intersection of all closed sets containing
A) in this paper.

LetJR � A ∈ 2U: [x]⊆A(∀x ∈ A){ }. /en, (U,JR) is a
topological space, R(X) � Xo, R(X) � X− , and [x] is the
smallest open neighborhood of x (∀x ∈ U). /is inspires
many people to define the lower approximation and the
upper approximation by neighborhoods; actually, our ap-
proach in this paper is also motivated from topology. In the
following, we write J � r, l, 〈r〉, 〈l〉, i, u, 〈i〉, 〈u〉{ }.

Definition 3 (see [10, 14, 16]). Let R⊆U2 and j ∈ J.
(1) /e 8 kinds of j-neighborhoods are defined as fol-

lows: Nr(v) � w ∈ U: vRw{ }, Nl(v) � w ∈ U:{

wRv}, N〈r〉(v) � ∩ Nr{ }(w): v ∈ Nr(w) (if
v ∈ Nr(w) for some w ∈ U or ∅, otherwise),
N〈l〉(v) � ∩ Nl{ }(w): v ∈ Nl(w) (if v ∈ Nl(w) for
some w ∈ U or ∅, otherwise), Ni(v) � Nr(v)∩
Nl(v),Nu(v) � Nr(v)∪Nl(v),N〈i〉(v) � N〈r〉(v)∩
N〈l〉(v), and N〈u〉(v) � N〈r〉(v)∪N〈l〉(v)

(2) /e triple (U, R, λj) is called a j-neighborhood space
(in brief, j-NS), where λj is a mapping from U to 2U

which associated each v ∈ U with a j-neighborhood

Definition 4 (see [6]). Let R⊆U2. /e j-adhesion neigh-
borhoods are defined as follows:

(1) Pr(v) � w ∈ U: Nr(w) � Nr(v){ }
(2) Pl(v) � w ∈ U: Nl(w) � Nl(v){ }
(3) P〈r〉(v) � w ∈ U: N〈r〉(w) � N〈r〉(v){ }
(4) P〈l〉(v) � w ∈ U: N〈l〉(w) � N〈l〉(v){ }
(5) Pi(x) � Pr(v)∩Pl(v)
(6) Pu(x) � Pr(v)∪Pl(v)
(7) P〈i〉(v) � P〈r〉(v)∩P〈l〉(v)
(8) P〈u〉(v) � P〈r〉(v)∪P〈l〉(v)

2. E-Neighborhoods

In this section, we introduce the notions of E-neighborhoods
using j-neighborhoods and study their properties.

Definition 5. Let R⊆ U2. /e E-neighborhoods are defined
as follows:

(1) Er(x) � y ∈ U: Nr(y)∩Nr(x)≠∅{ }
(2) El(x) � y ∈ U: Nl(y)∩Nl(x)≠∅{ }
(3) Ei(x) � Er(x)∩El(x)
(4) Eu(x) � Er(x)∪El(x)
(5) E〈r〉(x) � y ∈ U: N〈r〉(y)∩N〈r〉(x)≠∅{ }
(6) E〈l〉(x) � y ∈ U: N〈l〉(y)∩N〈l〉(x)≠∅{ }
(7) E〈i〉(x) � E〈r〉(x)∩E〈l〉(x)
(8) E〈u〉(x) � E〈r〉(x)∪E〈l〉(x)
We give the following example to illustrate how we

calculate different types of neighborhoods. Also, we will
benefit from this example to clarify some obtained results.

Example 1. Let U � v, w, x, y{ } and R � (v, v), (y, y),{
(v, x), (v, y), (y, w), (w, y)}. /en, the j-neighborhoods and
E-neighborhoods of a point are as in Table 1.

Theorem 1. E-neighborhoods have the following properties
(R⊆ U2, v ∈ U):

(1) Ei(v)⊆ Er(v)∩El(v)⊆ Er(v)∪El(v)⊆ Eu(v)
(2) E〈i〉(v)⊆ E〈r〉(v)∩E〈l〉(v)⊆E〈r〉(v)∪E〈l〉(v)⊆

E〈u〉(v)

(3) v ∈ Ej(x) iff x ∈ Ej(v)(j ∈ J)
(4) If R is reflexive, then E〈j〉(v)⊆ Ej(v) and

