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Two different finite difference schemes for solving the two-dimensional parabolic inverse
problem with temperature overspecification are considered. These schemes are developed
for indentifying the control parameter which produces, at any given time, a desired
temperature distribution at a given point in the spatial domain. The numerical methods
discussed, are based on the (3,3) alternating direction implicit (ADI) finite difference
scheme and the (3,9) alternating direction implicit formula. These schemes are
unconditionally stable. The basis of analysis of the finite difference equation considered
here is the modified equivalent partial differential equation approach, developed from
the 1974 work of Warming and Hyett [17)]. This allows direct and simple comparison of
the errors associated with the equations as well as providing a means to develop more
accurate finite difference schemes. These schemes use less central processor times than
the fully implicit schemes for two-dimensional diffusion with temperature overspecifi-
cation. The alternating direction implicit schemes developed in this report use more
CPU times than the fully explicit finite difference schemes, but their unconditional
stability is significant. The results of numerical experiments are presented, and accuracy
and the Central Processor (CPU) times needed for each of the methods are discussed. We
also give error estimates in the maximum norm for each of these methods.
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284 M. DEHGHAN
1. INTRODUCTION

The main purpose of this paper is to construct two alternating direc-
tion implicit finite difference methods that have an acceptable accuracy
and stability behaviour.

Recently, the study of parabolic inverse problems ie., the deter-
mination of some un-known function p(f) in a parabolic equation, has
been received much more attention. This work is aimed at producing
two finite difference schemes for the numerical solution of the inverse
problem of finding a control parameter p=p(f) in the linear time
dependent diffusion equation:

2 2
%?=g—xg+—%g+p(t)u+¢(x,y,t), O<x,y<l1, 0<t, (1)

with initial condition
u(x,y,O) =f(xay)’ OSx,ySla (2)

and boundary conditions

u(0,y,1) = go(y,1), 0<t<T, 0<y<l, 3)
u(l,y,t) =g1(y,t), 0<t<T, 0<y<l, (4)
u(x,0,8) = ho(x,1), 0<t<T, 0<x<1, (5)
u(x,1,8) = h{x,t), 0<t<T, 0<x<l1, (6)

subject to the overspecification at a point in the spatial domain
u(xo,y0,t) = E(t), 0<t<T, 0<x9,y<1. (M

where f, go, g1, ho, 11, ¢ and E are known functions, while the functions
u and p are unknown.

The Eq. (1) can be used to describe a heat transfer process with a
source parameter present. Equation (7) can then be interpreted as the
temperature at a given point (xo, yo) in the spatial domain at time 7.
Thus the purpose of solving this inverse problem is to identify the
source control parameter that produces at any given time, a desired
temperature at a given point (x, yo) in the spatial domain.
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The inverse problem above and other similar problems have been
studied in one dimension by many authors, and in two dimensions by
[9,16]. This kind of problem has many important applications. The
existence and uniqueness and continuous dependence of the solu-
tions to this problem and also the applications are discussed in [1-9,
13-15}.

This paper consists of 5 parts.

Section 2 deals with the (3,3) alternating direction implicit finite
difference method and the (3,9) ADI scheme. The method of evalu-
ating p(?) is also described in Section 3. The numerical results for the
test used is given in Section 4. The comparison of both accuracy and
efficiency between the methods developed is given in Sections 2 and 4.
Conclusions are also presented in the last section.

2. THE FINITE DIFFERENCE METHODS

The domain [0,1} x [0, 7] is divided into an M? x N mesh with the
spatial step size h=1/M in both x and y direction and the time step
size k= T/N respectively.

Grid points (x;, y;, t,) are defined by

Xi=ih, i=0,1,2,... M, 8)
Yi =.]h’ j=0,172"";M1 (9)
ty=nk, n=0,1,2,...,N, (10)

in which M and N are integers. The notations u}; and p" are used
for the finite difference approximations of u(ih,jh,nk) and p(nk),
respectively.

The numerical methods suggested here are based on two approaches :
first a numerical technique is used to approximate the solution of the
two-dimensional diffusion equation, and second, a special procedure
is used to evaluate p(f) approximately using the temperature over-
specification condition.

The finite difference formula described in this section and to be
applied at interior gridpoints in the solution domain are the (3,3)
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alternating direction implicit finite difference scheme or the (3,9) alter-
nating direction implicit formula, which approximates the solution of
the two-dimensional linear diffusion equation.

