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Abstract

Background: Pattern discovery in DNA sequences is one of the most fundamental problems in

molecular biology with important applications in finding regulatory signals and transcription factor

binding sites. An important task in this problem is to search (or predict) known binding sites in a

new DNA sequence. For this reason, all subsequences of the given DNA sequence are scored

based on an scoring function and the prediction is done by selecting the best score. By assuming

no dependency between binding site base positions, most of the available tools for known binding

site prediction are designed. Recently Tomovic and Oakeley investigated the statistical basis for

either a claim of dependence or independence, to determine whether such a claim is generally true,

and they presented a scoring function for binding site prediction based on the dependency between

binding site base positions. Our primary objective is to investigate the scoring functions which can

be used in known binding site prediction based on the assumption of dependency or independency

in binding site base positions.

Results: We propose a new scoring function based on the dependency between all positions in

biding site base positions. This scoring function uses joint information content and mutual

information as a measure of dependency between positions in transcription factor binding site. Our

method for modeling dependencies is simply an extension of position independency methods. We

evaluate our new scoring function on the real data sets extracted from JASPAR and TRANSFAC

data bases, and compare the obtained results with two other well known scoring functions.

Conclusion: The results demonstrate that the new approach improves known binding site

discovery and show that the joint information content and mutual information provide a better and

more general criterion to investigate the relationships between positions in the TFBS. Our scoring

function is formulated by simple mathematical calculations. By implementing our method on several

biological data sets, it can be induced that this method performs better than methods that do not

consider dependencies.
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Background
DNA-binding proteins, called transcription factors (TFs),
are involved in transcription regulation. These factors
bind to specific positions in promoter regions for modu-
lating the expression of genes. The common pattern of the
recognition sites of a TF is called a motif. We use the term
transcription factor binding site or motif instance to mean the
occurrence of the motif with some mutations in promoter
regions.

Identifying transcription factor binding sites (TFBSs) in
promoter regions is a difficult problem in molecular biol-
ogy. The main reason for this difficulty is that a single
transcription factor might bind to regions which vary
greatly in their sequences. Although the binding sites for a
particular transcription factor share short similar subse-
quences, sometimes they are highly degenerated. Such
short sequences are expected to randomly occur every few
hundred base pairs, and thus finding them is a difficult
task. Since experimental procedures to determine the
exact binding sites are too expensive and time-consuming,
computational methods have been developed in the past
two decades for discovering novel motifs and TFBSs in a
set of promoter sequences [1,2].

There are two main classes of algorithms for finding regu-
latory motifs. First, the methods that search for known
transcription factor binding sites in a new sequence
(known motif prediction). Example tools include ConSite
[3], Match [4], Mapper [5], Patser [6] and rVista [7]. Sec-
ond, the methods that try to detect new motifs within a set
on DNA sequences based on sequence homology
(unknown motif prediction). Example tools include
Gibbs sampler [8], AlignACE [9], MEME [10] and Yeast
Motif Finder [11]. Generally, motif finding algorithms in
both of above methods have three important elements: a
motif model that can capture the similarities of a diverse
set of binding sites for the same transcription factor, an
objective function defining the ranking of known motif
(in the first methods) or potential motifs (in the second
methods), and a search strategy for parameterizations of
the motif model. The first two elements can be given an
abstract representation or modeling, but should probably
be designed to utilize and enhance biologically relevant
information.

Until now, the most common way for binding sites mod-
eling is to assume that any base in each site occurs inde-
pendent of others. In this modeling, a motif is represented
based on consensus sequences [12], position weight
matrices (PWMs) [9,10], matrix profiles [13], sequence
logos [14], mismatch strings (MMs) [15,16] (consensus
string allowing some mismatches) and IUPAC strings
(IUPACs) [11,17] (consensus string with degenerate sym-
bols). Methods based on the assumption of independency

between positions are simple with small number of
parameters that make them easy to implement. These
methods are widely used and often considered as accepta-
ble models for binding-site predictions [18]. However,
recent experimental evidence [18,19] has promoted the
development of models which incorporate position
dependencies. The related methods include Bayesian net-
works [20], permuted Markov models [21], Markov chain
optimization [22], hidden Markov models [5], non-para-
metric models [23] and generalized weight matrix models
[1]. Based on the above discussion, another method for
modeling binding sites is presented by Tomovic and
Oakeley [24]. In this method, for a given TFBS, dependent
and independent positions are considered and in search-
ing for a motif the scoring is calculated based on them.
The dependency between positions of a given TFBS are
predicted by statistical approach which may be explained
by structure of TF-DNA complexes. Methods based on
position dependencies usually have better binding site
prediction accuracy with lower false positive rates. But
these methods require more complicated mathematical
tools, with more parameters to estimate, and require more
experimental data than typically available ones
[5,20,22,23]. On one hand, a more comprehensive model
may allow for a better fit to the data. On the other hand,
the more complex model may over-fit the data and result
in an inferior predictive power.

