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In this paper, we describe an effective exact method for solving both the capacitated vehicle routing problem (cvrp) and
the vehicle routing problem with time windows (vrptw) that improves the method proposed by Baldacci et al. [Baldacci,
R., N. Christofides, A. Mingozzi. 2008. An exact algorithm for the vehicle routing problem based on the set partitioning
formulation with additional cuts. Math. Programming 115(2) 351–385] for the cvrp. The proposed algorithm is based
on the set partitioning (SP) formulation of the problem. We introduce a new route relaxation called ng-route, used by
different dual ascent heuristics to find near-optimal dual solutions of the LP-relaxation of the SP model. We describe a
column-and-cut generation algorithm strengthened by valid inequalities that uses a new strategy for solving the pricing
problem. The new ng-route relaxation and the different dual solutions achieved allow us to generate a reduced SP problem
containing all routes of any optimal solution that is finally solved by an integer programming solver. The proposed method
solves four of the five open Solomon’s vrptw instances and significantly improves the running times of state-of-the-art
algorithms for both vrptw and cvrp.
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1. Introduction
The problem of supplying customers using vehicles based
at a central depot is generally known as a vehicle routing
problem (VRP). The solution of a VRP calls for the design
of a set of routes, each performed by a vehicle starting and
ending at the depot, such that all customers are serviced,
a set of operational constraints are satisfied, and the total
route cost is minimized.

The two most studied members of the VRP family are
the capacitated VRP (cvrp) and the VRP with time win-
dows (vrptw). In the cvrp, a fleet of identical vehicles
located at a central depot has to be optimally routed to sup-
ply a set of customers with known demands. Each vehicle
can perform at most one route, and the total demand deliv-
ered by a route cannot exceed the vehicle capacity. The
vrptw generalizes the cvrp imposing that each customer
is to be visited within a specified time interval, called time
window. As the cvrp is NP-hard, so is the vrptw.

The most effective exact algorithms for the cvrp are
due to Baldacci et al. (2004), Lysgaard et al. (2004),
Fukasawa et al. (2006), and Baldacci et al. (2008). Baldacci
et al. (2004) described a branch-and-cut (bc) algorithm
based on a two-commodity network flow formulation of
the cvrp. Lysgaard et al. (2004) proposed a bc algorithm

that enhances the method of Augerat et al. (1995). The
method of Fukasawa et al. (2006) combines a bc based on
the algorithm of Lysgaard et al. (2004) with a new branch-
and-cut-and-price (bcp) algorithm based on the two-index
and set partitioning (SP) formulations. The lower bound
is computed by a column-and-cut generation method that
uses s-cycle-free q-routes (with s up to 4) instead of feasi-
ble cvrp routes and the valid inequalities used by Lysgaard
et al. (2004). The algorithm decides at the root node to use
either a pure bc or the bcp algorithm. Baldacci et al. (2008)
presented an algorithm based on the SP model strength-
ened with capacity and clique inequalities and were the
first to compute lower bounds based on elementary routes.
Their algorithm could not solve three instances solved by
Fukasawa et al. (2006). However, it is faster with regard to
the problems solved by both methods.

The first exact algorithm for the vrptw based on
the SP formulation was the branch-and-price algorithm
of Desrochers et al. (1992). This method was improved
by Kohl et al. (1999) by adding 2-path inequalities to
LP-relaxation of the SP formulation. Kohl and Madsen
(1997) proposed a branch-and-bound algorithm where the
lower bounds were computed using subgradient and bundle
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methods. These methods were based on 2-cycle elimina-
tion algorithms. Irnich and Villeneuve (2006) described a
branch-and-price algorithm where the pricing subproblem
is solved using a k-cycle elimination procedure. Algorithms
based on elementary routes were proposed by Feillet et al.
(2004) and Chabrier (2006).

Jepsen et al. (2008) described a bcp based on the SP
model and subset-row (SR) inequalities. This method was
improved by Desaulniers et al. (2008) by adding both SR
and generalized k-path inequalities and using a tabu search
heuristic, instead of dynamic programming (DP), to rapidly
generate negative reduced cost routes. Their method out-
performs all other algorithms, remarkably decreasing the
computational time, and solving 5 of the 10 open Solomon
instances.

In general, any exact algorithm for the vrptw based
on the SP model can be easily adapted to solve the cvrp
by simply relaxing the time window constraints in the
route generation phase. Nonetheless, such simple adapta-
tion might not be effective, and none of the methods pub-
lished so far in the literature for the vrptw have been
proven to effectively solve the cvrp.

The method of Baldacci et al. (2008) for the cvrp is
based on an exact solution framework that can be tai-
lored to solve the vrptw as well as several other VRPs
(see Baldacci et al. 2010). The method has the following
steps: (i) use different bounding procedures to find near-
optimal dual solutions of the LP-relaxation of the SP model
strengthened by valid inequalities; (ii) use a column-and-
cut generation procedure to reduce the integrality gap by
adding in a cutting plane fashion both strengthened capac-
ity and clique constraints; (iii) use the final dual solution
achieved at Step (ii) to generate a reduced SP problem con-
taining only the routes of reduced cost less than or equal
to the gap between a known upper bound and the lower
bound obtained; (iv) solve the resulting reduced problem
by an integer programming (ip) solver.

The key components of this method are the bounding
procedures of Step (i) that are based on state-space relax-
ation (see Christofides et al. 1981) to extend the route set
with a relaxation of feasible routes easier to compute, and
the use of bounding functions to reduce the state space
graph computed by DP when solving the pricing problem
and generating the final SP model.

Contributions of This Paper. In this paper, we describe
an exact method to solve both the vrptw and the cvrp that
improves the method of Baldacci et al. (2008).

We introduce a new route relaxation, called ng-route,
that improves other nonelementary route relaxations pro-
posed for the cvrp and vrptw. This relaxation is par-
ticularly effective for difficult vrptw instances with wide
time windows and loose capacity constraints. The ng-route
relaxation is used at Step (i) to derive a new dual ascent
heuristic and at Steps (ii) and (iii) to reduce the state-space
graph of the DP algorithm in generating elementary routes.

We describe a new family of valid inequalities, called
weak subset-row inequalities, that are a relaxation of SR
inequalities. The main advantage of these new inequalities
is that their duals can be implicity considered in solving
the pricing problem.

We propose new ideas to improve the pricing algorithm
in the column-and-cut procedure based on the use of the
dual solution achieved at Step (i) to eliminate routes of neg-
ative reduced costs with respect to the current dual solution
that cannot be in any optimal solution.

We report computational results for both vrptw and
cvrp showing that the proposed method solves 4 of
the 5 open Solomon’s vrptw instances and significantly
improves the running times of state-of-the-art algorithms
for both vrptw and cvrp.

In the following, we describe the bounding procedures
and the exact method for the vrptw and their adaptations
for the cvrp. This paper is organized as follows. In §2,
we describe the SP model for the vrptw and its relax-
ations. This section also describes the ng-route relaxation.
Section 3 describes the exact method. Section 4 presents
the bounding procedures and the algorithms for solving
the associated pricing subproblems. Section 5 presents the
column-and-cut algorithm. Section 6 describes the proce-
dure used to generate the final SP model. Section 7 reports
computational results for both vrptw and cvrp. The con-
cluding remarks are given in §8.

2. Mathematical Formulation and
Its Relaxations

The vrptw is defined on a complete digraph G= 4V ′1A5,
where V ′ = 80111 0 0 0 1 n9 is a set of n+ 1 vertices and A is
the arc set. Vertex 0 represents the depot, and the vertex
subset V = V ′\809 corresponds to n customers. With each
vertex i ∈ V ′ is associated a demand qi (we assume q0 = 0)
and a time window 6ei1 li7, where ei and li represent the ear-
liest and latest time to visit vertex i. With each arc 4i1 j5 ∈A
is associated a travel cost dij and a travel time tij > 0, the
latter including the service time at vertex i, so the depar-
ture time at any customer i ∈ V coincides with the end of
its service. We assume that matrices dij and tij satisfy the
triangle inequality; therefore, time windows, travel times,
and customer demands can be used to properly reduce the
set of arcs A (see Desrochers et al. 1992). For each vertex
i ∈ V ′, we indicate with âi ⊆ V ′ the set of successors of i
in G and with â−1

i ⊆ V ′ the set of predecessors of i in G.
A fleet of m identical vehicles of capacity Q stationed

at the depot has to fulfill customer demands. A vehi-
cle route R = 401 i11 0 0 0 1 ir 105, with r ¾ 1, is a simple
circuit in G passing through the depot, visiting vertices
V 4R5 = 801 i11 0 0 0 1 ir9, V 4R5 ⊆ V ′, and such that (i) the
total demand of visited customers does not exceed the vehi-
cle capacity Q; (ii) the vehicle leaves the depot 0 at time e0,
visits each customer in V 4R5 within its time window, and
returns to the depot before l0; (iii) if the vehicle arrives at



Baldacci, Mingozzi, and Roberti: Route Relaxation and Pricing Strategies for VRP
Operations Research 59(5), pp. 1269–1283, © 2011 INFORMS 1271

i ∈ V 4R5 before ei, the service is delayed to time ei. The
cost of route R is equal to the sum of the travel costs of
the arc set, A4R5, traversed by route R.