Using the initial condition

u(x,y,0) =f(x,y), 0<xy<l, (11)

Equation (1) is solved approximately at the spatial points (x;y;),
commencing with initial values u?j = f(xi,¥), 5j=0,1,2,..., M, and
boundary values

ugh" = go(yjs tu1), (12)
U] = g1, tas1), (13)
wig! = ho(xi, tns1), (14)
”?,;?1 = h1 (%, tns1), (15)

for n=0,1,2,...,N—1, where hy(x,1), h(x,1), go(y,?) and g,(y,1)
are give in the boundary conditions and p(r) will be found by the
procedure described in Section 3.

In practical problems, (xg, yo) is a data point which can be always be
chosen as a mesh point, i.e., xo = lph, yo=koh, for some integers 1 < /o,
ko < M—1. With this identification, the finite difference form of (7)
can be written as [7].

w1 = E". (16)

2.1. The (3,3) ADI Method

In the first half time interval of the (3,3) ADI procedure applied to our
problem, the following formula is used:

- sxu;'fllJ/-z +2(1+ sx)u?;(l/ 2 _ sxu;':](y 2

= syt oy + 21 — sy)uy; + syuj
+ k(P + 87, (17)
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with i=1,2,...,M—1, for each j=1,2,..., M —1, where

k
= , 18
Sy (Ax)2 ( )
and
k
Sy = K;z- (19)

The resulting system of linear equations is strictly diagonally domi-
nant, which guarantees that it is solvable. This system is tridiagonal
and can be solved using the very fast Thomas algorithm.

This procedure is unconditionally von Neumann stable [12].

In the following the procedure using this formula will be referred to
as the (3,3) method, because the computational molecule used for the
x-sweep of this scheme involves three gridpoints at the new time level
and three at the old level.

In the second half time interval the following formula is used with
j=12,...,M—1, foreachi=1,2,... M-1,

— syt + 201+ syt — syl

ij+1
sxu;:+(1/2) +2(—s )un+(1/2) s, un+(1/2)
+ k(pn+(l/2)u;l;-(1/2) + ¢n+(1/2))’ (20)

for i,j=1,2,...,M—1. The notation "fl/ 2 ryefers to values of U
computed at the intermediate stage, that is, at time (¢,+k/2).

Values of u;‘;‘ on the boundaries y=0 and y=1, x=0and x=1,
are provided by the boundary conditions (3)—(6).

In the case Ax=Ay=h, we have

k
sx=sy=s=7,‘2'a (21)

and the formulae to be used in the two half-time steps of this time-split
procedure are:

:n+l(3/2) +2(1+ )0 - sun+(;/2)

= sty y +2(1 — syl + sujy
+k(p iy + B)), (22)
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and

— s+ 201 + ) — sl

ij+1
su:1+1(‘ll/2 +2(1 s)un+(l/2)+ :—l—(jﬂ)
+ k(pn+(l/2)u;‘;'(1/2) + ¢;‘;'(1/2)). (23)

Because each of these equations are consistent with the two dimen-
sional diffusion equation values of u "“/ 2 and u"Mfll/ 2 are provided by
the boundary conditions (3)—(4).

In contrast to the locally one-dimensional (LOD) method, this ADI
scheme is consistent with the full two-dimensional diffusion equation.
Here there is no difficulty in splitting the time steps in half, because any
boundary conditions specified are correct after each stage of the ADI
process.

The sum of the modified equivalent partial differential equations
corresponding to the formulae (17) and (20) at time ¢, is as
follows [17]

ou u u (Ax) o'

TR G G VI
PO oq(ant, 'y =0 24

This equation shows that the (3,3) ADI scheme is only second-order
accurate.

2.2. The (3,9) ADI Method

The x and y sweeps of the (3,9) ADI method for solving the two
dimensional problem (1) are described in the following.

In the first half-time interval of the (3,9) ADI procedure, the
following approximation will be used.