In this paper, we focus on TFBS modelings and search
methods for known motif prediction which find known
transcription factor binding sites in a given sequence, and
investigate known motif ranking (scoring schema). We
study whether TFs show position dependencies in their
binding sites or not. We also investigate the use of joint
information content and mutual information as a meas-
ure of dependency between positions in TFBS. We suggest
a statistical approach for testing dependencies, and
present a new scoring schema that can be used in search
methods for finding known transcription factor binding
sites. Our method for modeling dependencies is simply
an extension of position independencies methods. This
method is formulated by simple mathematical calcula-
tions, and as will be shown, the proposed algorithm is
very simple and substantially efficient, and can be easily
implemented on any data sets. We test our new scoring
schema on the real data sets and compare the obtained
results with two other well known independent and
dependent scoring schemas. Using this comparison we
can demonstrate the effectiveness of our proposed
method against the independent scoring schema, and our
scoring function performs better than methods that do
not consider dependencies. It is shown that the joint
information content and mutual information provide a
better and more general criterion to investigate the rela-
tionships between positions in the TFBS. Also by using
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these two measurements, we can obtain results compati-
ble to the results obtained by dependent scoring schema.

Methods
As mentioned in previous section, one of the important
problems in motif discovery area is finding the known
TFBSs in a given DNA sequence or promoter region
(known motif prediction). In this section we focus on this
problem and at first, some definitions and notations fur-
ther used in this paper are introduced. Let N = {A, C, G, T}
be the four nucleotide letters' of which DNA sequences are
composed. We have the DNA sequence D = d1,..., dn (a
promoter region) on N, and let us suppose that we have t
known TFBSs of the length � which are represented by a
matrix Bt × � for a given TF, and we intend to investigate by
B, where D possess a motif instance or transcription factor
binding site corresponding to the given TF. For finding the
position of this motif instance in D, we first create a posi-
tion weight matrix W of B, and then we scan all subse-
quences R = di,..., di+�-1 for i = 1,..., n - � + 1 of D, and align
position weight matrix W with each R. All the subse-
quences which their score are greater than a cutoff are
reported as motif instances. The creation of position
weight matrix W from TFBSs and calculating the score of
alignment W with a subsequence are called scoring
schema.

The accuracy of the solution in this search problem
depends on how we design the scoring schema, and how
the position weight matrix is constructed. In this section
we first discuss two existing scoring schemas which are
employed for ranking known motifs and predicting TFBSs
[24], later a new scoring schema is presented.

Independent scoring schema

The first scoring schema is a conventional method and is
employed in many papers [4,8,11,16,25,26]. In this scor-
ing schema, it is assumed that all positions in a given
motif are completely independent. This scoring schema is
defined as follows.

Suppose we have a promoter region D and a TFBS matrix
B of some known motifs. Assume that F(b, j) (b  N and
1  j  �) shows the occurrences of nucleotide b in column
j of the matrix B. Employing this function, a probability P
is made as follows:

where a(b) is the smoothing parameter (a(b) = 0.01).
Later, a position weight matrix W4 × � is made as follows:

where each p(b) shows the occurrence probability of
nucleotide b (independent of nucleotides in the other
position) in a random sequence (obviously p(b) = 0.25 for
every b  N).

Now, let R be a DNA subsequence with the length � of a
promoter region D (R = r1,..., r�, and ri  N for 1  i  �).
For computing the score of R, we align position weight
matrix W with R and calculate Score1(R) as follows:

This score can be normalized as follows:

where MaxScore1 and MinScore1 are calculated as follows:

Dependent scoring schema

The second scoring schema was first introduced in [24]. In
this scoring schema, dependency between some positions
in a given TFBS is assumed. This method uses a statistical
approach to find dependent positions in a set of known
TFBSs. Therefore, if the dependent positions of a set of
TFBSs are available, then this scoring schema is defined as
follows.