Pj(v)∪Nj(v)⊆ Ej(v) (j ∈ J)
(5) If R is symmetric, then Er(v) � El(v) � Ei(v) �

Eu(v) and E〈r〉(x) � E〈l〉(v) � E〈i〉(v) � E〈u〉(v)

(6) If R is transitive, then Ej(v)⊆ E〈j〉(v) (j ∈ r, lu, i{ })

(7) If R is serial, then Pj(v)⊆ Ej(v) (j ∈ J)
(8) If R is symmetric and transitive, then Ej(v)⊆Nj(v)

and Ej(v)⊆ Ej(w) (if v ∈ Ej(w) ) for each j ∈ J
(9) If R is preorder, then Ej(v)⊆ E〈j〉(v) (j ∈ r, l, u, i{ })

(10) If R is a equivalence relation, then for each j ∈ J, all
Ej(v) are identical, Ej(v) � Nj(v) � Pj(v), and
v ∈ Ej(w) iff Ej(v) � Ej(w)
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Proof. (3) Obviously, v ∈ Ej(x)⇔Nj(v)∩Nj(x)≠∅⇔
x ∈ Ej(v) for each j ∈ r, l, 〈r〉, 〈l〉{ }. /en, v ∈ Ej(x)⇔x ∈
Ej(v) for each j ∈ i, u, 〈i〉, 〈u〉{ }.

(4) Step 1: since R is reflexive, ∩ v∈Nr(x)
Nr(x)⊆Nr(v)

and ∩ v∈Nl(x)
Nl(x)⊆Nl(v). /is implies that

E〈r〉(v)⊆Er(v) and E〈l〉(v)⊆El(v). Consequently,
E〈i〉(v)⊆Ei(v) and E〈u〉(v)⊆Eu(v).
Step 2: let x ∈ Nj(v). By reflexivity of R, we have
x{ }⊆Nj(x)∩Nj(v). /erefore, x ∈ Ej(v); thus,
Nj(v)⊆Ej(v). Also, let x ∈ Pj(v). /en, Nj(x) � Nj

(v). SinceR is reflexive,Nj(x)∩Nj(v)≠∅./erefore,
x ∈ Ej(v); thus, Pj(v)⊆Ej(v). Hence, we obtain the
desired result.

(5) Since R is symmetric, Nr(v) � Nl(v). /erefore,
Nr(v)∩Nr(z)≠∅⇔Nl(v)∩Nl(z)≠∅; thus, Er
(v) � El(v). Consequently, Er(v) � El(x) � Ei(x) �
Eu(x). Similarly, E〈r〉(x) � E〈l〉(v) � E〈i〉(v) �
E〈u〉(v).

(6) Let a ∈ Nr(v). /en, vRa. For each Nr(x) con-
taining v, we have xRv. Since R is transitive, xRa.
/erefore, a ∈ Nr(x); thus, a ∈ ∩ v∈Nr(x)

Nr(x) �
N〈r〉(v). Hence, Nr(v)⊆N〈r〉(v); consequently,
Er(v)⊆E〈r〉(v). Similarly, El(v)⊆E〈l〉(v)./is implies
that Ei(v)⊆E〈i〉(v) and Eu(v)⊆E〈u〉(v).
(7) It follows from (4) and the fact v ∈ Ej(x)⇔Nj

(v)∩Nj(x)≠∅⇔x ∈ Ej(v) (j ∈ r, l, 〈r〉, 〈l〉{ }).

(8) Step 1: we prove the case j � r. Let x ∈ Er(v)./en,

Nr(x)∩Nr(v)≠∅, i.e., there exists z ∈ Nr(x)∩
Nr(v), xRz, and vRz. Since R is symmetric and
transitive, vRx. /erefore, x ∈ Nr(v); thus,
Er(v)⊆Nr(v).

Step 2: since R is symmetric, Er(v) � El(v) � Ei(v) �
Eu(v) by (5). We only prove the case j � l. Let
v ∈ El(w). /en, Nl(v)∩Nl(w)≠∅; therefore, there
is a ∈ U such that aRv and aRw. Now, let x ∈ El(v).
/en,Nl(x)∩Nl(v)≠∅, i.e., there exists a b ∈ U such
that bRx and bRv. Note that aRb; this means that aRx;
consequently, a ∈ Nl(x); also, a ∈ Nl(w); thus,
Nl(x)∩Nl(x)≠∅. Hence, x ∈ El(w), as required.