The vrptw consists of designing at most m routes of
minimum total cost such that each customer is visited
exactly once by exactly one route.

We use the following additional notation. Given a
set S ⊆ V , q4S5 =

∑

i∈S qi denotes the total demand
of customers in S and k4S5 the minimum number of
vehicles needed to serve all customers in S. qmin =

min8mini∈V 8qi91 q4V 5 − 4m − 15Q9 is the minimum cus-
tomer demand of any feasible route. Also, z4ub5 denotes
an upper bound on the optimal solution cost.

2.1. Set Partitioning Formulation

Let R be the index set of all feasible routes, and let ai`,
i ∈ V ′, ` ∈ R, be a (0-1) binary coefficient equal to 1 if
i ∈ V 4R`5, 0 otherwise (we assume that a0` = 11 ∀` ∈R).
Each route ` ∈R has an associated cost c`. Let x`, ` ∈R,
be a (0-1) binary variable equal to 1 if and only if route
` is in the optimal solution. The vrptw formulation based
on the SP model, hereafter called F , is

4F 5 z4F 5= min
∑

`∈R

c`x`1 (1)

s.t.
∑

`∈R

ai`x` = 11 ∀ i ∈ V (2)

∑

`∈R

x` ¶m (3)

x` ∈ 801191 ∀` ∈R0 (4)

Constraints (2) specify that each customer i ∈ V has to
be visited by exactly one route. Constraint (3) requires that
at most m routes are selected.

2.2. Relaxation LF

The LP-relaxation of formulation F can be strengthened
with the following valid inequalities.
Capacity Constraints (ccs). Let S ⊆ 8S2 S ⊆ V 1

�S�¾ 29, and let �`4S5= �84i1 j5 ∈A4R`52 i ∈ V ′\S1 j ∈ S9�.
The capacity constraints (ccs) are

∑

`∈R

�`4S5x` ¾ k4S51 ∀S ∈S0 (5)

In solving the vrptw we ignore ccs, while in solving the
cvrp we consider only a subset S of ccs a priori generated,
as described in Baldacci et al. (2008).
Strengthened Capacity (sc) Inequalities. These in-

equalities, introduced by Baldacci et al. (2004), lift ccs and
are given by inequalities (5), where the route coefficient
�`4S5 is equal to 1 if V 4R`5∩S 6= �, and 0 otherwise. The
scs are used as alternatives to the ccs (see §§4 and 5).

Subset-Row (sr3) Inequalities. Let C ⊆ 8C ⊆ V 2
�C� = 39 be a subset of all customer triplets, and let

R4C5 ⊆ R be the subset of routes serving at least two
customers in C (i.e., R4C5 = 8` ∈ R2 �V 4R`5 ∩ C� ¾ 29).
Subset-row (sr3) inequalities are

∑

`∈R4C5

x` ¶ 11 ∀C ∈C0 (6)

sr3s correspond to a subset of SR and clique inequalities
used by Jepsen et al. (2008) for the vrptw and by Baldacci
et al. (2008) for the cvrp, respectively. Hereafter, with C
(where C ∈C) we refer to both the index and the customer
triplet of an sr3 inequality.
Weak Subset-Row (wsr3) Inequalities. These inequali-

ties are a relaxed form of the sr3s (6) where, given C ∈C,
the route set R4C5 contains only those routes traversing
at least one arc 4i1 j5 with i1 j ∈ C. The reason for using
wsr3 instead of sr3s is that wsr3 duals can be implicity
considered in solving the pricing problem (see §4.5). The
sr3s (6), and thus the wsr3s, are separated by complete
enumeration.

We denote by LF the LP-relaxation of formulation F
strengthened with inequalities (5) and (6) and by z4LF 5
its optimal solution cost. Moreover, we denote by DF the
dual of problem LF . The dual variables are given by the
vectors u= 4u01 u11 0 0 0 1 un5, v = 4v11 v21 0 0 0 1 v�S�5, and g=

4g11 g21 0 0 0 1 g�C�5, where u11 0 0 0 1 un are associated with con-
straints (2), u0 ¶ 0 with constraint (3), v¾ 0 with inequal-
ities (5), and g¶ 0 with inequalities (6).

By enlarging the route set R to contain also nonneces-
sarily elementary routes, it is possible to design efficient
dual ascent heuristic procedures to find near optimal solu-
tions of DF . In §4, we describe three bounding procedures,
called H 1, H 2 and H 3, where H k provides lower bound
LBk corresponding to the cost of both a feasible DF solu-
tion 4uk1vk1gk5 and a nonnecessarily feasible LF solution
xk. In §5, we describe a column-and-cut generation proce-
dure, called H 4, for solving LF , that computes lower bound
LB4 corresponding to DF solution 4u41v41g45. In the fol-
lowing, we denote with ck` the reduced cost with respect to
4uk1vk1gk5 of route ` ∈R.

Procedure H 4 differs from classical column-and-cut gen-
eration methods for the new strategy used to solve the pric-
ing problem and the use of the dual solution 4u31v31g35 to
reduce the size of the route set R by removing any route
such that c3

` > z4ub5 − LB3. The use of the dual solution
4u31v31g35 has the main benefits of (i) eliminating routes
of negative reduced cost when solving the pricing problem
in H 4 and (ii) improving the final lower bound z4LF 5. Pro-
cedures H 1, H 2 and H 3 and H 4 are executed in sequence,
and the dual solution, 4uk1vk1gk5, of H k is used to hot-start
procedure H k+1, k = 11213.

2.3. ng-Route Relaxation

In this section, we describe a new relaxation, called
ng-route, that is used in solving the pricing subproblems in
the bounding procedures H 2, H 3, and H 4.
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2.3.1. ng-Route Relaxations for the vrptw. A for-
ward path P = 401 i11 0 0 0 1 ik−11 ik5 is an elementary path
starting from depot 0 at time e0, visiting vertices
V 4P5 = 801 i11 0 0 0 1 ik−11 ik9 within their time windows,
and ending at customer ik = �4P5 at time t4P5 with
e�4P5 ¶ t4P5¶ l�4P5. We denote by A4P5 the set of arcs tra-
versed by path P and by c4P5 =

∑

4i1 j5∈A4P5 dij the cost of
path P .

A well-known relaxation of forward paths is the 4t1 i5-
relaxation. A 4t1 i5-path is a nonnecessarily elementary path
starting from the depot at time e0, visiting a set of cus-
tomers (even more than once) within their time windows,
and ending at vertex i at time ei ¶ t ¶ li. In the 4t1 i5-
relaxation the vehicle capacity constraint is ignored. The
cost f 4t1 i5 of the least cost 4t1 i5-path with 2-cycle elim-
ination can be computed using DP (see Christofides et al.
1981). It can be shown that f 4t1 i5 is a valid lower bound
on the cost c4P5 of any forward path P , such that t4P5= t
and �4P5= i.

A 4t1 i5-route is 4t105-path, visiting at time t the last
customer i before arriving at depot 0. The cost of the 4t1 i5-
route of minimum cost is given by f 4t1 i5+di0.

The new ng-route relaxation can be described as fol-
lows. Let Ni ⊆ V be a set of selected customers for ver-
tex i (according to some criterion), such that Ni 3 i and
�Ni�¶ã4Ni5, where ã4Ni5 is a parameter (e.g., ã4Ni5= 5,
∀ i ∈ V , and Ni contains i and the four nearest customers
to i). The sets Ni allow us to associate with each forward
path P = 401 i11 0 0 0 1 ik5 the subset ç4P5 ⊆ V 4P5 contain-
ing customer ik and every customer ir , r = 11 0 0 0 1 k − 1
of P that belongs to all sets Nir+1

1 0 0 0 1Nik
associated with

the customers ir+11 0 0 0 1 ik visited after ir . The set ç4P5 is
defined as

ç4P5=

{

ir 2 ir ∈

k
⋂

s=r+1

Nis
1 r = 11 0 0 0 1 k− 1

}

⋃

8ik90 (7)

For example, let P = 4011121314155 be a path ending at
vertex 5, and let N1 = 811101119, N2 = 821101119, N3 =

8112139, N4 = 8213149, and N5 = 8213159. Then 1 y N2 ∩

N3 ∩ N4 ∩ N5, 2 ∈ N3 ∩ N4 ∩ N5, 3 ∈ N4 ∩ N5, and 4 y N5.
Thus, from expression (7) we have ç4P5= 8213159.