Similar to the previous definition, we have a promoter
region D and t binding sites of the length � which are rep-
resented by a matrix Bt × � for a given TF. Also, assume that
F ([b1,..., bm], [j1,..., jm]) shows the occurrences of bases
b1,..., bm (bi  N for 1  i  m) in dependent positions j1,...,
jm in the matrix B (positions j1,..., jm are determined by sta-
tistical approaches [24]). As an example, F([A, C, A, T ],[3,
4, 8, 11]) represents the number of occurrences of A, C, A,
and T in the positions 3, 4, 8, and 11 in a given matrix B.
It should be noted that the positions j1,..., jm are depend-
ent and not necessarily consecutive.

The corrected probability for the bases b1,..., bm in posi-
tions j1,..., jm is defined as:

where a(b1,..., bm) is a smoothing parameter and can be
calculated as follows:

a(b1,..., bm) = a(b1) × ... × a(bm).
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Now, the position weight matrix W corresponding to the
binding sites is calculated as:

Finally, for a given subsequence R = r1,..., r� (ri  N and 1
 i  �) of D, we align position weight matrix W with R
and calculate Score2(R) as follows:

where k1 is the number of independent positions, k2 is the
number of dependent positions order 2 (nucleotides at
positions ji and ji+1) and km the number of dependent posi-
tions order m (nucleotides at positions ji, ji+1,..., ji+m-1).

The normalized version of Score2(R) can be defined as:

where MaxScore2 and MinScore2 can be calculated as fol-
lows:

New scoring schema

In the previous subsections we presented two scoring
schemas. In the first, nucleotides in all positions in a given
TFBS are considered as independent, but this may not be
true in all cases because it is shown that dependency
between some positions are important [19,27]. In the sec-
ond, dependency between some positions in a TFBS are
considered, but this model has also two problems: first,
calculation of dependency between positions is sophisti-
cated, and second, final score is obtained by summation
of all the scorings obtained by each order dependent posi-
tions, which are not in the same range.

As mentioned, all positions in TFBSs may be dependent,
because the length of TFBSs are short, therefore all posi-
tions in TFBS may be involved in the interaction with a
factor and dependency between all positions are impor-
tant. TFBSs are short regions in promoter region that TFs

can be bonded to them to provide initial conditions for
gene transcription. By mutual comparison of TFBS corre-
sponding to a specific TF, we see that some positions in
TFBS are mutated and some other ones are conserved.
Since the length of a TFBS is short, therefore it seems that
both mutated and conserved positions play an important
role in binding of TF and TFBS. During a transcription
process, TFBS region constructs structure by hydrogen
bonds and this causes the attraction of TF to this region.
Thus, with respect to the above feature of this process, it
seems that the conserved positions and mutated positions
cause this attraction. Also, with respect to that, the average
specific free energy of binding to all binding sites play an
important role in this attraction, and by considering that
this energy is directly related to the information content of
the preferred binding sites [26], we use the information
content for TFBS scoring.

Similar to the previous subsection, suppose that we have
a promoter region D and binding site matrix Bt × � for a
given TF. Employing information theory, we compute the
information content (IC) of a set of TFBSs which are rep-
resented by the matrix B with position independency as
follows.

where F and p are computed similar to independent scor-
ing schema. From this formula, we have 0  IC  2�. Now,
we assume that positions are mutually dependent, and
F([b1, b2], [j1, j2]) shows the number of the occurrence of
nucleotides b1 and b2 in positions j1 and j2 in the given
matrix B. As an example P([A, T ], [3, 8]) represents the
probability of the occurrence of the pair A and T in the
positions 3 and 8 in a given matrix B. Clearly, the number
of all two combinations of four nucleotides is equal to 16,
and the number of all two combinations of � tuples is
equal to � (� - 1)/2. In this case, the joint information con-
tent (JIC) is computed as:

and for this formula we have 0  JIC  4�.

