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Abstract. We introduce two new methods of deriving the classical PCA in the
framework of minimizing the mean square error upon performing a lower-dimensional
approximation of the data. These methods are based on two forms of the mean
square error function. One of the novelties of the presented methods is that the
commonly employed process of subtraction of the mean of the data becomes part of
the solution of the optimization problem and not a pre-analysis heuristic. We also
derive the optimal basis and the minimum error of approximation in this framework
and demonstrate the elegance of our solution in comparison with an existing solution
in the framework.
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1. Introduction

The problem of approximating a given set of data using a weighted lin-
ear combination of a fewer number of vectors than the original dimen-
sionality is classic. Many applications that require such a dimensionality
reduction desire that the new representation retain the maximum vari-
ability in the data for further analysis. A popular method that attains
simultaneous dimensionality reduction, minimum mean square error of
approximation and retainment of maximum variance of the original
data representation in the new representation is called the Principal
Components Analysis (PCA) (Hotelling, 1933; Jolliffe, 2002).
The most popular framework for deriving PCA starts with the analy-
sis of variance. A very common derivation of PCA in this framework
generates the basis by iteratively finding the orthogonal directions of
maximum retained variances (Hotelling, 1933; Jolliffe, 2002; Mardia et
al., 1979; Johnson and Wichern, 1992). Since variance is implied in the
statement of the problem here, the mean is subtracted from the data as
a preliminary step. The second most predominant framework derives
PCA by minimizing the mean square error of approximation (Duda et
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al., 2001; Diamantaras and Kung, 1996; Bishop, 2006). Aided by the
derivation in the variance-based framework above, it has become ac-
ceptable to resort to mean subtraction of the data prior to any analysis
in this framework too in order to keep the analysis simple. In this letter
our focus is on the latter framework within which we demonstrate two
distinct and elegant analytical methods of deriving the PCA. In each
of these methods of derivation, subtraction of data mean becomes part
of the solution instead of being an initial assumption.
The letter is organized as follows: in Section 2 we describe the motiva-
tion behind the need for yet another derivation of the classical PCA. In
particular, we highlight the issue of mean centering in Section 2.1. The
notations are introduced in Section 2.2 and the PCA problem and its
interpretations are discussed in Section 3. After reviewing an existing
solution in Section 4, we make it evident in Section 5 that our two
methods are due to two forms of the optimization function. Then we
introduce our two methods of solving the PCA problem in Sections 6
and 7 and arrive at a simple common form of the optimization function
in both the methods. This is analyzed further in Section 8 where we
show the relation of the variance to the optimal basis in PCA as well
as the minimum approximation error attained in PCA. In Section 8.3,
we revisit the existing solution in our framework of PCA introduced in
Section 4 and equate it with our approach.

2. Motivation

There are many standard textbooks of multivariate and statistical anal-
ysis (Jolliffe, 2002; Mardia et al., 1979; Johnson and Wichern, 1992)
detailing PCA as a technique that seeks the best approximation of a
given set of data points using a linear combination of a set of vec-
tors which retain maximum variance along their directions. Since this
framework of PCA starts by finding the covariances, the mean has to
be subtracted from the data and becomes the de facto origin of the
new coordinate system. The subsequent analysis is simple: find the
eigenvector corresponding to the largest eigenvalue of the covariance
matrix as the first basis vector. Then find the second basis vector on
which the data components bear zero correlation with the data com-
ponents on the first basis vector. This turns out to be the eigenvector
corresponding to the second largest eigenvalue. In successively finding
the basis vectors that have uncorrelated components as the eigenvec-
tors of decreasing retained variances, the second order cross moments
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between the components are successively eliminated1. Computation-
ally, a widely employed trick in this framework finds the eigenvectors
using singular value decomposition of the mean centered data matrix
which effectively diagonalizes the covariance matrix without actually
computing it (Jolliffe, 2002; Mardia et al., 1979). The set of orthogonal
vectors corresponding to the largest few singular values proportional to
the variances yield those directions which retain the maximum variance
in the new representation of the data.
The second framework derives the PCA approximation by using its
property of minimizing the mean square error. We think that this
framework is more effective in introducing PCA to a novice because
the two outcomes of optimal dimensionality reduction, viz. error mini-
mization and retained variance maximization, are attained here simul-
taneously. Following the path of the retained variance maximization
framework and to keep the analysis simple, many textbooks (Johnson
and Wichern, 1992; Diamantaras and Kung, 1996; Hyvarinen et al.,
2001; Ripley, 1996) advocate a mean subtraction for this framework
too without sensible justification. Pearson stated in his now classical
paper (Pearson, 1901):

“The second moment of a system about a series of parallel lines is

always least for the line going through the centroid. Hence: The best-

fitting straight line for a system of points in a space of any order

goes through the centroid of the system.”