A forward ng-path 4NG1 t1 i5 is a nonnecessarily ele-
mentary path P = 401 i11 0 0 0 1 ik−11 ik = i5 starting from the
depot at time e0, visiting a subset of customers (even more
than once) within their time windows such that NG =

ç4P5, ending at customer i at time ei ¶ t ¶ li, and such
that i y ç4P ′5, where P ′ = 401 i11 0 0 0 1 ik−15. We denote
by f 4NG1 t1 i5 the cost of the least cost forward ng-path
4NG1 t1 i5.

An 4NG1 t1 i5-route is an 4NG1 t105-path visiting at
time t the last customer i before arriving at the depot.
The cost of the least cost 4NG1 t1 i5-route is given by
f 4NG1 t1 i5+di0.

Functions f 4NG1 t1 i5 can be computed using DP as fol-
lows. Let ì4t1 j1 i5 be the subset of departure times from

customer j to arrive at customer i at time t when j is visited
immediately before i, that is, (i) ì4t1 j1 i5 = 8t′2 ej ¶ t′ ¶
min8lj1 t − tji99 if t = ei, and (ii) ì4t1 j1 i5= 8t − tji2 ej ¶
t− tji ¶ lj9 if ei < t ¶ li. The state-space graph H= 4E1ë5
is defined as follows:

E= 84NG1 t1 i52 ∀NG⊆Ni

s.t. NG 3 i1 ∀ t1 ei ¶ t ¶ li1 ∀ i ∈ V ′91 (8)

ë = 844NG′1 t′1 j51 4NG1 t1 i552 ∀ 4NG′1 t′1 j5

∈ë−14NG1 t1 i51 ∀ 4NG1 t1 i5 ∈E91 (9)

where ë−14NG1 t1 i5 = 84NG′1 t′1 j52 ∀NG′ ⊆ Nj , s.t.
NG′ 3 j and NG′ ∩ Ni = NG\8i91 ∀ t′ ∈ ì4t1 j1 i51 ∀ j ∈

â−1
i 9. Notice that the condition NG′ ∩ Ni = NG\8i9

imposes that a state 4NG1 t1 i5 can be reached only from a
state 4NG′1 t′1 j5 such that i yNG′.

The dynamic programming recursion for computing
f 4NG1 t1 i5 is as follows:

f 4NG1 t1 i5= min
4NG′1 t′1 j5∈ë−14NG1 t1 i5

8f 4NG′1 t′1 j5+dji91

∀ 4NG1 t1 i5 ∈E0 (10)

The following initialization is required: f 48091 e0105= 0
and f 48091 t105= �, ∀ t such that e0 < t ¶ l0.

The cost c4P5 of any elementary forward path P satisfies
the following inequality:

c4P5¾ min
NG⊆V 4P5∩N�4P5

8f 4NG1 t4P51�4P5590 (11)

Notice that recursion (10) allows 2-vertex loops, which
can be eliminated by using the method of Christofides et al.
(1981). Nonetheless, we do not implement this method
because of the additional memory required and because, in
practice, whenever sets Ni contain the 8–10 nearest cus-
tomers to i, rarely the resulting 4NG1 t1 i5-paths contain
2-vertex loops.

The quality of functions f 4NG1 t1 i5 strongly depend on
the sets Ni, i ∈ V . When Ni contains all customers (i.e.,
Ni = V , ∀ i ∈ V ), then it is quite obvious that f 4NG1 t1 i5
provide elementary least cost paths. In the computational
tests (see §7), we show that a good trade-off between the
quality of functions f 4NG1 t1 i5 achieved and the comput-
ing time spent to compute (10) is to define each set Ni,
∀ i ∈ V , to contain the k-nearest customers to i, for a lim-
ited value of k (k = 8110).

Notice that the decremental state-space (see Righini and
Salani 2008) and the partial elementarity (see Desaulniers
et al. 2008) relaxations are special cases of the relaxed
state-space H. These relaxations correspond to the relaxed
state-space H obtained by setting Ni = V̂ , i ∈ V , where
V̂ ⊆ V is a selected subset of customers. The resulting DP
algorithm (10) prevents multiple visits to the customers in
V̂ in the paths associated with f 4NG1 t1 i5, allowing mul-
tiple visits to the others.
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2.3.2. Reverse Functions f −1(t1 i) and f −1(NG1 t1 i5.
We define a backward path P̄ = 4�4P̄ 5= ik1 ik+11 0 0 0 1 ih105
as a path starting from vertex �4P̄ 5 at time t4P̄ 5, visiting
customers in V 4P̄ 5 = 8ik1 ik+11 0 0 0 1 ih109 within their time
windows, and ending at the depot before time l0. Lower
bounds on the cost c4P̄ 5 of P̄ can be derived using the
4t1 i5-path and the ng-path as follows.

A backward 4t1 i5-path is a nonnecessarily elementary
path starting from i at time t, visiting a set of customers
(even more than once) within its time windows, and ending
at the depot before l0. Denote by f −14t1 i5 the cost of the
least cost backward 4t1 i5-path without 2-vertex loops.

With a backward P̄ = 4ik1 ik+11 0 0 0 1 ih105, we associate
the subset ç−14P̄ 5 ⊆ V 4P̄ 5 containing customer ik and
every customer ir , r = k+11 0 0 0 1 h, of P̄ that belongs to all
sets Nik

1Nik+1
1 0 0 0 1Nir−1

. The set ç−14P̄ 5 is defined as:

ç−14P̄ 5= 8ik9∪

{

ir 2 ir ∈

r−1
⋂

s=k

Nis
1 r = k+ 11 0 0 0 1 h

}

0 (12)

For example, let P̄ = 4516171819105 be a path start-
ing from vertex 5, and let N5 = 8517189, N6 = 8617189,
N7 = 87181109, N8 = 88191109 and N9 = 88191109. Then,
6 yN5, 7 ∈N5 ∩N6, 8 ∈N5 ∩N6 ∩N7, and 9 yN5 ∩N6 ∩N7 ∩

N8. Thus, from expression (12) we have ç4P̄5= 8517189.
A backward ng-path 4NG1 t1 i5 is a nonnecessarily ele-

mentary path P̄ = 8ik1 ik+11 0 0 0 1 ih109 starting from i at time
ei ¶ t ¶ li, visiting a subset of customers (even more than
once) within their time windows such that NG = ç−14P̄ 5,
ending at the depot before l0, and such that i y ç−14P ′5,
where P ′ = 4ik+11 0 0 0 1 ih105. Let f −14NG1 t1 i5 be the cost
of the least-cost backward ng-path 4NG1 t1 i5.

Functions f −14t1 i5 and f −14NG1 t1 i5 can be computed
with the same DP recursions used to compute f 4t1 i5 and
f 4NG1 t1 i5 on the vrptw instance resulting from the fol-
lowing operations: (i) for each vertex i ∈ V ′, replace time
window 6ei1 li7 with 6e′

i1 li
′7, where ei

′ = l0 − li and li
′ =

l0 −ei; (ii) replace the cost and time matrices 6dij 7 and 6tij 7
with their transposed matrices 6dij 7

T and 6tij 7
T . It is easy to

see that c4P̄ 5 and f −14NG1 t1 i5 satisfy an inequality simi-
lar to (11).

2.3.3. ng-Route Relaxations for the cvrp. To solve
the cvrp, we use the 4q1 i5-path and ng-path relaxations
defined as follows.

A 4q1 i5-path is a nonnecessarily elementary path start-
ing from the depot, visiting a set of customers of total
demand equal to q, and ending at vertex i. The cost f 4q1 i5
of the least cost 4q1 i5-path can be computed as described
by Christofides et al. (1981). A 4q1 i5-route is a 4q105-
path where i is the last customer visited before arriving at
the depot.