Obviously, we get more information from JIC when the
positions are more conserved. Now, the problem is to add
up the information of the mutated positions to JIC which
have not been considered yet. For this reason, we compute
the mutual information (MI) as follows:
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and from this formula we have 0  MI  2�. The relation
of MI and JIC for each position pairs is as follows. If MI =
0 then JIC = 4 and consequently MI + JIC = 4, if MI = 2
then JIC = 2 and consequently MI + JIC = 4. This condition
implies that JIC does show less information and by add-
ing up MI we can get more information. Actually MI car-
ries meaningful information that can not be discarded.
On the other hand, IC = 2 means, conservation is low but
dependency between positions is high.

With regard to the above discussion, the probability of the
bases b1 and b2 in positions j1 and j2 can be defined as:

where a(b1, b2) is a smoothing parameter and can be cal-
culated as:

a(b1, b2) = a(b1) × a(b2).

Now, for our scoring schema, we make a position weight
matrix W16 × (�(�-1)/2) whose each entry shows the number
of occurrences of a pair of nucleotides in a pair of posi-
tions. This matrix is defined as:

where [b1, b2]  (N × N), 1  j1, j2  �, and j1  j2.

Finally, for a given subsequence R = r1,..., r� (ri  N and 1
 i  �) of D, we align position weight matrix W with R
and evaluate Score3(R) as follows:

The normalized version of Score3(R) can be defined as:

where MaxScore3 and MinScore3 are formulated as follows:

Results and discussion
In order to determine the distribution of TFs with depend-
ent positions and verify that our scoring schema indeed
improves the specificity of known motif discovery, we
extract some TFs from two public databases JASPAR [28]
and TRANSFAC [29]. For extracting the TFs from JASPAR,
we select all TFs from JASPAR database and implant TFBSs
from these TFs in some random sequences which are gen-
erated by the similar way to [24]. For extracting the motifs
from TRANSFAC, we use the benchmark data sets that
generated by Sandve et al. [30] and Tompa et al. [31].
Sandve generated three data set versions from TRANSFAC
based on the collections of binding site fragments that are
ranked according to the optimal level of discrimination.
These data sets are called 'algorithm-Markov', 'algorithm-
real', and 'model-real'. Tompa also generated three data
set versions from TRANSFAC based on the employed
background sequences. These data sets are called
'Generic', 'MChain', and 'Real'. Therefore, we have seven
data sets (JASPAR, algorithm-Markov, algorithm-real,
model-Real, Generic, MChain and Real) that each of them
contains some TFs (motifs) where each TF contains some
TFBSs (motif instances).

We compare our new scoring schema with the two scoring
schemas that were introduced in Section 2 on the above
data sets for finding known motif instances. The compar-
isons are proceeded in two levels: Comparison of sites
(site level) and comparison of nucleotides (nucleotide
level) regarding the position of motifs in the main
sequences. For this reason, we first introduce the follow-
ing criteria for comparison [31].

1.nTP is the number of nucleotide positions in both
known sites and the predicted sites.

2. nFP is the number of nucleotide positions not in the
known sites but in the predicted sites.

3. nFN is the number of nucleotide positions in known
sites but not in the predicted sites.

4. nTN is the number of nucleotide positions in neither
known sites nor the predicted sites.

5. sTP is the number of known sites overlapped by the pre-
dicted sites.
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6. sFP is the number of predicted sites not overlapped by
the known sites.

7. sFN is the number of known sites not overlapped by the
predicted sites.

A predicted site overlaps a known site if it overlaps by at
least 25% of the length of the known site. Clearly, the first
four criteria are in the nucleotide level and the last three
criteria are in the site level. Regarding the above criteria,
eight different measurements for the evaluation of the
algorithm are introduced.

1. Nucleotide Performance Coefficient (nPC): Following
Pevzner and Sze [25], nPC is defined in the nucleotide
level of the predicted sites and is equal to

As we can see nPC  1 and the higher value of nPC shows
that the known sites and the predicted sites are more sim-
ilar. Obviously, if the predicted sites were equal to the
known sites then nPC is equal to one.

2. Nucleotide Correlation Coefficient (nCC): Following
Burset and Guigo [32], nCC is defined in the nucleotide
level as

The value of nCC varies from -1 (indicating perfect anti-
correlation between two known sites and the predicted
sites) to +1 (indicating the perfect correlation and match).

3. Nucleotide Specificity (nSp): A statistical measure for
the correctness prediction of positions of a non-motif
sequence and is equal to

This measure is called true negative rate in the nucleotide
level. The complement of this value is recognized as
Nucleotide Selectivity (nSl) or false positive rate, i.e. nSl =
1 - nSp.