A procedure equivalent to rephrasing of this statement is followed in a
much referenced textbook (Duda et al., 2001) which reasons that since
the mean is the zero-dimensional hyperplane which satisfies the mini-
mum average square error criterion, any higher dimensional hyperplane
should be excused to pass through it too. In order to keep our analysis
coherent with the concept of simultaneous dimensionality reduction,
retained variance maximization and approximation error minimization,
we do not invite the reader to such geometric intuitions. Note that
the error minimization framework can also be viewed as a total least
squares regression problem with all variables thought to be free so that
the task is to fit a lower dimensional hyperplane that minimizes the
perpendicular distances from the data points to the hyperplane (Van
Huffel, 1997).
We will also be reviewing (Bishop, 2006) who derives PCA in the
same framework as that of ours. Unlike in their approach, we neither
undertake a complete decomposition nor force any basis vectors to
bear a common statistic enticed by the prospect of an eventual mean

1 Elimination of higher order cross moments is dealt in Independent Components
Analysis (ICA) (Hyvarinen et al., 2001).
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subtraction. Also for the benefit of practitioners who would like to deal
data as realizations of a random variable, our treatment in the data
samples domain can be readily extended to a population domain.

2.1. To mean center or not

In the framework of finding the basis of a lower dimensional space which
minimizes the mean square error of approximation, the process of mean
subtraction has so far been part of the heuristics that the data need to
be centered before installing the new low-dimensional coordinate sys-
tem motivated by the philosophy according to (Pearson, 1901) that, had
the mean of the data not been subtracted, the best fitting hyperplane
would pass through the origin and not through the centroid. But there
exist situations where a hyperplane is merely expected to partition the
data space into orthogonal subspaces and as a result subtraction of
mean is not desired. Note that in such situations, the term ‘principal
component’ does not strictly hold as the basis vectors for the new space
are not obtained from the data covariance matrix and the main concern
there is the decomposition of the data rather than approximation.
One such set of situations are addressed by the Fukunaga-Koontz Trans-
form (Fukunaga and Koontz, 1970; Miranda and Whelan, 2005) and
it works by not requiring a subtraction of mean but instead finds the
principal components of the autocorrelation matrices of two classes of
data. It is widely used in automatic target rejection where eigenvalue
decomposition generates basis for a target space orthogonal to the
clutter space. But such is the issue of mean subtraction in using this
transform that researchers of (Mahanalobis et al., 2004) and (Xuo et
al., 2003) use autocorrelation and covariance matrices, respectively, for
the same task without a justification of the impact of their choice to
mean center or not. A similar approach called Eigenspace Separation
Transformation (Plett et al., 1997) aimed at classification also does not
involve mean subtraction. A family of techniques called Orthogonal
Subspace Projection that is widely applied in noise rejection of signals
use data that are not mean centered for the generalized PCA that
follows (Harsanyi and Chang, 1994).
Although the theory of PCA demands mean subtraction for optimal low
dimensional approximation, for many applications it is not without con-
sequence. For example, the researchers of ecology and climate studies
have extensively debated the purpose and result of mean centering for
their PCA-based data analysis. In (Noy-Meir, 1973), the characteristics
and apparent advantages of the principal components generated with-
out mean subtraction are compared for data sampled homogenously in
the original space or otherwise. The claim made therein is that if data
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form distinct clusters, the influence of variance within a cluster on an-
other can be minimized by not subtracting the mean. Another ongoing
debate named ‘Hockey Stick’ controversy (McIntyre and McKitrick,
2005) involves the appropriateness of mean subtraction for PCA in a
much cited global warming study (Mann et al., 1998).
It should be borne in mind that this letter is neither solely about the
aforementioned issue of mean centering that researchers using PCA
often take it for granted nor does it change the results of PCA that is
previously known to them. But we demonstrate in a new comprehen-
sive framework that (i) the mean subtraction becomes a solution to
the optimization problem in PCA and we reach this solution through
two simple distinct methods that borrow little from traditional text-
book derivations of PCA, and (ii) the derivation of the basis for the
low dimensional space converges to minimum approximation error and
maximum retained variance in the framework. Consequently, we believe
that many problems which raise questions about their choice regarding
mean subtraction can be revisited with ease using our proposed PCA
framework.