L I
+—
ay2 i’j

*u
;)
x|, ;

oul"
ot

+ (pu+ )iy (25)
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1 (u(n+(1/2)) ,j—l) s —2_ (u§,",+“/2” _ u;:’j)

uliy =g k 3 k
(n+(1/2))
1 (y J+l “",j+1)
+ g k ) (26)
e = (o — 28, i) | 200y, — 20+ )
XX 1§, j 6 ( Ax)z 3 ( Ax)2
1041501 = 2u; 54 + “?+1,j+1)
tz 2 ) (27)
6 (Ax)
1/2 1/2 1/2
o O =2 ) 2O -2 4 )
Y6 (Ay) 3 (Ay)?
1 ( i+lj-1" t+lj u;‘+1,j+1) (28)
6 (Ay)

In the first half-time interval of the ADI procedure, with each
i=12,...,M—1, and for each j=1,2...,M—1 we have

(6sy — l)u:'j(ll/ D41+ 3sy)u;'+(l/ 24 (6sy — )u;';rfl/ 2

= —Sx(0y jo1 Uiy 1+ W or T ¥ )
—dsx (U ; + 1)

+2(sx — D) jq + 44, + 0 10) RPN+ 47, (29)
where the notation u"+(1/ 2)
intermediate stage.

As in the (3,3) ADI method, the resulting system of linear algebraic
equations is strictly diagonally dominant, which ensures it is solvable.
This system can be solved by using the very fast Thomas algorithm.

In the second half time interval the following approximations are
used

refers to values of u,; computed at the

n+(1/2) u

~ ox?

n(1/2) g, in+(1/2)
_|_ R
ij O |;

Ou

= +@u+ i, (30)
ot i

Yj
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1/2 1/2
u |n+(l/2) 1 (uz 1j " ;l+( / )) ( - n+( / ))
iy 6 k 3 k
1/2
41 1 (“7:11,1 :’:1(,;'/ )) (31)
6 k !
1/2 1/2 1/2
|n+(1/2) 1 (u:tjl(,]/ ) —2u :;-——( /2 + :1:1(,]{-1))
xx 6 (Ax)
E(Wf 11,,' — 2y T+ “?:1],;
3 (Ax)?
( n+(1/2 n+(1/2) n+(1/2))
10— 2650 U1+ (32)
6 (Ax)?
1/2 1/2) | .nt(1/2
n+(1/2 :Tl,] :l+1,] ljl,]+1
| l( (1/2) — 2% (1/2) (1/ ))
6 (&y)?
2008 -2 4 g
3 (Ay)’
1/2 1/2 1/2
1(";:51(,;/ 1) 2”?:1(,,/ ) :’:1(,111)) (33)
6 (Ay)’

In the second half time interval the following formula is used with
j=12,...,M—1,foreach i=1,2,...,M—1,

(65 — 1)) — 4(1 + 35, )l + (65, — Dadf

i—1j
n+(1/2) n+(1/2) n+(1/2) n+(1/2)

= _sy( i~1,j-1 +ux 141 +ui+l,j 1 +ux+1,1+1)
“4Sy( n+(1/2) n+(1/2))

ij—1 t,/-H
2ty DG + 4O 40
+k(pn+(1/2) ?;-(1/2) + ¢Z7(1/2))_ (34)

In the case Ax = Ay=h, we have s, =5, =15, and the formulae to be
used in the two half-time steps of a time-split procedure are:

(6s — Dt — 41+ 30T + (65— V1§
=s(l oy + Uy + Wi F W)
—As(u_yj+ uiyg ) + 205 — V) (ug_y + 4 +55)

+k(p"ui; + 7)), (35)
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and

(65 — Dt — 41+ 35yt + (65 — V),

1/2 1/2 1/2 1/2
-5 (u:lj-—l(,// 1) + ijl(,]{l—l) + u?:l(,i/ 1) :’:1(,14-1))
1/2 1/2 1/2 1/2 1/2
= 455 o alt) + 20 = DG + 4y P+l )
1/2 1/2
+k(pn+(1/2)u:f;"( 4 ¢;';( / ))'

(36)

Values of u}‘}l on the boundaries x =0,1 and y=0,1 are provided by
the boundary conditions (3)—(6).

This procedure is unconditionally von Neumann stable.

In the following the procedure using this formula will be referred to
as the (3,9) technique, because the computational molecule used for
the x-sweep of this method involves three gridpoints at the new time
level and nine at the old level.

The modified equivalent equation of the double-sweep procedure of
the (3,9) ADI formulae is as follows:

u u & Ax)* 8u
E—Eﬁ—ﬁ—puw—(l;g (120(sx)” — 3085 + 1) 3%
(!

- (120(s,)? 30s,+1) 2+ o{(ax®, (&)} =0,  (37)

which verifies its fourth-order convergence rate.

The choice of s, = s, = (15 + v/105)/120 or s, = s, = (15 — V105)/
120 makes the (3,9) ADI formula sixth-order convergent for the two-
dimensional diffusion equation.