(10) Step 1: by (4) and (8), Ej(v) � Nj(v) and
Pj(v)⊆Ej(v). It remains to prove Ej(v)⊆Pj(v). Since
R is symmetric, Er(v) � El(v) � Ei(v) � Eu(v) by (5).
Let x ∈ El(v). /en, Nl(x)∩Nl(v)≠∅. Since R is
equivalence, Nl(x) � Nl(v). /erefore, x ∈ Pl(v);
consequently, El(v)⊆Pl(v). /us, Pj(v) � Ej(v) is
proved.

Step 2: we only prove the case j � l. Let v ∈ El(w).
/en, Nl(v)∩Nl(w)≠∅. Since R is equivalence,
Nl(v) � Nl(w)≠∅. /erefore, Ej(v) � Ej(w). Con-
versely, Ej(v) � Ej(w). Since R is reflexive, v ∈ Nl(v).
Hence, v ∈ Ej(w). □

3. Rough Approximations Using
E-Neighborhoods Directly

Let (U, R, λj) be j-NS and Rj � Ej(v): v ∈ U{ } (j ∈ J). We
devote this section to formulate the following concepts using
E-neighborhoods directly: Rj-lower approximation,
Rj-upper approximation, Rj-boundary region, Rj-posi-
tive region, Rj-negative region, and Rj-accuracy measure
of a subset X. We will also illustrate the relationships be-
tween them and reveal the main properties with the help of
examples.

Definition 6. Let X⊆U and j ∈ J. /en,
R−

j (X) � x ∈ U: Ej(x)⊆X{ } and R+
j (X) � x ∈ U:{

Ej(x)⊆X≠∅} are called Rj-lower approximation and
Rj-upper approximation, respectively; Bj(X) �R+

j (X)−
R−

j (X), POSj(X) �R−
j (X), and NEGj(X) � U −R+

j (X)
are called Rj-boundary, Rj-positive, and Rj-negative re-
gions of X, respectively; Mj(X) � (|R

−
j (X)∩X|/|R+

j

(X)∩X|) is called the Rj-accuracy measure of X (if
0< |R+

j (X)∪X|<ℵ0), where |X| denotes the cardinality of
a set X and ℵ0 denotes the cardinality of the set of natural
numbers.

Theorem 2. Rj-approximations have the following prop-
erties (R⊆U2, E, F{ }∪ Ei{ }i∈I⊆ 2U, j ∈ J):

(1) R+
j (∅) � ∅⊆R−

j (∅).
(2) R+

j (U)⊆U �R−
j (U).

Table 1: j-neighborhoods and E-neighborhoods.

v w x y

Nr v, x, y{ } y{ } ∅ w, y{ }
Nl v{ } y{ } v{ } v, w, y{ }
Ni v{ } y{ } ∅ w, y{ }
Nu v, x, y{ } y{ } v{ } v, w, y{ }
N〈r〉 v, x, y{ } w, y{ } v, x, y{ } y{ }
N〈l〉 v{ } v, w, y{ } ∅ y{ }
N〈i〉 v{ } w, y{ } ∅ y{ }
N〈u〉 v, x, y{ } v, w, y{ } v, x, y{ } y{ }
Pr v{ } w{ } x{ } y{ }
Pl v, x{ } w{ } v, x{ } y{ }
Pi v{ } w{ } x{ } y{ }
Pu v, x{ } w{ } v, x{ } y{ }
P〈r〉 v, x{ } w{ } v, x{ } y{ }
P〈l〉 v{ } w{ } x{ } y{ }
P〈i〉 v{ } w{ } x{ } y{ }
P〈u〉 v, x{ } w{ } v, x{ } y{ }
Er v, w, y{ } v, w, y{ } ∅ v, w, y{ }
El v, x, y{ } w, y{ } v, x, y{ } U
Ei v, y{ } w, y{ } ∅ v, w, y{ }
Eu U v, w, y{ } v, x, y{ } U
E〈r〉 U U U U
E〈l〉 v, w{ } v, w, y{ } ∅ w, y{ }
E〈i〉 v, w{ } v, w, y{ } ∅ w, y{ }
E〈u〉 U U U U
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(3) R−
j (∩ i∈IEi) � ∩ i∈IR−

j (Ei) and R+
j (∩ i∈IEi) �

∩ i∈IR+
j (Ei). Particularly, R−

j (E)⊆R−
j (F) and

R+
j (E)⊆R+

j (F) if E⊆F.