4. Nucleotide Sensitivity (nSn): is the fraction of the
known site nucleotides that are predicted as motifs and is
defined by

This measure is called true positive rate in the nucleotide
level.

5. Site Sensitivity (sSn): is the fraction of predicted sites
that are known as

This measure is also called true positive rate in site level.

6. Nucleotide Positive Prediction (nPP): is the fraction of
the number of nucleotides in the predicted site similar
with the number of nucleotides in the known site and is
equal to

7. Site Positive Prediction (sPP): is the fraction of the
number of predicted sites similar with the known sites as

8. Site Average Performance (sAP): is the average of site
sensitivity and site positive prediction and is defined by

None of the above measurements, can capture the corre-
lation of the motif prediction algorithms perfectly by
themselves. Therefore, in any case, we need a way of sum-
marizing the performance of a given motif finding pro-
gram over all data sets. For each program, each
measurement M (one of the above eight measurements),
over all data sets, is obtained and the performance of each
program on all data sets are compared by the similar
methods given in [31], which is defined as follows.

1. Average: For each program, the measurement M is cal-
culated on each data set and then the usual arithmetic
mean of the measurement M is evaluated for each pro-
gram.

2. Combined: Adding up nTP, nFP, nFN, nTN, sTP, sFP
and sFN over all data sets, the measurement M is com-
puted for all data sets which are considered as a large data
set.

3. Normalized: For each motif, the measurement M is
normalized by subtracting the mean and dividing by the
standard deviation over all the programs on that motif,
and the average of these normalized scores over all motifs
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are obtained. This method puts easy and hard motifs on
the same scale.

For finding TFBSs in the generated data sets from the
above mentioned data bases, we use three test methods.
In the first test method, for each TF, we have t known
TFBSs of the length � which are implanted in t sequences
of the length n. Initially we calculate the motif matrix B
and corresponding PWM. Now we scan t sequences with
PWM and calculate the score of all subsequences of these
t sequences based on three mentioned scoring schemas
(independent scoring schema, dependent scoring schema,
and our scoring schema) and then report subsequences
with the score above a predefined cutoff (with value in the
range of [0, 1]) as motif instances or predicted TFBSs. The
above process is repeated for all TFs in each of the data
sets. The value of cutoff is chosen based on best nCC for
each TF. Roughly, one method for computing the cutoff is
to fix an initial value for cutoff (rather a maximum value)
and then select all subsequences of the length � from t
sequences with a score above this cutoff, as motif
instances.

With regard to the known actual positions of binding sites
each TF, the nCC value of this TFBSs is computed. Then we
decrease the value of cutoff and we again predict TFBSs and
calculate its corresponding nCC. If the value of nCC
increases we repeat the whole process for smaller value of
the cutoff, until we get to a cutoff whose nCC value
decreases. The previous cutoff before this last decrease, is
selected as the final cutoff. It should be noticed that, if cut-
off is small, so TP and FP are large and TN and FN are
small, and if cutoff is large then TP and FP are small and
TN and FN are large. Therefore we choose cutoff such that
the calculated nCC be maximum. In the second test
method we use Jackknife method, again for each TF, we
have t known TFBSs with the length � which are
implanted in t sequences with length n. First we ignore j-
th TFBS of this set, then calculate the motif matrix B for t
- 1 remaining TFBSs, and the corresponding PWM. Then
based on the mentioned scoring schema, we consider j-th
sequence and scan this sequence with PWM for finding a
subsequence with maximum score as a predicted TFBS or
motif instance. For each j (1  j  t) we repeat this process.
Finally, accuracy of methods are investigated on all TFs in
each data set. In the third test method, we use the method
which is introduced in [24]. We have m = t + q sequences
of the length n and t TFBSs of the length � for each TF
which are implanted into t sequences of m sequences.
Therefore q sequences have no motif. Now by using the
value of cutoff which is calculated in the first test method
for each TF, we try to find motif instances in m sequences
by PWM of t known TFBSs. The accuracy of known motif
prediction is investigated in all the above test methods for
the predicted motifs.