2.2. Notations

While ensuring clarity to our analysis in this letter, we have tried to
maintain its brevity through appropriate notations as summarized in
the table below.
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Jq : error function

q : new dimensionality

p : original dimensionality

n : number of samples

xk ∈ R
p; kth data sample

x̂k ∈ R
p; approximation of xk

θ ∈ R
p; new general origin

x̃k = xk − θ ∈ R
p

ei ∈ R
p; ith orthonormal basis vector of R

p

W = [e1 · · · eq] ∈ R
p×q

B = I − WW T ∈ R
p×p

W̃ = [eq+1 · · · ep] ∈ R
p×p−q

zk ∈ R
q; dependent on xk

b ∈ R
p−q; a constant

Tr(A) : Trace of the matrix A

rank(A) : Rank of the matrix A

µ ∈ R
p; sample mean

S ∈ R
p×p; sample covariance matrix

λi : ith largest eigenvalue of S

r = rank(S)

3. Problem Definition in the Sample Domain

Let xk ∈ R
p, k = 1, . . . , n be a given set of data points. Suppose we

are interested in orthonormal vectors ei ∈ R
p, i = 1, . . . , q ≤ p whose

resultant of weighted linear combination x̂k ∈ R
p can approximate xk

with a minimum average (sample mean) square error or in other words
minimize

Jq(x̂k) =
1

n

n∑

k=1

‖xk − x̂k‖
2. (1)

The problem stated above means that we need an approximation xk ≃
x̂k such that

x̂k =
q∑

i=1

(
eT
i xk

)
ei (2)

so that we attain the minimum for Jq. This approximation assumes that
the origin of all orthonormal ei is the same as that of the coordinate
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system in which the data is defined.
We reformulate the approximation

x̂k = θ +
q∑

i=1

(
eT
i (xk − θ)

)
ei (3)

to assume that the new representation using basis vectors ei has a
general origin θ ∈ R

p and not the origin as in the approximation (2).
We assume orthonormality here because (i) orthogonality guarantees
linearly independent ei so that they form a basis for R

q (ii) normalizing
ei maintains notational simplicity in not having to divide the scalars
eT
i xk in (2) by the norm ‖ei‖ which is unity due to our assumption.

Hence, the PCA problem may be defined as

argmin
ei,θ

1

n

n∑

k=1

‖xk − x̂k‖
2 :

x̂k = θ +
∑q

i=1

(
eT
i (xk − θ)

)
ei;

eT
i ej = 0, i &= j; eT

i ei = 1 ∀ i, j.

(4)

which seeks a set of orthonormal basis vectors ei with a new origin
θ which minimizes the error function in (1) in order to find a low-
dimensional approximation W T (xk − θ) ∈ R

q for any xk ∈ R
p, where

W = [e1 · · · eq]. (5)

It is now easy to see that (3) becomes

x̂k = θ + WW T (xk − θ) . (6)

Hence the displacement vector directed from the approximation x̂k to-
wards xk is xk−x̂k = (xk − θ)−WW T (xk − θ), which using x̃k = xk−θ

can be written concisely as xk − x̂k = x̃k − WW T x̃k. By setting
B = I − WW T for simplicity of notation, we write the displacement
vector as

xk − x̂k = Bx̃k. (7)

4. Review of an existing solution

The PCA solution in the framework of approximation error minimiza-
tion is derived in (Bishop, 2006) is reviewed here. They derive PCA by
undertaking a complete decomposition

x̂k = Wzk + W̃ b (8)

into basis vectors contained in the columns of matrix W of (5) and

W̃ = [eq+1 · · · ep] ∈ R
p×p−q such that components of zk ∈ R

q depend
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on xk, whereas components of b ∈ R
p−q are constants common for all

data points.
By taking derivative of the error function with respect to b, they find
that

b = W̃ Tµ (9)

so that the common components are those of the sample mean vector
µ. This implies that by subtracting the sample mean they are no longer
obliged to retain the p − q dimensions corresponding to the columns
of W̃ which preserve little information regarding the variation in the
data. The first drawback of this approach is that it couples the process
of dimensionality reduction with mean subtraction although the two
are shown to be independent in our derivation. By taking derivative of
the error function with respect to zk, they also show that zk = W Txk.
Hence the approximation they are seeking is

x̂k = WW Txk + W̃W̃ Tµ. (10)

The second drawback of their approach is the requirement of yet an-
other constrained minimization of the error function before they reach
the solution for the optimal columns of W .