(4) R−
j (E) � [R

+
j (E

c)]c and R+
j (E) � [R

−
j (E

c)]c.

(5) In general, R−
j [R

−
j (E)]≠R−

j (E) and
R+

j [R
+
j (E)]≠R+

j (E).

Proof. We only prove (3) and (4).

(3) Step 1: obviously, R−
j (∩ i∈IEi)⊆ (∩ i∈IR−

j )(Ei).
Conversely, for each x ∈ ∩ i∈IR−

j (Ei) (i.e., x ∈R−
j (Ei)

for each i ∈ I), we have Ej(x)⊆Ei (∀i ∈ I), and thus,
Ej(x)⊆ ∩ i∈IEi. Hence, x ∈R−

j (∩ i∈IEi), as required.

Step 2: obviously, ∪ i∈IR+
j (Ei)⊆R+

j (∪ i∈IEi). Con-
versely, for each x ∈R+

j (∪ i∈IEi), we have
Ej(x)∩ (∪ i∈IEi)≠∅, i.e., Ej(x)∩Ei0 ≠∅ for some
i0 ∈ I. /us, x ∈R+

j (Ei0)⊆ ∪ i∈IR
+
j (Ei), as required.

(4) x ∈R−
j (E

c)⇔Ej(x)⊆Ec⇔Ej (x)∩E � ∅⇔x ∉
R+

j (E)⇔x ∈ [R+
j (E)]

c. /e second equality imme-
diately comes by putting E � Fc in the first. □

Example 2. For j-NS (U, R, λj) in Example 1, the Rj-lower
approximations and Rj-upper approximations
(j ∈ r, l, i, u{ }), the Ri-accuracy measure, the lower ap-
proximationsX− and upper approximationsX+ in the sense
of [6] for P<r>, and the lower approximations X− and upper
approximations X+ in the sense of [10] for Nr are given in
Table 2 (where Y � v, w, y{ } and Z � v, x, y{ }). From Ta-
ble 2, we can see the approximations in this paper and those
in [6] (resp., [10]) are incomparable.

4. Rough Approximations Induced by
E-Topologies

We will construct rough approximations using E-neighbor-
hoods indirectly in this section. Let (U, R, λj) be j-NS (j ∈ J).
We first employ Ej-neighborhoods to generate a topologyJR,j

(called an Ej-topology) and then call the interiorJ−
R,j(X) and

the closure J+
R,j(X) of a subset X⊆U the JR,j-lower ap-

proximation andJR,j-upper approximation ofX, respectively.
/ese kinds of approximations are compared with those in
Section 3.

Theorem 3

(1) JR,j � A ∈ 2U: Ej(x)⊆A (∀x ∈ A){ } is a topology
on U satisfying U − A ∈ JR,j whenever
A ∈ JR,j (j ∈ J)

(2) Both JR,N,j � A ∈ 2U: Nj(x)⊆A (∀x ∈ A){ } and
JR,P,j � A ∈ 2U: Pj(x)⊆A (∀x ∈ A){ } are topolo-
gies on U (j ∈ J)

(3) JR,u ⊆JR,r ∩JR,l ⊆JR,r ∪JR,l ⊆JR,i

(4) JR,〈u〉 ⊆JR,〈r〉 ∩JR,〈l〉 ⊆JR,〈l〉 ∪JR,〈l〉 ⊆JR,〈i〉

(5) If R is reflexive, then JR,P,j ⊆JR,j (j ∈ J)
(6) If R is serial, then JR,P,j ⊆JR,j (j ∈ r, l, u, i{ })

(7) If R is a equivalence relation, then JR,j is constant for
all j ∈ J

Proof. We only prove (1). Obviously, JR,j is a topology on
U. For each A ∈ JR,j and each x ∈ U − A, we need to prove
Ej(x)⊆U − A. Without loss of generality, we assume
Ej(x)≠∅. Suppose v ∈ Ej(x)∩A. /en, x ∈ Ej(v) (by
/eorem 1 (3)) and Ej(v)⊆A (asA ∈ JR,j), and thus, x ∈ A.
/is is a contradiction. /erefore, Ej(x)∩A � ∅, i.e.,
Ej(x)⊆U − A. □

Definition 7. Let X⊆ U and j ∈ J. /en, J−
R,j(X) � X

o (the
interior ofX in (U,JR,j)) andJ+

R,j(X) � X
− (the closure of

X in (U,JR,j)) are called theJR,j-lower approximation and
JR,j-upper approximation, respectively; J+

R,j(X) −J−
R,j

(X), J+
R,j(X), and U −J+

R,j(X) are called JR,j-boundary,
JR,j-positive, and JR,j-negative regions of X, respectively;
MJ,j(X) � (|J

−
R,j(X)|/|J

+
R,j(X)|) is called the JR,j-accu-

racy measure of X (if 0< |J+
R,j(X)|<ℵ0 ).