Finally, we perform statistical analysis on nCC measure-
ment of motifs in each data set (JASPAR, algorithm-
Markov, algorithm-real, model-real, Generic, MChain and
Real). In following we describe our statistical analysis. Let
Pi, j, k be the set of nCC values obtained from the jth test
method (1  j  3) by the kth scoring schema (1  k  3)
on the ith data set (1  i  7). Clearly k = 1, k = 2 and k =
3 stand for the independent, dependent and our scoring
schema, respectively. Also i, j, k shows the average of the
values given in the set Pi, j, k. Now we intend to see whether
the distribution of these values in the set Pi, j, k follows a
normal distribution or not. This is done by using the K-S
(Kolmogorov-Smirnov) Test. Actually, this test represents
whether the data shows a significant deviation from nor-
mality or not. Now if p-value is more than 0.05 thus the
null hypothesis (H0), stating the data have come from
normal distribution, is not rejected. We also compare the
nCC values of our scoring schema with the two other scor-
ing schemas (independent and dependent). For this rea-
son, we compare the above mentioned mean values
corresponding to each schemas. Mutually we compare (i,

j, 3, i, j, 1) and (i, j, 3, i, j, 2) for each 1  i  7 and 1  j  3.
For comparing i, j, 3 and i, j, k (k = 1 or k = 2), we use the
paired t-test, if Pi, j, 3 and Pi, j, k have normal distribution,
otherwise the Wilcoxon signed-ranks test is applied. This
statistical analysis estimate significant deviation of two
averages. The results of our statistical analysis are shown
in the next subsections.

JASPAR database

As mentioned, for extracting the data from JASPAR, all
107 TFs are selected from this database. Let us denote the
number of TFBSs of the ith TF by ti, 1  i  107. We
implant TFBSs of each TF in some of random sequences
that are extracted from the supplementary No. 8 enclosed
in [24]. The number of these random sequences is 1800
and these sequences are of the length 250 to 500 and are
sampled from a third-order Markov model background
distribution. So we generate our data set as follows.
Assume the ith TF in JASPAR, consists of ti TFBSs. We select
randomly, ti sequences from 1800 background sequences
and implant all these TFBSs in ti sequences in random
position. We repeat this process for all TFs in JASPAR data-
base. Finally 107 sets are obtained. Let Si be the set of ti
sequences in which ti known TFBSs are implanted. The
position dependency in this paper for evaluating depend-
ent scoring schema is similar to the values given in [24],
which are obtained by statistical approach with respect to
their structures. Now, the performance of the above three
test methods on generated data set are as follows. In the
first test method, we use an ordinary search method. First,
for the ith TF, the corresponding position weight matrix is
constructed from its known TFBSs. Later, each subse-
quence R (|R| = �) of Si is aligned to the constructed PWM
and the Scorej(R) and NScorej(R) (1  j  3) are computed.
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Finally, the subsequences with the score above the cutoff
are considered as motif instances or predicted TFBSs.

We again repeat the above process for all 107 TFs. Finally
all previously mentioned measurements are evaluated. So
for each measurement we obtain 107 values. For the
obtained results the Average, Combined and Normalized
results of each measurement (defined earlier) are shown
in Figure 1. Although, our scoring schema is similar to
dependent scoring schema but as seen in the figures our
scoring schema can detect the motifs better. In following,
we confirm this matter.

We have also performed some statistical analysis for 107
nCC values. For all the sets P1, 1, k, 1  k  3, which do not
follow a normal distribution, we use the Wilcoxon signed-
ranks test on (1, 1, 3, 1, 1, 1) and (1, 1, 3, 1, 1, 2). The cal-
culated p-values indicate that 1, 1, 3  1, 1, 1 (p-value = 1)
and 1, 1, 3  1, 1, 2 (p-value = 0.8686).

In the second test method, we use Jackknife method. Let
us, assume that the k-th TF has tk TFBSs of the length �, and
Sk be the set of sequences in which these tk TFBSs are
implanted. Also, suppose that j-th TFBS is not known and
tk - 1 TFBS are known. So by using the PWM of tk - 1 known
TFBSs and the scoring schema, unknown j-th TFBS is pre-
dicted from j-th sequence in Si. For prediction, each sub-
sequence R (|R| = �) of the jth sequence is aligned with the
constructed PWM and the Scorei(R) and NScorei(R) (1  i
 3) are computed. The subsequences with maximum
score are considered as motif instances. The above process
is repeated for j = 1, 2,..., t, and k = 1, 2,..., 107, and all
TFBSs with three scoring schemas are predicted. For these
values the Average, Combined and Normalized results of
each measurement are shown in Figure 2. In this case our
scoring schema is similar to the independent scoring
schema and is performed better than dependent scoring
schema. In following, we again perform statistical analysis
for confirming this result. We use the Wilcoxon signed-
ranks test on (1, 2, 3, 1, 2, 1) and (1, 2, 3, 1, 2, 2). The cal-
culated p-values indicate that 1, 2, 3  1, 2, 1 (p-value =
0.557) and 1, 2, 3  1, 2, 2 (p-value = 0.99971).