A forward ng-path 4NG1q1 i5 is a nonnecessarily ele-
mentary path P = 401 i11 0 0 0 1 ik−11 ik = i5 starting from the
depot, visiting a subset of customers of total demand equal
to q such that NG = ç4P5, ending at customer i, and

such that i yç4P ′5, where P ′ = 401 i11 0 0 0 1 ik−15. We denote
by f 4NG1q1 i5 the cost of the least cost forward ng-
path 4NG1q1 i5. An 4NG1q1 i5-route is an 4NG1q105-path
where i is the last customer visited before arriving at the
depot. Functions f 4NG1q1 i5 can be computed using DP
recursions similar to (10) on graph H= 4E1ë5 defined as

E=

{

4NG1q1 i52 qi ¶ q ¶Q1 ∀NG⊆Ni s.t. NG 3 i and

∑

j∈NG

qj ¶ q1 ∀ i ∈ V ′

}

1 (13)

ë = 844NG′1 q′1 j51 4NG1q1 i552 ∀ 4NG′1 q′1 j5

∈ë−14NG1q1 i51 ∀ 4NG1q1 i5 ∈E91 (14)

where ë−14NG1q1 i5 = 84NG′1 q − qi1 j52 ∀NG′ ⊆ Nj s.t.
NG′ 3 j and NG′ ∩Ni =NG\8i9, ∀ j ∈ â−1

i 9.

2.3.4. Reverse Functions f −1(q1 i) and f −1(NG1q1 i).
By using the transpose of the cost matrix 6dij 7, we can
compute the reverse functions f −14q1 i5 and f −14NG1q1 i5
with recursions similar to those used for f 4q1 i5 and
f 4NG1q1 i5. Obviously, for symmetric cvrps we have
f −14q1 i5= f 4q1 i5 and f −14NG1q1 i5= f 4NG1q1 i5.

3. An Exact Algorithm
In this section, we describe an exact algorithm for solving
both the vrptw and the cvrp. The algorithm generates a
reduced problem F̂ obtained from F by replacing the route
set R with R̂ ⊆ R containing any optimal solution and
solves F̂ with an ip solver. The core of the algorithm is
the bounding procedures H 1, H 2, H 3, and H 4 introduced in
§2.2 and described in §§4.2, 4.3, 4.4, and 5. The algorithm
can be described as follows.

1. Execute in sequence H 1, H 2, and H 3. If the solution
xk corresponding to LBk is a feasible F solution, for some
k ∈ 8112139, xk is an optimal solution, stop.

2. Call procedure genr (see §4.5) to generate the largest
route set R3 ⊆ R such that: (a) c3

` ¶ z4ub5 − LB3, ∀` ∈

R3, and (b) �R3� ¶ ã4R5, where ã4R5 is a parameter.
If �R3� < ã4R5, R3 contains the routes of any optimal
solution of cost less than or equal to z4ub5 and is defined
optimal. Otherwise, R3 is defined not-optimal.

3. Call procedure H 4 to compute LB4 corresponding to
the cost of the DF solution4u41v41g45. If the optimal primal
solution x4 of LF is integer, stop.

4. We have two cases:
(i) R3 is optimal. Select the subset R̂ ⊆ R3 of routes

such that c4
` ¶ z4ub5−LB4.

(ii) R3 is not-optimal. Call genrf (see §6) to compute
the set of routes R̂ such that:

4a5 c3
` ¶ z4ub5−LB31 ∀` ∈ R̂1

4b5 c4
` ¶ z4ub5−LB41 ∀` ∈ R̂1 4c5 �R̂�¶ã4R50 (15)

If �R̂�<ã4R5, then R̂ contains the routes of any optimal
solution and is defined optimal.
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5. Solve problem F̂ derived from F by replacing R with
R̂ and adding the subsets of scs and sr3s saturated by the
optimal LF solution produced by H 4. Let z4F̂ 5 be the cost
of the optimal solution x̂ of F̂ (we assume z4F̂ 5 = � if
no feasible solution exists). If R̂ is optimal, x̂ is an opti-
mal solution; otherwise, min8z4F̂ 51 z4ub59 is a valid upper
bound to z4F 5.

4. Bounding Procedures H1, H2, and H3

Bounding procedures H 1, H 2, and H 3 use the same
column-and-cut generation method, called CCG, to find
lower bounds LB1, LB2 and LB3 corresponding to the cost
of three different near-optimal DF solutions. Procedures
H 1 and H 2 are based on two different relaxations and add
ccs. Procedure H 3 is based on elementary routes and adds
scs and wsr3s.

4.1. Algorithm CCG

CCG differs from standard column-and-cut generation
methods based on the simplex algorithm as it uses a dual
ascent heuristic to solve the master problem. CCG was
proposed by Baldacci et al. (2008) for the cvrp and used
by Boschetti et al. (2008) for the SP problem, who showed
that CCG is faster than the simplex as it is not affected
by the typical degeneracy of the simplex. A step-by-step
description of CCG is provided in the e-companion paper.

Define A4C5 = 84i1 j5 ∈ A2 i1 j ∈ C9, and let C` =

8C ∈ C2 �A4C5 ∩ A4R`5� ¾ 19 be the subset of wsr3s
involving the route `. Algorithm CCG is based on the fol-
lowing theorem.

Theorem 1. Let us associate penalties �i ∈ �, ∀ i ∈ V ,
with constraints (2), �0 ¶ 0 with constraint (3), �S ¾ 0,
∀S ∈S, with constraints (5) in the form of either sc or cc,
and �C ¶ 0, ∀C ∈ C, with constraints (6) in the relaxed
form of wsr3. Let R be the index set of non-necessarily
elementary routes, and let Ri ⊆ R, i ∈ V , be the index
subset of the routes visiting customer i. For each i ∈ V ,
compute

bi =qimin
`∈Ri

{

c`−
∑

i∈V ′ai`�i−
∑

S∈S�`4S5�S −
∑

C∈C`
�C

∑

i∈V ai`qi

}

0

(16)

A feasible DF solution 4u1v1g5 of cost z4DF 4�1�1�55 is
given by the following expressions:

ui = bi +�i1 ∀ i ∈ V 1 u0 = �01 vs =�S1 ∀S ∈S1

andgC =�C1 ∀C ∈C0 (17)

Proof. The proof is provided in the e-companion to this
paper. �

Algorithm CCG is a column-and-cut generation-like
method for solving the problem

LCG= max
�1�1�

8z4DF 4�1�1�5590 (18)

CCG executes a number of macro-iterations to compute
a dual solution 4ū1 v̄1 ḡ5 of the master problem, defined by
the route subset R̄ ⊆ R, solving problem (18) with a pre-
defined number Maxit2 of subgradient iterations to modify
the penalty vectors 4�1�1�5.

Baldacci et al. (2008) have shown that a valid subgra-
dient of function z4DF 4�1�1�55 at point 4�1�1�5 can
be computed by associating with the current DF solution
a nonnecessarily feasible LF solution x of cost z4LF 5 =

z4DF 4�1�1�55 defined as follows. Let R̃ be the index
set of the distinct routes producing bi, i ∈ V , in expres-
sions (16), and let `4i5 be the index of the route in R̃
associated with bi, i ∈ V . Solution x is computed as x` =
∑

i∈V ai`4qi/4
∑

i∈V ai`qi55�
i
`, ` ∈ R̃, by setting �i

`4i5 = 1 and
�i
` = 0, ∀` ∈ R̃\8`4i59, ∀ i ∈ V . The values of the left-hand

side of constraints (2), (3), (5), and (6) with respect to x are
used to update penalty vectors �, �, and � by means of
the usual sugradient expressions, where in computing the
step size we do not assume to know an upper bound z4ub5
but use z4ub5= 102z4LF 5.

The set S of cc (or sc) inequalities is generated a
priori (see §2.2). After computing the master dual solu-
tion 4ū1 v̄1 ḡ5, CCG adds to the master as subset of wsr3
inequalities violated by the LF solution x. Moreover, CCG
generates a subset N of routes having negative reduced cost
with respect to 4ū1 v̄1 ḡ5. If N 6= �, then CCG sets R̄ =

R̄∪N; otherwise, 4ū1 v̄1 ḡ5 is a feasible DF solution. CCG
terminates after Maxit1 macro iterations (Maxit1 defined a
priori).

We denote by 4u∗1v∗1g∗5 and x∗ the final DF and LF
solutions of cost LCG achieved by CCG using penalty
vectors 4�∗1�∗1�∗5, respectively. A step-by-step descrip-
tion of CCG is provided in the e-companion to this paper.

4.2. Bounding Procedure H1

Procedure H 1 enlarges the route set R with the t-routes
(to solve the vrptw) or the q-routes (in the cvrp, see
Christofides et al. 1981). The initial route set R̄ of the
master problem contains all single customer routes 401 i105,
i ∈ V . wsr3s are ignored (i.e., we set C= �); solving the
vrptw, we initialize S = �, whereas in the cvrp the set
S contains ccs and is generated a priori as described in
Baldacci et al. (2008). We initialize � = 0, � = 0, and
�= 0.