/e relation between MJ,j(X) and Mj(X) (j ∈ J) is
given by the following.

Theorem 4. MJ,j(X)≤Mj(X) for each j ∈ J (if
0< |J+

R,j(X)|<ℵ0).

Proof

(i) Step 1: for each z ∈ J−
R,j(X), we have z ∈R−

j (X)
(because J−

R,j(X) � X
o and Ej(z)⊆Xo ⊆X), and

thus, J−
R,j(X)⊆R−

j (X)∩X, which implies

J
−
R,j(X)

∣∣∣∣∣
∣∣∣∣∣≤ R−

j (X)∩X
∣∣∣∣∣

∣∣∣∣∣. (1)

(ii) Step 2: let z ∈R+
j (X)∪X. If z ∈ X, then

z ∈ J−
R,j(X). If z ∉ X, then z ∈R+

j (X), and thus,
Ej(z)∩X≠∅. /is means there exists v ∈ U − z{ }
such that v ∈ Ej(z) and v ∈ X. Consequently, for any
V ∈ JR,j containing z, we have v ∈ V. /erefore,
V∩X≠∅, and thus, z ∈ J+

R,j(X) (because
J+
R,j(X) � X

− ). It follows that
R+

j (X)∪X⊆J+
R,j(X), and thus,

1

J
+
R,j(X)

∣∣∣∣∣
∣∣∣∣∣
≤ 1

R
+
j (X)∪X

∣∣∣∣∣
∣∣∣∣∣
. (2)

From (1) and (2), we can see that MJ,j(X) � (|J
−
R,j

(X)| / |J+
R,j(X)|)≤ (|R−

j (X)∩X| / |R+
j (X)∪X|) �Mj(X)

(j ∈ J). □

Example 3

(1) Now, we exemplify an application of rough ap-
proximations introduced in this paper. Let
X � x1, x2, . . . , x50{ } be a group of people who have
just reached Xian Yang Airport (but are not allowed
to outbound station) from two countries (by two
planes involving 200 people denoted by a set
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U � x1, x2, . . . , x200{ }) and will attend a meeting
holding in Xi’an. Assume that x1 and x2 are actually
infected of asymptomatic infection of new corona-
virus, Ej(x) ∈ 2U consists of x and all y ∈ U who
contacted x after x had contacted one of x1 and
x2(x ∈ U − x1, x2{ }), and Ej(x1) � x1{ } and
Ej(x2) � x2{ }. To insure the safety of this meeting,
R−

j (X) � x ∈ U|Ej(x)⊆X{ } � x1, x2{ }∪ x ∈ X|{

each person contacting x directly after x contacts one
of x1 and x2 is inX} can be looked to be the set of all
people who must run a nucleic acid test, and
R+

j (X) � X∪ x ∈ U{

|Ej(x)∩X≠∅} � X∪ x ∈ U −X|{ some person
contacting x directly after x contacts one of x1 and
x2 is in X} can be looked to be the set of all people
who should run a nucleic acid test.

(2) For j-NS (U, R, λj) in Example 1, the JR,j-lower
approximations and JR,j-upper approximations

(j ∈ r, l, i, u{ }) and the MJ,j-accuracy measure are
given in Table 3.

5. Concluding Remarks

Motivated by topology, this article has initiated two new
rough approximations by introducing a new class of
neighborhood systems (called Ej-neighborhoods) using
j-neighborhoods. We have probed the main features and
formulated the concepts of Ej-lower and Ej-upper ap-
proximations and Ej-accuracy measure which are had
contacted one of induced from different types of j and
compared them. We complete this work by studying these
concepts from a topological view and comparing them. In all
comparisons, we obtain higher accurate approximations in
the case of j � i.