3. EVALUATING THE CONTROL PARAMETER P(t)

If u(x, y, f) and p(¢) form a solution for (1)-(7), then
E,(t) = uxx(x07y07 t) + u)’y(x07y07 t) +p(t)E(t) + ¢(X(),y(), t)’ (38)
which gives:

E'(f) — txx(x0, ¥0, £) — thyy(x0, 0, ) — ¢(x0, Y0, £)

p() = 30

(39)
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Using (16) and (7), the finite difference form of (39) is

(B — (/R (0 14y = 20+ ¥h1s0) = (/P W1y 1 = 2001y + %0 1) — B

= 7
(40)
Combining this with the compatibility conditions yields [16]
= E'(0) — frx(x0,¥0) — fyy(%0,¥0) — #(x0,0,0) . (a1)

f(x0,y0)

This p°, together with the values of u(x, y, ) at n=0 level given by
the initial condition, provide a starting point for our computation.

Note that the presence of the temperature overspecification term
can greatly complicate the application of standard numerical methods.
The accuracy of the technique used to evaluate the control parameter
must be compatible with that of the discretization of the diffusion
equation [10]. It means that in the case of using a fourth order finite
difference formula such as, the (3,9) ADI technique, a higher order
of accuracy than that used for the (3,3) ADI scheme, is required. So
in this case, the following fourth order scheme is employed for
computing p(f) approximately:

1 1
= & ((E')" ~ TR (=tey—2, + 160,14,

- 301‘;;0,10 + 16uzo+1,10 - uzo+2,lo)

1
~ DR (=g jo—2 + 1614

0]

n
o1 — 30U gy

+ 16“20,10-}—1 - uzo,lo+2) - ¢Zo,lo) * (42)

Since for practical computation, the time step size is small, it is
reasonable to assume that p”*! is not far from p". Thus, a good choice
of the initial guess for p"*!, denoted by p”* V@, can be made as
pDO_p for n=0,1,...,N.

Substituting p" and p®*P® into (22) for the (3,3) ADI finite
difference scheme or into (35) for the (3,9) ADI technique, makes the
related linear systems ready for solution.

Solving these linear systems, we obtain u;';rl(o), i,j=1,2,...,M—1
corresponding to p" 1@, We use p"*'? to denote the /th guess for p(t)
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at level n+1 and u ;“1(1) to denote the corresponding values obtained
by using p**+ Y0 pn=0,1,...,N-1,[=0,1,.

For the corrections, we use (40) to generate P D i the
following way:

prD)
1 1 1 (s 1¢
= = (@)= () (w10, - 2050 + 0,
1(7 +1(1 1(I
~(1/#%) (unkotlo( ) = ) + Zo+lo(+)1) Yo ’°) “3)

for I=0,1,...,.
Note with the (3,9) ADI finite difference scheme, which is a fourth-

order technique, the following formula will be used to generate
PRI,

1 1 ¢ 1 ¢
p"+l(l+1) == ET_H' ((El)n+ - 12h2 ( Z:—g }o + 16 nk:. ” - 30 ZOIO()

17 +1(1
+ 160 — D)

1 n+1(1) +1(1) +1(0)
- 12h2 ( uko lo—2 + 16u" bh—1" 30“;:0,10

1@ 0
+16“::,10(+)1 Z;tlo?z) ¢"+1 ) (44)

for 1=0,1,....

We will adjust p"+!® repeatedly until it converges, i.e., satisfies a
prescribed tolerance. Then we accept the corresponding values u"fl(l)
ij=1,2,...,M—1and p"*'® as 1!, i,j=1,2,...,M~1 and p**!
respectively. This strategy completes [7] the advancing from level n to

level n+1.

4. NUMERICAL TEST

A problem for which exact solution is known is now used to test the
methods described for solving the inverse problem with temperature
overspecification. These are applied to solve (1)—(7) with p(f) and u
unknown.
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Consider (1)—(7) with

ox) = (32— 51) exploysin T+ 29
1(0,3,1) = exp()sin ( 2),
(1,3, =exp(@)sin 11+ 29),
(.0, = exp(t sin (),

hi(x,1,¢) = exp(¢) sin (% (x+ 2)),
E(f) = exp(?) sin (0.27),
. T
flxy) = sin 7 (x+2y),
for which the exact solution is