Define the modified arc cost d̄ij = dij − 41/254ūi + ūj5−
∑

S∈Sij
v̄S , ∀ 4i1 j5 ∈A, with respect to the current dual solu-

tion 4ū1 v̄1 ḡ5, where Sij = 8S ∈S2 4i1 j5 ∈A1 i ∈ V ′\S1 j ∈

S9. The set N is computed as follows. If we use t-routes,
we compute functions f 4t1 i5 using the modified arc costs
d̄ij instead of dij . Let h4i5 = minet¶t¶li

8f 4t1 i5+ d̄i09. The
set N contains any t-route corresponding to h4i5 < 0, i ∈ V .
Similarly, we compute N when R̄ contains q-routes.

At the end, H 1 sets 4u11v11g15 = 4u∗1v∗1g∗5, x1 = x∗,
4�11�11�15= 4�∗1�∗1�∗5, LB1 = LCG.
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4.3. Bounding Procedure H2

Procedure H 2 enlarges the route set R with the ng-routes
and adds to LF the same set S of ccs used by H 1. wsr3s
(6) are ignored. We initialize 4�1�1�5 = 4�11�11�15,
define d1

ij = dij − 41/254u1
i + u1

j 5−
∑

S∈Sij
v1
S , ∀ 4i1 j5 ∈ A,

and compute Ni to be the ã4Ni5 nearest customers to i
according to d1

ij . We compute functions f 4NG1 t1 i5 using
d1
ij instead of dij in recursions (10) and the costs h4i5 =

min4NG1 t1 i5∈E8f 4NG1 t1 i5+d1
i09, i ∈ V , of the least-cost ng-

route visiting i immediately before arriving at the depot.
The route set R̄ contains the ng-routes corresponding to
h4i5 < 0, i ∈ V .

At each iteration, to generate the set N, we com-
pute functions f 4NG1 t1 i5 with the modified arc cost d̄ij ,
∀ 4i1 j5 ∈A, and Ni contains the ã4Ni5 nearest customers to
i according to d̄ij . N contains every ng-route corresponding
to h4i5 < 0, i ∈ V .

At the end, H 2 sets 4u21v21g25 = 4u∗1v∗1g∗5, x2 = x∗,
4�21�21�25= 4�∗1�∗1�∗5, LB2 = LCG.

4.4. Bounding Procedure H3

Procedure H 3 uses the set of elementary routes R. The sets
R̄ and N are generated using the procedure genr described
below. Given a DF solution 4ũ1 ṽ1 g̃5 and two parameters
ã and �, genr generates at most ã routes of reduced cost
less than or equal to � with respect to 4ũ1 ṽ1 g̃5.

The initial route set R̄ is obtained by setting ã = ãa,
4ũ1 ṽ1 g̃5 = 4u21v21g25, and � = z4ub5 − LB2, and adding
to R̄ all single customer routes. Moreover, we initialize
4�1�1�5= 4�21�21�25. In generating N, we set ã=ãb,
4ũ1 ṽ1 g̃5= 4ū1 v̄1 ḡ5, and � = −� (say �= 10−6).
H 3 adds to LF the set S of ccs used by H 1 and H 2 in

the form of scs and separates wsr3s.
At the end, H 3 sets 4u31v31g35 = 4u∗1v∗1g∗5, x3 = x∗,

4�31�31�35= 4�∗1�∗1�∗5, LB3 = LCG.

4.5. Procedure genr

genr is a DP algorithm that generates elementary routes
using bounding functions based on the ng-path relax-
ation. genr is an extension of the algorithm described by
Baldacci et al. (2008) for the symmetric cvrp that, in turn,
is based on the method proposed by Mingozzi et al. (1994)
and adapted by Baldacci et al. (2006) for the asymmet-
ric cvrp on a multigraph. Similar methods have been used
by Righini and Salani (2008), Jepsen et al. (2008), and
Desaulniers et al. (2008).

In §2.3, we gave the definition of forward and
backward paths. In addition, for a forward path P =

401 i11 0 0 0 1 ik−11 ik5 we refer to ik−1 with �4P5 and
set q4P5 =

∑

i∈V 4P5 qi, and for a backward path P̄ =

8ik1 ik+11 0 0 0 1 ih109 we refer to ik+1 with �4P̄5 and set
q4P̄ 5=

∑

i∈V 4P̄ 5 qi.
Let � be a time such that e0 < � < l0 (say, � = �4l0 −

e05/2�). We define F as the set of all forward paths such
that �4P5 is visited at time less than � , ∀P ∈ F, and B

as the set of all backward paths such that �4P̄5 is visited
at time greater than � , ∀ P̄ ∈ B, plus all backward paths
P̄ = 4k105, ∀k ∈ V . genr is based on the observation that
all feasible vrptw routes can be obtained combining any
pair of paths 4P1 P̄ 5, P ∈F, P̄ ∈B, satisfying the following
feasibility conditions:

�4P5= �4P̄ 51 V 4P5∩V 4P̄ 5= 801�4P591

t4P5¶ t4P̄ 51 and q4P5+ q4P̄ 5− q�4P5 ¶Q0 (19)

genr is a two-phase algorithm. Given a DF solution
4ũ1 ṽ1 g̃5, it generates at most ã routes of reduced cost less
than or equal to �. In Phase 1, it generates F and B using a
procedure called genp; in Phase 2, it derives feasible routes
by combining F and B using a procedure called combine.
genr is based on the following lemma.

Lemma 1. Let d̃ij = dij − 41/254ũi + ũj5−
∑

S∈Sij
ṽs be the

arc reduced costs with respect to 4ũ1 ṽ1 g̃5, and let c̃4P5=
∑

8i1 j9∈A4P5 d̃ij , P ∈F, and c̃4P̄ 5=
∑

8i1 j9∈A4P̄5 d̃ij , P̄ ∈B. Let
` ∈ R be the route of reduced cost c̃` = c` −

∑

i∈V 4R`5
ũi −

∑

S∈S �`4S5ṽS −
∑

C∈C`
g̃C , where S corresponds to scs,

resulting from a given pair of paths P and P̄ satisfying
conditions (19). The following inequalitity holds:

c̃4P5+ c̃4P̄ 5+¶ c̃`0 (20)

Proof. The proof is provided in the e-companion to this
paper. �

genr is called (i) at the beginning of H 3 to generate the
route set R̄ of the initial master problem setting 4ũ1 ṽ1 g̃5=

4u21v21g25 and � = z4ub5−LB2; (ii) in H 3 to generate the
set N of negative reduced cost routes setting 4ũ1 ṽ1 g̃5 =

4ū1 v̄1 ḡ5 and � = −�; (iii) at Step 2 of the exact method
(see §3) to generate the route set R3 setting 4ũ1 ṽ1 g̃5 =

4u31v31g35 and � = z4ub5−LB3.

4.5.1. Procedure genp. Procedure genp is Phase 1
of genr and computes F and B using bounding functions
based on the ng-path relaxation described in §2.3.

In generating the set B, genp imposes that any path
P̄ ∈ B is not dominated by any other path P̄ ′ ∈ B such
that V 4P̄ 5 = V 4P̄ ′5, �4P̄ 5 = �4P̄ ′5, c4P̄ 5 ¾ c4P̄ ′5, and
t4P̄ 5¶ t4P̄ ′5.

Let ¶lb4P̄ 5 be a lower bound on the reduced cost c̃`, with
respect to 4ũ1 ṽ1 g̃5, of any route R` containing path P̄ . genp
is a Dijkstra-like algorithm (see Baldacci et al. 2008) gener-
ating B as a sequence of undominated paths 4P̄ 11 0 0 0 1 P̄ h5,
with h ¶ ã4B5, such that ¶lb4P̄ 15 ¶ · · · ¶ ¶lb4P̄ h5 ¶ �,
where ã4B5 is a parameter. To compute ¶lb4P̄ 5 we have to
consider two cases.

Case 1: g̃ = 0 (i.e., C = �5, functions f 4NG1 t1 i5 are
computed with the modified costs d̃ij , and the subsets Ni,
i ∈ V contain the ã4Ni5 nearest customers to i according to
d̃ij . ¶lb4P̄ 5 is given by

¶lb4P̄ 5= c̃4P̄ 5

+ min
NG⊆Ni s.t. NG∩V 4P̄ 5=8�4P̄ 59t′¶t4P̄ 5

{

f 4NG1 t′1�4P̄ 55
}

0 (21)
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Case 2: g̃ 6= 0, ¶lb4P̄ 5 is computed extending the ng-
relaxation to consider the dual variables g̃. We define Ni =
⋃

C∈C2 i∈C C, i ∈ V and, for all i ∈ V such that �Ni� <
ã4Ni5, we add to Ni the ã4Ni5 − �Ni� nearest customers
to i according to d̃ij not in Ni. We derive an expanded
state-space graph H̃ = 4Ẽ1 ë̃ 5 from H by partitioning all
paths represented by state 4NG1 t1 i5 ∈E in �â−1

i � partitions,
where each partition is identified by the last vertex j visited
before i and is represented by a state 4NG1 t1 j1 i5 ∈ Ẽ. The
set Ẽ and function ë̃−14NG1 t1 j1 i5 are as follows:

Ẽ= 84NG1 t1 j1 i52 ∀NG⊆Ni s.t. NG 3 i1

∀ j ∈ â−1
i 1 ∀ i ∈ V ′1 ∀ t1 ei ¶ t ¶ li791 (22)

ë̃−14NG1 t1 j1 i5= 84NG′1 t′1 k1 j52 ∀NG′
⊆Nj s.t.