In the upcoming works, we will study new types of
neighborhoods in rough set theory and use them to define a

Table 3: JR,j-lower approximations and JR,j-upper approximations (j ∈ r, l, i, u{ }).

X J−
R,u(X) J+

R,u(X) J−
R,r(X) J+

R,r(X) J−
R,l(X) J+

R,l(X) J−
R,i(X) J+

R,i(X) MJ,i(X) Mi(X)

v{ } ∅ U ∅ v, w, y{ } ∅ U ∅ v, w, y{ } 0 0
w{ } ∅ U ∅ v, w, y{ } ∅ U ∅ v, w, y{ } 0 0
x{ } ∅ U x{ } U ∅ U x{ } U 1/4 1
y{ } ∅ U ∅ v, w, y{ } ∅ U ∅ v, w, y{ } 0 0
v, w{ } ∅ U ∅ v, w, y{ } ∅ U ∅ v, w, y{ } 0 1/3
v, x{ } ∅ U x{ } U ∅ U x{ } U 1/4 1/3
v, y{ } ∅ U ∅ v, w, y{ } ∅ U ∅ v, w, y{ } 0 1/3
w, x{ } ∅ U x{ } U ∅ U x{ } U 1/4 1
w, y{ } ∅ U ∅ v, w, y{ } ∅ U ∅ v, w, y{ } 0 1/3
x, y{ } ∅ U x{ } U ∅ U x{ } U 1/4 1/4
v, w, x{ } ∅ U x{ } U ∅ U x{ } U 1/4 1/4
v, w, y{ } ∅ U v,w, y{ } v, w, y{ } ∅ U v, w, y{ } v, w, y{ } 1 1
v, x, y{ } ∅ U x{ } U ∅ U x{ } U 1/4 1
w, x, y{ } ∅ U x{ } U ∅ U x{ } U 1/4 2/3
U U U U U U U U 1 1
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Table 2: Rj-lower approximations and Rj-upper approximations (j ∈ r, l, i, u{ }).

X R−
u(X) R+

u(X) R−
r (X) R+

r (X) R−
l (X) R+

l (X) R−
i (X) R+

i (X) Mi(X) X− X+ X− X+

v{ } ∅ U x{ } Y ∅ Z x{ } v, y{ } 0 ∅ v, x{ } x{ } v{ }
w{ } ∅ Y x{ } Y ∅ w, y{ } x{ } w, y{ } 0 w{ } w{ } x{ } y{ }
x{ } ∅ Z x{ } ∅ ∅ Z x{ } ∅ 1 ∅ v, x{ } x{ } v{ }
y{ } ∅ U x{ } Y ∅ U x{ } Y 0 y{ } y{ } w, x{ } Y
v, w{ } ∅ U x{ } Y ∅ U v, x{ } Y 1/3 w{ } v, w, x{ } x{ } v, y{ }
v, x{ } ∅ U x{ } Y ∅ Y x{ } v, y{ } 1/3 v, x{ } v, x{ } x{ } v{ }
v, y{ } ∅ U x{ } Y ∅ U v, x{ } Y 1/3 y{ } Z w, x{ } Y
w, x{ } ∅ U x{ } Y ∅ U x{ } w, y{ } 1 w{ } v, w, x{ } x{ } v, y{ }
w, y{ } ∅ U x{ } Y w{ } U w, x{ } Y 1/3 w, y{ } w, y{ } w, x, y{ } Y
x, y{ } ∅ U x{ } Y ∅ U x{ } Y 1/4 y{ } Z w, x{ } Y
v, w, x{ } ∅ U x{ } Y ∅ U x{ } Y 1/4 v, w, x{ } v, w, x{ } x{ } v, y{ }
Y Y U U Y w{ } U U Y 1 w, y{ } U w, x, y{ } Y
Z Z U x{ } Y v, x{ } U v, x{ } Y 1 Z Z v,w, x{ } Y
w, x, y{ } ∅ U x{ } Y w{ } U w, x{ } Y 2/3 w, y{ } U w, x, y{ } Y
U U U U Y U U U Y 1 U U U Y
∅ ∅ ∅ x{ } ∅ ∅ ∅ x{ } ∅
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topological structure. Also, we will investigate the Ej-neigh-
borhoods and approximations on the fuzzy rough set moti-
vated from fuzzy control problems and fractional-order
nonlinear systems.
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