In the third test method, the previous 1800 true negative
(TN) sequences (sequences without implanted motifs) are
added to each 107 TFs. So the set Sk of the kth TF has 1800
+ tk sequences. Then the ability of each scoring schema for
finding motifs for each TF is investigated. The employed
search method is similar to the first test method. The Aver-
age, Combined and normalized results of each measure-
ment in this test are shown in Figure 3. In this case our
scoring schema and dependent scoring schema perform
similarly. By notice that none of the sets P1, 3, k, 1  k  3,
follow a normal distribution, we use the Wilcoxon signed-
ranks test on (1, 3, 3, 1, 3, 1) and (1, 3, 3, 1, 3, 2). The cal-

culated p-values indicate that 1, 3, 3  1, 3, 1 (p-value =
0.9968) and 1, 3, 3  1, 3, 2 (p-value = 0.4696). We can see
that our scoring schema is not case sensitive, but the per-
formance of the other two scoring schemas are depend on
test methods.

Sandve's Benchmark

As mentioned, the data sets used for testing and compar-
ing the three mentioned scoring schemas on TRANSFAC
database, are the 'algorithm-Markov', 'algorithm-real',
and 'model-real' bench mark data sets which are gener-
ated by Sandve et al. [30]. As mentioned in [30], these
data sets are created by extracting the sets of binding site
fragments with the same length for 213 different TF matri-
ces. A binding site fragment is the binding site region that
is used in the construction of a matrix in the TRANSFAC
alignment. All three data set versions 'algorithm-Markov',
'algorithm-real', and 'model-real' are constructed from the
same fragment sets and the selection of data sets is based
on nCC. For the 'algorithm-real' version, binding sites are
kept in their original genomic sequence, which is trun-
cated to a maximum length of 2000 bp. To make the data
sets more coherent, the binding site fragments that con-
tained degenerate bases are removed. This binding sites
have gaps in the TRANSFAC alignment, not located within
the 2000 bp upstream of transcription start site in the
sequence linked to by TRANSFAC. Additionally the
selected motifs have nCC value higher than 0.79. For the
'algorithm-Markov' version, binding sites are implanted
in the sequences generated from a third order Markov
model inferred from all sequences of the corresponding
real data set. In addition the selected motifs have nCC
value higher than 0.87. Both the lengths of the 'algorithm-
Markov' version sequences and the positions of the
implanted binding sites are kept equal to the correspond-
ing real sequences. Motifs with fewer than five binding
sites are removed, and 50 motifs (each motif has some
motif instances or TFBSs) for 'algorithm-real' and 50
motifs for 'algorithm-Markov' are kept. For creating
'model-real' version, 25 motifs with nCC below 0.72 are
selected. Each of these motifs have at least 18 motif
instances (bing sites) and are kept in their original
genomic sequences. It should be noted that in each motif,
motif instances are similar to the background sequences
(nCC  0.72).