NG′
3 j and NG′

∩Ni =NG\8i91 ∀k ∈ â−1
j 1 ∀ j ∈ â−1

i 1

∀ t′ ∈ì4t1 j1 i591 ∀ 4NG1 t1 j1 i5 ∈ Ẽ0 (23)

Then, ë̃ = 844NG′1 t′1 k1 j51 4NG1 t1 j1 i552 ∀ 4NG′1 t′1 k1 j5
∈ ë̃−14NG1 t1 j1 i51 ∀ 4NG1 t1 j1 i5 ∈ Ẽ9. Let Cij = 8C ∈

C2 4i1 j5 ∈ A4C59. The DP recursion (10) can be easily
modified to compute the cost f 4NG1 t1 j1 i5 of the least-cost
ng-path 4NG1 t1 j1 i5 as follows:

f 4NG1t1j1i5= min
4NG′1 t′1k1j5∈ë̃−14NG1t1j1 i5

{

f 4NG′1t′1k1j5+d̃ji

−
∑

C∈Cji\Ckj

g̃C

}

1 ∀4NG1t1j1i5∈ Ẽ0 (24)

The following lemma gives a method for computing
¶lb4P̄ 5.

Lemma 2. Let i = �4P̄ 5 and k = �4P̄5. Lower bound
¶lb4P̄ 5 can be computed as follows:

¶lb4P̄ 5= c̃4P̄ 5−
∑

C∈C s.t.
�A4C5∩A4P̄5�¾1

g̃C

+ min
NG⊆Ni s.t. NG∩V 4P̄ 5=8i9

t′¶t4P̄ 51 j∈â−1
i

8f 4NG1t′1j1i5+ g̃8jik991 (25)

where g̃8jik9 is the dual of inequality (6) corresponding to
C = 8j1 i1 k9 (g̃8jik9 = 0 if 8j1 i1 k9yC).

Proof. The proof is provided in the e-companion to this
paper. �

Similarly, genp generates the path set F as a sequence
of undominated paths 4P 11 0 0 0 1 P h5, with h ¶ ã4F5, such
that ¶lb4P 15¶ · · ·¶ ¶lb4P h5¶ �, where ã4F5 is a parameter.
¶lb4P5 is computed similarly as described above for B using
the reverse functions f −14NG1 t1 i5 and f −14NG1 t1 j1 i5.

4.5.2. Procedure combine. This procedure combines
the path sets F and B to derive at most ã routes of reduced
cost with respect to 4ũ1 ṽ1 g̃5 less than or equal to � using
the iterative method described by Baldacci et al. (2006).

Because of Lemma 1, routes of reduced cost less
than or equal to � can be generated combining only
path pairs 4P1 P̄ 5 such that c̃4P5 + c̃4P̄ 5 ¶ �. combine
dynamically generates a sequence of pairs 4P r11 P̄ s151 0 0 0 1
4P rk 1 P̄ sk51 0 0 0 1 4P rh1 P̄ sh5 such that each pair satisfies con-
ditions (19) and c̃4P r15+ c̃4P̄ s15¶ · · · ¶ c̃4P rk5+ c̃4P̄ sk5¶
· · ·¶ c̃4P rh5+ c̃4P̄ sh5¶ �. The pool of routes generated by
combine contains any route R resulting from the pairs of
paths in the sequence, such that c̃4R5 ¶ � and R is not
dominated by any other route R′ previously generated (i.e.,
R′ dominates R if V 4R′5= V 4R5 and c̃4R′5¶ c̃4R5).

The procedure terminates as soon as ã routes have been
found or all pairs have been considered.

4.5.3. genr for the cvrp. Unlike the vrptw, the path
sets F and B are defined as in Baldacci et al. (2008):
F contains any forward path P such that q4P5 ¶ Q/2 +

q�4P5, and B contains any backward path P̄ such that
q4P̄ 5¶Q/2 + q�4P̄ 5 (for symmetric cvrps F and B coin-
cide).

Moreover, the lower bound ¶lb4P̄ 5 is computed with
bounding functions f 4NG1q1 i5, if g̃= 0, or f 4NG1q1 j1 i5,
if g̃ 6= 0. Functions f 4NG1q1 j1 i5 are derived by expanding
f 4NG1q1 i5 so that j is the vertex preceding i as described
in §4.5.1 for functions f 4NG1 t1 j1 i5.

5. Column-and-Cut Generation
Procedure H4

H 4 is a column-and-cut generation procedure based on the
simplex algorithm to solve relaxation LF . H 4 differs from
the methods of Jepsen et al. (2008), Desaulniers et al.
(2008), and Baldacci et al. (2008) for the strategy used for
solving the pricing problem.

Before starting H 4 (see Step 2 of the exact algorithm
in §3) an attempt is made to generate the set R3 of all
routes such that c3

` ¶ z4ub5−LB3. The set R3 is generated
by genr imposing that �F�¶ã4F5, �B�¶ã4B5, and that
at most ã4R5 are generated. We call F3 the set F, B3 the
set B, and R3 the set R generated by genr. Define each set
F3, B3, and R3 as optimal if �F3�<ã4F5, �B3�<ã4B5,
and �R3� < ã4R5. The set R3 is optimal if both F3 and
B3 are optimal.

The route set R̄ of the initial master problem of H 4 is
obtained by extracting the ãa routes of minimum reduced
cost with respect to 4u31v31g35 from R3 and by adding all
single customer routes. We initialize the set C of sr3s as
C= � and use the same set S of scs of H 3.

At each iteration, a set N of at most ãb negative reduced
cost routes with respect to the current dual solution 4ū1 ḡ1 v̄5
is produced by procedure genr4 (see §5.1). The set N is
either extracted from R3 or generated by combining sets
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F3 and B3. The sets F3 and B3 are newly generated when
necessary if they are not-optimal.

At each iteration, H 4 adds the set C′ of at most ã4C5
sr3s most violated by the current LF solution. H 4 ends if
N= � and C′ = � and achieves a DF solution 4u41v41g45
of cost LB4.

5.1. Procedure genr4

Procedure genr4 is called at each iteration of H 4 to gen-
erate the set N of at most ãb routes of negative reduced
cost with respect to the current dual solution 4ū1 v̄1 ḡ5 of
the master problem.

genr4 performs the following steps:
1. Extract from R3 a set of at most ãb routes of negative

reduced cost and add them to N. If N 6= � or R3 is optimal,
stop.

2. Call procedure combine4 that combines the sets F3

and B3 to derive the set N. If N 6= � or both sets F3 and
B3 are optimal, stop.

3. If F3 is not-optimal, call procedure genp4 to generate
a new path set F and set F3 =F (F3 is still not-optimal).

4. Similarly to the previous step, if B3 is not-optimal,
call procedure genp4 to generate a new path set B and set
B3 =B (B3 is still not-optimal).

5. Call procedure combine4 that combines the sets F3

and B3 to derive the set N.
If genp4 or combine4 run out of memory, H 4 and the

exact method terminate prematurely.

5.2. Procedure GENP4

Procedure genp4 generates sets F and/or B in steps 3 and
4 of genr4. genp4 is similar to procedure genp but applies
different fathoming rules and an additional dominance rule
introduced by Jepsen et al. (2008). In generating B, proce-
dure genp4 applies the following rules.

Let lb34P̄ 5, P̄ ∈B, be a lower bound to the reduced cost
with respect to the dual solution 4u31v31g35 found by H 3

of any route R containing path P̄ . Lower bound lb34P̄ 5
corresponds to ¶lb4P̄ 5 described in §4.5.1 when 4ũ1 ṽ1 g̃5 is
replaced with 4u31v31g35.

Fathoming 1. Any path P̄ ∈ B such that lb34P̄ 5 >
z4ub5 − LB3 can be fathomed because P̄ cannot generate
any route of any vrptw solution of cost less than or equal
to z4ub5.