5. Methods of PCA

We have discussed the need for a new derivation of PCA by (i) explain-
ing the lack of proper justification in the literature for subtracting the
mean in a minimum mean square error framework, (ii) justifying its
chronic necessity in many applications in Section 2, and (iii) reviewing
a recent attempt to solve this problem in Section 4. Our derivations of
the solution for the problem in (4) are due to two simple forms of the
error function Jq of (1) which we state as follow:

Form 1 : Jq(x̂k) =
1

n

n∑

k=1

(xk − x̂k)
T (xk − x̂k) (11)

Form 2 : Jq(x̂k) = Tr

(
1

n

n∑

k=1

(xk − x̂k) (xk − x̂k)
T

)
(12)

We analyze Form 1 in (11) in Section 6 to arrive at a simplified Jq

which is exactly the same as we get by following a different method
of analyzing Form 2 in (12) in Section 7. These two methods take
different paths towards the common error function, viz., the first using
straightforward expansion of the terms in Jq and the second using
the property of matrix trace. The common form of Jq is subsequently
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treated in Section 8 to reveal the rest of the solution to our original
problem.

6. Analysis of Form 1 of error function

Using (7), the error function Jq of Form 1 in (11) can be developed as

Jq(B, θ) =
1

n

n∑

k=1

x̃T
k BT Bx̃k. (13)

The property that B = I − WW T is idempotent and symmetric, i.e.,

B = B2 = BT , (14)

or B is simply an orthogonal projector, may be used to reduce Jq further
as

Jq(B, θ) =
1

n

n∑

k=1

x̃T
k Bx̃k. (15)

Expanding Jq above using x̃k = xk − θ gives

Jq(B, θ) =
1

n

n∑

k=1

[
xT

k Bxk − 2θ
T Bxk + θ

T Bθ

]
(16)

In order to get the θ which minimizes Jq, we find the partial derivative

∂Jq/∂θ = −2B
[

1
n

∑n
k=1 xk − θ

]
and setting it to zero results in

θ =
1

n

n∑

k=1

xk = µ (17)

which is as simple as regarding the sample mean of the data points as
the new origin. Henceforth, we can assume that x̃k is the data point xk

from which the sample mean has been subtracted.

6.1. Simplifying the error function

We may analyze the error function in (15) as follow:

Jq(W ) =
1

n

n∑

k=1

x̃T
k

(
I − WW T

)
x̃k

=
1

n

n∑

k=1

x̃T
k x̃k −

1

n

n∑

k=1

x̃T
k WW T x̃k

=
1

n

n∑

k=1

x̃T
k x̃k − Tr

(
W T

[
1

n

n∑

k=1

x̃kx̃
T
k

]
W

)
.
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We have the sample covariance matrix

S =
1

n

n∑

k=1

x̃kx̃
T
k |θ=µ (18)

so that the term 1
n

∑n
k=1 x̃T

k x̃k |θ=µ equals Tr(S), and we can write

Jq(W ) = Tr(S) − Tr

(
W T SW

)
. (19)

7. Analysis of Form 2 of error function

We now analyze the Form 2 of the error function Jq by substituting (7)
in (12) as

Jq(B, θ) = Tr

(
B

[
1

n

n∑

k=1

x̃kx̃
T
k

]
BT

)
. (20)

7.1. Finding θ

As in the previous section, we denote the sample mean and sample
covariance matrix by µ and S, respectively, and we may develop the
term in (20):

1

n

n∑

k=1

x̃kx̃
T
k =

1

n

n∑

k=1

(xk − θ)(xk − θ)T

=
1

n

n∑

k=1

[
xkx

T
k − xkθ

T − θxT
k + θθ

T
]

= S + µµT − µθ
T − θµT + θθ

T , (21)

where we have used the sample autocorrelation matrix (Fukunaga,

1990) 1
n

∑n
k=1 xkx

T
k =S + µµT . We get Jq(B) = Tr

(
B

(
S + µµT−

µθT− θµT + θθT
)

BT
)

upon substituting (21) in (20). Using (14) and

the cyclic permutation property of trace of matrix products2 we get

Jq(B) = Tr

(
B

(
S + µµT − µθ

T − θµT + θθ
T
))

(22)

and using the property of derivative of trace3 and the chain rule of
derivatives4, we find that ∂Jq/∂θ = 2B (−µ + θ) which when equated

2
Tr (ΥΦΨ) = Tr (ΨΥΦ) = Tr (ΦΨΥ)

3
∂
(
Tr

(
ΨΦ

T
))

/∂Φ = Ψ

4
∂(·)/∂u =

[
∂(·)/∂

(
uvT

)]
v
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to zero results in
θ = µ (23)

leading to the same solution of Form 1 in (17).