u(x,y,t) = exp(t) sin %(x + 2y),
and

p(t) =1+5¢

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

The results obtained for u’Y, at T=1.0, computed for h=0.02,

s=1/4 and (xo,yo) = (0.4, 0.2), using both the (3,3) ADI finite differ-
ence method and the (3,9) ADI method are listed in Table 1. These
results reflect the fourth order convergence of the (3,9) ADI scheme.
The interesting feature of these results is that the error obtained
when using the (3,9) ADI formula is about one thousand times smaller
than those obtained when using the (3,3) ADI scheme. The results of
the (3,3) ADI technique and the implicit scheme of [16] are about the

same.
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TABLE I Results for # with h=1/50, s=1/4 and T=1.0
(3,3) ADI (3.9) ADI Implicit Method

x y Exact u Error Error Error

0.1 0.1 0.640478 3.5x 1073 51x10-¢ 77x1073
0.2 0.2 1.234072 3.6 x 1073 52x 1076 74 %1073
0.3 0.3 1.765382 3.6 x 1073 5.4 x 106 8.1x1073
0.4 0.4 2.199132 3.7x 1073 53 %1076 95x10°3
0.5 0.5 2.511363 38x1073 53 x10°¢ 9.6 x 1073
0.6 0.6 2.684813 39 x 1073 55x10°¢ 8.7x103
0.7 0.7 2.709900 40x1073 56x 1076 85x1073
0.8 0.8 5.123874 40 x 1073 54x10°¢ 79% 1073
0.9 0.9 5.764316 3.8 x 1073 52x10~¢ 73x1073

The results obtained for p(¢) with h=0.02, s=1/4, using both the
(3,3) ADI finite difference scheme and the (3,9) ADI formula with p(¢)
defined as in (53) and it was considered to be unknown and found by
(43) for the (3,3) ADI scheme, and by (44) for the (3,9) ADI method
are shown in Table II. This table shows that the results obtained using
the (3,9) ADI method are much more accurate than using the (3,3)
ADI finite difference method.

Note that the results obtained when using the (3,9) ADI scheme are
about one thousand times more accurate than those obtained when
using the implicit scheme of [16].

The CPU time for the (3,3) ADI finite difference method was 105.9s
and for the (3,9) ADI scheme was 108.6s, while the time for the im-
plicit method was 876.65s.

The time needed using these ADI methods was about 8 times
shorter than using the implicit method of [16].

TABLE II Results for p with h=1/50, s=1/4

(3,3) ADI (3,9) ADI  Implicit Method

t Exact p Error Error Error

0.1 1.500000 95% 103 62x 103 79 x 10~2
0.2 2.000000 9.6 x 1073 63x10~% 6.0 x 10~
0.3 2.500000 97x1073 6.5x 1073 8.0 x 10~2
0.4 3.000000 9.7x 1073 64x 1073 9.0x 102
0.5 3.500000 99x1073 65x107% 9.5x 102
0.6 4.000000 99x 1073 6.6 x 1073 8.8 x 1072
0.7 4.500000 9.8 x 103 63 %1073 81x10~2
0.8 5.000000 9.6x 1073 6.0x 103 7.2 % 10™2
0.9 5.500000 9.3x1073 59x10"3 6.9 x 102

1.0 6.000000 9.1x 1073 58x 1073 5.4 x 102
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5. CONCLUSIONS

In this paper the (3,3) ADI finite difference method and the (3,9) ADI
scheme were applied to a two-dimensional inverse problem with tem-
perature overspecification. The proposed numerical schemes solved
this model quite satisfactory. Using the (3,3) ADI finite difference
scheme or the (3,9) ADI technique for the two-dimensional linear
diffusion problem with appropriate treatment on the control param-
eter describe our model well. These procedures are very simple to
implement and economical to use. They are very efficient and they
need less CPU time than the implicit methods. A comparison with
results from the implicit scheme of [16] for the model problem used
clearly demonstrates that the ADI techniques are computationally
superior. A common feature of the explicit finite difference methods is
the restriction of the size of the time step due to stability requirements.
This restriction necessitates extremely small values for k. This limi-
tation is removed when the implicit finite difference schemes are used.
However, a disadvantage of these techniques is the extensive amount
of CPU times utilized in determining the numerical solution compared
to the explicit methods for the same selection of values s and A.
So these schemes are impractical for higher dimensional problems.
So the need to develop the ADI techniques is clear. These ADI finite
difference schemes are very easy to implement for similar 3-dimen-
sional inverse problems, but it may be more difficult when dealing with
the implicit schemes or the explicit methods. Another extension of
these results might include two-dimensional parabolic inverse prob-
lems with energy overspecification.
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