Let l̄b4P̄ 5, P̄ ∈B, be a lower bound to the reduced cost
with respect to the dual solution 4ū1 v̄1 ḡ5 of any route con-
taining path P̄ .

Fathoming 2. Any path P̄ such that l̄b4P̄ 5 ¾ 0 is
fathomed.

Lower bound l̄b4P̄ 5 can be computed as described in the
following lemma.

Lemma 3. Let functions f 4NG1 t1 i5 be computed with the
arc costs d̄ij = dij − 41/254ūi + ūj5 −

∑

S∈Sij
v̄S . Let c̄4P̄ 5

be the cost of path P̄ using arc costs d̄ij , and let i = �4P̄ 5.
Lower bound l̄b4P̄ 5 can be computed as follows:

l̄b4P̄ 5= c̄4P̄ 5−
∑

C∈C s.t.
�C∩V 4P̄ 5\8i9�¾2

ḡC

+ min
NG⊆Ni s.t. NG∩V 4P̄ 5=8i9

t′¶t4P̄ 5

{

f 4NG1t′1i5−
∑

C∈C s.t.
�C∩NG�¾2

ḡC

}

0 (26)

Proof. The proof is provided in the e-companion to this
paper. �

The dominance rule of Jepsen et al. (2008) when applied
to B is as follows.

Dominance 1. Let P̄ 1 P̄ ′ ∈B, be two backward paths such
that �4P̄ ′5 = �4P̄ 5, t4P̄ ′5 ¾ t4P̄ 5, q4P̄ 5 ¾ qmin, q4P̄ ′5 ¾
qmin, and V 4P̄ ′5⊆ V 4P̄ 5. P̄ ′ dominates P̄ if

c̄4P̄ ′5¶ c̄4P̄ 5−
∑

C∈C s.t.
�C∩V 4P̄ 5\V 4P̄ ′5�¾2

ḡC 0 (27)

Similar rules are applied by procedure genp4 to generate
the path set F.

5.3. Procedure combine4

This procedure generates the route set N of negative
reduced costs with respect to the dual solution 4ū1 v̄1 ḡ5 of
the master problem combining the path sets F3 and B3 as
defined in §5.1. combine4 corresponds to procedure com-
bine (see §4.5.2) replacing 4ũ1 ṽ1 g̃5 with 4ū1 v̄1 ḡ5, setting
� = −�, and adding the following fathoming rule to reduce
the set N.

Fathoming 3. Let c34R5 be the reduced cost of route R
with respect to 4u31v31g35 computed as c34R5 = c4R5 −
∑

i∈V 4R5 u
3
i −

∑

S∈S �`4S5v
3
S −

∑

C∈C s.t.
�A4C5∩A4R5�¾1

g3
C . A route R

of negative reduced cost with respect to 4ū1 v̄1 ḡ5 cannot
belong to N if c34R5 > z4ub5−LB3 as R cannot be in any
solution of cost less than or equal to z4ub5.

5.4. Procedure genr4 for the cvrp

The lower bound lb34P̄ 5 is computed using bounding func-
tions f 4NG1q1 j1 i5 as described in §4.5.3 for ¶lb4P̄ 5, while
the lower bound l̄b4P̄ 5 is computed according to expres-
sion (26) but using bounding functions f 4NG1q1 i5 instead
of f 4NG1 t1 i5.

6. Procedure genrf for Generating
Route Set R̂

The exact method described in §3 at Step 4 asks to gen-
erate the largest subset R̂ ⊆ R of routes satisfying condi-
tions (15), whenever R3 is not-optimal.
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For this purpose, we use a two-phase procedure, called
genrf similar to genr (see §4.5). In the first phase, two
sets F and B of forward and backward paths are computed
as described below. In the second phase, such sets are com-
bined by procedure combinef (see §6.2) to derive the final
route set R̂. In the first phase, there are four cases:

(A) Both F3 and B3 generated by genr are optimal. We
set F=F3 and B=B3.

(B) B3 is optimal but F3 is not. We set B = B3 and
call genpf (§6.1) to compute F.

(C) F3 is optimal but B3 is not. We set F=F3 and call
genpf to compute B.

(D) Both F3 and B3 are not optimal. We call genpf to
compute both F and B.

In the end, R̂ is defined optimal (i.e., contains any opti-
mal vrptw solution) if and only if F, B and R̂ are such
that �F�<ã4F5, �B�<ã4B5 and �R̂�<ã4R5.

In the following §§6.1 and 6.2, we describe procedure
genpf and combinef for the vrptw. It is obvious how to
adapt them for the cvrp.

6.1. Procedure genpf

Procedure genpf generates one or both sets F and
B required by genrf (see cases (B), (C), and (D) in §6).
genpf is similar to procedure genp but applies different
fathoming rules.

In generating the set B, genpf applies the follow-
ing fathoming rules. Let lb34P̄ 5 and lb44P̄ 5 be the lower
bounds on the reduced costs, c34R5 and c44R5, of any
route R containing path P̄ ∈ B with respect to 4u31v31g35
and 4u41v41g45, respectively. lb34P̄ 5 is computed as
described in §5.2, and lb44P̄ 5 is computed using expression
(26), where 4ū1 v̄1 ḡ5 is replaced with 4u41v41g45.

Fathoming 4. Any path P̄ ∈ B such that lb34P̄ 5 >
z4ub5−LB3 or lb44P̄ 5 > z4ub5−LB4 can be fathomed.

Fathoming 5. Let d4
ij = dij − 41/254u4

i + u4
j 5−

∑

S∈Sij
v4
s ,

∀ 4i1 j5 ∈A. Whenever qmin = 0, any backward path P̄ such
that

∑

4i1 j5∈A4P̄5

d4
ij −

∑

C∈C s.t.
�C∩V 4P̄ 5\8i9�¾2

g4
C −d4

i0 > z4ub5−LB4 (28)

can be fathomed as it cannot produce any route R of
reduced cost c44R5¶ z4ub5−LB4.

Proof. The proof is provided in the e-companion to this
paper. �

Similar fathoming rules are used to generate F.

6.2. Procedure combinef

This procedure generates the route set R̂ combining the
path sets F and B defined in §6. combinef is similar to
combine (see §4.5.2) but imposes that any route R ∈ R̂ is
such that c34R5¶ z4ub5−LB3 and c44R5¶ z4ub5−LB4.

7. Computational Results
This section reports on the computational results of the
exact method (hereafter called bmr) described in this paper.
All algorithms were coded in Fortran 77 and compiled with
Intel Fortran 11.0. CPLEX 12.1 (see CPLEX 2009) was
used as the lp solver in H 4 and the ip solver in the exact
method. All tests were run on an IBM Intel Xeon X7350
server (2.93 GHz–16 GB of RAM).

7.1. Computational Results on the vrptw

Our exact method bmr for the vrptw was tested on
Solomon instances (see Solomon 1987), which are divided
into six classes (C1, RC1, and R1 with tight time windows
and strict vehicle capacity, and C2, RC2, and R2 with wide
time windows and loose vehicle capacity). We considered
all 100-customer instances and instances with 50 customers
of classes C2, RC2, and R2.

The travel costs dij are computed as dij = �10eij�/10,
where eij is the Euclidean distance between vertices i and j;
the travel times tij are integer values computed as tij =

104dij + si5, where si is the service time at vertex i.
Because instances of classes C1, RC1, and R1 have tight

time windows, we did not find it worth running procedure
H 2. Thus, on such instances H 2 was skipped. In addition,
we found it to be computationally convenient to ignore sc
and wsr3 inequalities for all classes of instances.

bmr uses the best upper bounds reported in Ropke (2005)
and Danna and Le Pape (2005). Such upper bounds are
obtained by running the heuristic of Pisinger and Ropke
(2007) with different parameter settings (Ropke 2010).
Whenever bmr uses the upper bound, its computing time
is added to the total computing time of bmr. For instance
R211 with 100 customers, the upper bound used was found
by Desaulniers et al. (2008).

bmr uses the following parameter setting: In H 2,
ã4Ni5= 8; in H 3, ã4Ni5= 10, ãb = 300, ã4F5=ã4B5=

5×107, ã4R5= 105×106; in H 4, ãa = 1×104, ãb = 300,
ã4F5=ã4B5= 5×107, ã4R5= 105×106, ã4C5= 20. In
H 1, H 2, and H 3, we set Maxit1 = 100 and Maxit2 = 50.

We compare bmr with the methods of Jepsen et al.
(2008) and Desaulniers et al. (2008), hereafter called jpsp
and dhl, respectively. Desaulniers et al. (2008) presented
three versions of their algorithm. We consider the ver-
sion labeled “ESPPRC SRC” because it could solve more
instances than the others. According to SPEC (http://
www.spec.org/benchmarks.html), our machine is three
times faster than the Intel Pentium 4 3.0-GHz PC of jpsp
and twice as fast as the Linux PC Dual Core AMD Opteron
at 2.6 GHz of dhl.