7.2. Simplifying the error function

Having found θ, we can substitute it in (22) to get Jq(B) = Tr (BS).
On substitution for B in terms of W , we may write Jq(W ) = Tr (S) −

Tr

(
WW T S

)
. Utilizing the cyclic permutation property of matrix trace

again, we get

Jq(W ) = Tr (S) − Tr

(
W T SW

)
. (24)

8. Optimal basis and minimum error

Note that we have arrived at the same set of equations in both (19)
and (24) of Form 1 and Form 2, respectively, whereby substituting W
as defined in (5) in either of them gives

Jq(ei) = Tr(S) −
q∑

i=1

eT
i Sei. (25)

8.1. Relation of variance to optimal basis

Let us now find the variance λi of the data projected on the basis vector
ei. It is the average of the square of the difference between projections
eT
i xk of the data points and the projection eT

i µ of the sample mean ,
i.e.,

λi =
1

n

n∑

k=1

(
eT
i xk − eT

i µ
)2

=
1

n

n∑

k=1

(
eT
i xk − eT

i µ
) (

eT
i xk − eT

i µ
)T

= eT
i

[
1

n

n∑

k=1

(xk − µ) (xk − µ)T

]
ei

= eT
i Sei. (26)

Thus, the term
∑q

i=1 eT
i Sei in (25) gives the portion of the total vari-

ance Tr (S) retained along the directions of orthonormal ei. Hence, we
are looking for vectors ei of the form λi = eT

i (Sei), which is satisfied if
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Sei = λiei. Such a relation implies (ei,λi) form an eigen-pair of S. Note
that since there is no unique basis for any nontrivial vector space, any
basis that spans the q−dimensional space generated by the eigenvectors
of S are solutions to ei too. In (25), since

argmin
ei

Jq = argmax
ei

q∑

i=1

eT
i Sei, (27)

the vectors ei have to be the eigenvectors corresponding to the q largest
(‘principal’) eigenvalues of S. This is the classical result of the PCA.

8.2. Relation of variance to minimum approximation error

It follows from (26) that the term
∑q

i=1 eT
i Sei =

∑q
i=1 λi of (25) is the

sum of the q principal eigenvalues of S; this is the maximum variance
that could be retained upon approximation using any q basis vectors.
Also, Tr (S) =

∑r
i=1 λi, r = rank (S) is the total variance in the data.

Substituting these in Jq in (25) gives the difference of the total variance
and the maximum retained variance; the result is the minimum of the
eliminated variance. Hence, for λi ≥ λj , j > i, the minimum mean
square approximation error can be expressed as

Jq =
r∑

i=1

λi

︸ ︷︷ ︸
total variance

−
q∑

i=1

λi

︸ ︷︷ ︸
retained variance

=
r∑

i=q+1

λi.

︸ ︷︷ ︸
eliminated variance

(28)

8.3. Comparison of the reviewed solution with the present

work

In order to compare the solution of (Bishop, 2006) reviewed in Section
4, let us first write the approximation in (6) as x̂k = WW T xk + Bθ.
We know from (17) and (23) that θ = µ and, hence,

x̂k = WW T xk + Bµ. (29)

If W̃W̃ T = B, we have the approximation according to (Bishop, 2006)
in (10) of Section 4 equivalent to the approximation in (29).
While the drawbacks of (6) highlighted in Section 4 exist, let us out-
line the difference in these two approaches: we have demonstrated
in our solutions that the new origin θ ∈ R

p of the low dimensional
coordinate system should be the mean µ ∈ R

p so that the error of
the approximation is reduced. But (Bishop, 2006) necessitates an or-
thogonal projection of certain data-independent components b ∈ R

p−q
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to µ ∈ R
p to achieve the same objective. Our approach has shown

that such a dimensionality reduction coupled with mean subtraction is
unnecessary for deriving PCA.

8.4. Population PCA

For population PCA (Mardia et al., 1979; Johnson and Wichern, 1992),
where the samples that form the data are assumed to be realizations
of a random variable, we have made it easy for the reader to follow
our analysis by just replacing all occurrences of 1

n

∑n
k=1 → E , the

expectation operator; and bold faces for random variables as in xk → x,
x̂k → x̂, and x̃k → x̃.

9. Conclusion

Motivated by the need to justify the heuristics of pre-analysis mean
centering in PCA and related questions, we have demonstrated through
two distinct methods that the mean subtraction becomes part of the
solution of the standard PCA problem in an approximation error mini-
mization framework. We based these two methods on two subtly differ-
ent forms of the error function. We have also derived the optimal basis
and the minimum error of approximation in this framework and have
compared our results with an existing solution.
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