In Table 1, we report on detailed results on instances
closed for the first time by jpsp, dhl, or bmr. Com-
plete computational results are reported in the e-companion
paper.

The columns of Table 1 report the instance name (Inst),
the optimal value (z∗—in bold if solved for the first time
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by bmr), the upper bound used (z4ub5), and the time to
compute it. For each procedure H k, k = 11 0 0 0 14 (if run),
it is reported the lower bound (LBk) and the cumulative
computing time spent up to H k. Columns �F3�, �B3�, and
�R3� report the cardinalities (in thousands) of the sets F3,
B3, and R3; if we could not completely generate a set, an
empty circle is displayed. The number of sr3 inequalities
(SR3) added in H 4 is shown. The number of routes (�R̂�) in
the final reduced problem F̂ and the time taken by CPLEX
to solve it (TCPX) are shown. Finally, the total computing
time in seconds (Tot. time) of the methods compared are
reported in the last three columns of the table. Tot. time
under bmr is equal to the sum of the time to compute the
upper bound, the time spent up to H 4 and TCPX .

Table 1 shows that bmr was able to solve four instances
open so far. The only open Solomon instance is R.208.100,
where bmr ran out of memory. Moreover, it can be noticed
that the lower bounds achieved using the ng-routes in algo-
rithm CCG are close to the bounds achieved using elemen-
tary routes and the time taken to perform H 2 is limited.

Table 3 compares bmr, jpsp, and dhl. For each class,
Table 3 reports the class name (Class), the number of cus-
tomers (n), the number of instances (NP ), the number of
instances solved by each of the three methods (Solved)
and the average computing time in seconds (T ime) (n0a0
means data are not available). In the last three rows, the
average computing time of the methods over all instances,
the instances solved by jpsp, and the instances solved by
dhl are shown.

Table 3 shows that bmr outperforms jpsp and dhl; all
instances solved by the other methods were solved by bmr,
and the average time is significantly lower.

In the e-companion to this paper, we analyse the impact
of parameter ã4Ni5 on procedure H 2 and the effectiveness
of dominance and fathoming rules on procedures genp4
and genpf. The results show that (i) in the NG-route relax-
ation, ã4Ni5 = 8 gives a good trade-off between lower
bounds and computing times as LB2 is about 5% greater
than LB1 and about 005% lower than LB3; (ii) in genp4,
the Dominance 1 and the new fathoming rules 1 and 2
eliminate about 90% of the states, and the fathoming rules
eliminate 80% of the states not dominated by Dominance 1;
(iii) in genpf, both fathoming rules 5 and 4 eliminate about
90% of the states.

7.2. Computational Results on the cvrp

We considered classes A, B, E, F, M, and P, available
at http://branchandcut.org/VRP/data. Cost dij is an inte-
ger value computed as dij = �eij + 005�, where eij is the
Euclidean distance between i and j . As done by Fukasawa
et al. (2006), we impose that exactly m vehicles are used
in the solution by simply transforming constraint (3) into
an equality constraint.

For computational convenience we skip bounding pro-
cedure H 2, so the sequence of the bounding procedures

is H 1, H 3, and H 4. wsr3 inequalities are used whenever
�n/m�¾ 12.

If bmr cannot solve a problem in Step 1, we use the
upper bound used by Fukasawa et al. (2006) and Baldacci
et al. (2008), but, while generating the route set R3, when-
ever in genp �F3�> 1×106, we run our implementation of
the tabu search algorithm of Gendreau et al. (1994) with
a time limit of 180 seconds. The computing time of the
tabu search is considered in the total computing time of
bmr while the computing time of the initial upper bound
is ignored (as done by Fukasawa et al. 2006 and Baldacci
et al. 2008).

In our tests, we use the following parameter setting: in
H 3, ã4Ni5 = 10, ãb = 300, ã4F5 = 1 × 107, ã4R5 = 1 ×

107, ã4C5= 100; in H 4, ãa = 1 × 104, ãb = 200, ã4F5=

1 × 107, ã4R5= 1 × 106, ã4C5= 10. In H 1, H 2, and H 3,
Maxit1 = 150 and Maxit2 = 100.

bmr is compared with the methods of Baldacci et al.
(2008) (bcm), Fukasawa et al. (2006) (fll), and Lysgaard
et al. (2004) (lle). According to SPEC, our machine is
three times faster than the Pentium 4 2.6-GHz PC of bcm
and the Pentium 4 2.4-GHz PC of fll, and 10 times faster
than the Intel Celeron 700-MHz PC of lle.

In Table 2, we report detailed results on difficult cvrp
instances. Complete computational results are reported in
the e-companion. Table 2 is similar to Table 1. Column
z4ub5 reports the initial upper bound while column UB4

reports the upper bound computed by our tabu search
heuristic (when run). Under fll, column 4s5 indicates the
bcp algorithm based on s-cycle-free q-routes was used,
while 4−5 indicates that the bc was used instead of the bcp.
The Tot. time of bmr is the time spent up to H 4 (including
the time to compute UB4) plus TCPX .

Table 2 shows that bmr solves three problems not solved
by bcm but does not solve problem F-n135-k7 that is solved
by fll using the bc algorithm. It is worth mentioning that
problem F-n135-k7 was solved for the first time by Augerat
et al. (1995).

Table 4 summarizes the results of the methods on the six
cvrp classes considered. For each class, the name (Class),
the number of instances (NP ), and for each exact method,
the number of instances solved to optimality (Opt), the
average percentage deviation of the lower bound (%LB),
and the average computing time in seconds (T ime) are
reported. Under fll, column OptBCP and OptBC report the
number of instances solved using bcp and bc, respectively.
The last two rows indicate average values of %LB and
T ime and the number of problems solved by each method.

Table 4 clearly shows that bmr outperforms the other
methods on all classes but class F, where the bc algorithm
of Lysgaard et al. (2004) outperforms the other methods.

The impact of parameter ã4Ni5 on procedure H 2 and
the effectiveness of the different type of inequalities on
procedures H 1 and H 3 are analysed in the e-companion to
this paper. The results show that (i) increasing parameter
ã4Ni5 slightly improves lower bound LB2; (ii) LB1 with
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Table 3. vrptw Solomon instances: summary.

Solved Time

Class n NP BMR JPSP DHL BMR JPSP DHL

C2 50 8 8 7 n.a. 8 79 n.a.
RC2 50 8 8 7 n.a. 27 268 n.a.
R2 50 11 11 9 n.a. 124 71086 n.a.
C1 100 9 9 9 9 25 468 18
RC1 100 8 8 8 8 276 111004 21150
R1 100 12 12 12 12 251 271412 21327
C2 100 8 8 7 8 40 21795 21093
RC2 100 8 8 5 6 31767 31204 151394
R2 100 11 10 4 8 281680 351292 631068

Avg 31955 91767 121920
Solved by JPSP 261 91767
Solved by DHL 11825 121920

Table 4. cvrp instances: summary.

BMR BCM FLL LLE

Class NP Opt %LB Time Opt %LB Time Opt OptBCP OptBC %LB Time Opt %LB Time

A 22 22 9909 30 22 9908 118 22 20 2 9902 11961 15 9709 61638
B 20 20 9909 67 20 9908 417 20 6 14 9905 41763 19 9904 81178
E-M 12 9 9908 303 8 9904 11025 9 7 2 9809 1261987 3 9707 391592
F 3 2 10000 164 3 0 3 9909 21398 3 9909 11046
P 24 24 9908 85 22 9907 187 24 16 8 9902 21892 16 9707 111219

Avg 9909 92 9907 323 9903 171409 9804 91935
Tot 81 77 72 78 49 29 56

ccs is very close to LB3 without wsr3s; (iii) the increase of
LB2 with respect to LB1 achieved by H 1 with ccs is very
small and is not worth the extra computing time required
by procedure H 2; (iv) ccs and wsr3s substantially increase
lower bounds LB1 and LB3, respectively.

8. Conclusions
In this paper, we described an exact method for solving
the vrptw and cvrp based on the set partitioning formula-
tion strengthened with valid inequalities. We introduced a
new route relaxation, called ng-route, that improves other
nonelementary route relaxations proposed in the literature
and a new strategy for solving the pricing problem in a
column-and-cut generation procedure that involves the use
of multiple dual solutions.

We reported computational results showing that the pro-
posed method solves four of the five open Solomon vrptw
instances and is significantly faster than the state-of-the-art
algorithms for both vrptw and cvrp.

9. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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