We have run the benchmark data sets with both inde-
pendent position scoring and our scoring schema, but not
with dependent scoring schema; since dependency
between the positions of motifs are not available for these
data sets, therefore the dependent scoring schema can not
be tested on these data sets. For each data set in this
benchmark, the test have been done by the first and sec-
ond test methods discussed in above and the Average and
Combined results of each measurement are obtained. The
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Results obtained form three independent, dependent, and our scoring schemas, by the first test method on JASPAR data setFigure 1
Results obtained form three independent, dependent, and our scoring schemas, by the first test method on 
JASPAR data set. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numerically 
scaled based on 0.2 unit for these values. In this figure, results obtained by Average, Combined, and Normalized methods are 
shown from top to down respectively.
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Results obtained form three independent, dependent, and our scoring schemas, by the second test method on JASPAR data setFigure 2
Results obtained form three independent, dependent, and our scoring schemas, by the second test method on 
JASPAR data set. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numerically 
scaled based on 0.2 unit for these values. In this figure, results obtained by Average, Combined, and Normalized methods are 
shown from top to down respectively.
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Results obtained form three independent, dependent, and our scoring schemas, by the third test method on JASPAR data setFigure 3
Results obtained form three independent, dependent, and our scoring schemas, by the third test method on 
JASPAR data set. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numerically 
scaled based on 0.2 unit for these values. In this figure, results obtained by Average, Combined, and Normalized methods are 
shown from top to down respectively.
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third testing method is not implemented, because this
benchmark has no information about TN sequences
(sequences that do not contain any motifs) and we would
like to keep the originality of this benchmark. The Figures
4 and 5 show the results of first and second test methods
on 'algorithm-Markov' data sets respectively (note that, in
this test the Normalized method is not employed because
this method is not good when we have two cases).

We have also perform statistical analysis on 50 nCC values
on the first and second test methods. Since P2, 1, 1 and P2,

1, 3 which do not follow normal distribution, we use the
Wilcoxon signed-ranks test on (2, 1, 3, 2, 1, 1) do not fol-
low P2, 2, 1 and P2, 2, 3 do not follow distribution. The cal-
culated p-values indicate that 2, 1, 3  2, 1, 1 (p-value = 1)
and 2, 2, 3  2, 2, 1 (p-value = 0.5316).

Also, the Figures 6 and 7 show the results first and second
test methods on 'algorithm-real' data sets respectively. We
have also done statistical analysis on 50 nCC values on the
first and second test methods. Since P3, 1, 1 and P3, 1, 3

which do not follow normal distribution, we use the Wil-

Results obtained form two independent and our scoring schemas, by the first test method on 'algorithm-Markov' sandve's benchmarkFigure 4
Results obtained form two independent and our scoring schemas, by the first test method on 'algorithm-
Markov' sandve's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis 
is numerically scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are 
shown from top to down respectively.
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coxon signed-ranks test on (3, 1, 3, 3, 1, 1) but P3, 2, 1 and
P3, 2, 3 follow normal distribution therefore we use the t-
test on (3, 2, 3, 3, 2, 1). The calculated p-values indicate
that 3, 1, 3  3, 1, 1 (p-value = 1) and 3, 2, 3  3, 2, 1 (p-value
= 0.7774).

The Figures 8 and 9 show the results of first and second
test methods on 'model-real' data sets respectively. We
have also perform statistical analysis on 25 nCC values on
the first and second test methods. Since P4, 1, 1 and P4, 1, 3

which follow normal distribution, we use the t-test on (4,

1, 3, 4, 1, 1) and so P4, 2, 1 and P4, 2, 3 are normal distribution.
The calculated p-values indicate that 4, 1, 3  4, 1, 1 (p-
value = 1) and 4, 2, 3  4, 2, 1 (p-value = 0.2818).

As we can see, in Jackknife testing method, our scoring
schema and independent scoring schema are similar, but
our scoring schema performs better when the motif
instances are planted in the data sets and the search
method is based on cutoff.

Results obtained form two independent and our scoring schemas, by the second test method on 'algorithm-Markov' sandve's benchmarkFigure 5
Results obtained form two independent and our scoring schemas, by the second test method on 'algorithm-
Markov' sandve's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is 
numerically scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are 
shown from top to down respectively.
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Tompa's benchmark

As mentioned, other data sets used for testing and com-
paring the two mentioned scoring schemas on TRANSFAC
data base, are the 'Generic', 'MChain', and 'Real' data sets
which are generated by Tompa et al. [31]. Recall from
[31], the data set 'Real' is created by implanting the
selected TFBSs of TRANSFAC into real promoter
sequences as a background, the data sets 'Generic' are cre-
ated by implanting the selected TFBSs of TRANSFAC into
randomly chosen promoter sequences from the same
genome, and the data set 'MChain' is created by implant-
ing the selected TFBSs of TRANSFAC into sequences gen-

erated by a Markov chain of order 3. The implanted TFBSs
do not have the same length in all three data set types. The
TFBSs are selected from TRANSFAC by the following proc-
ess. Initially, only TFs are selected for which TRANSFAC
also lists a binding site consensus sequences. For each fac-
tor, duplicate instances of the same binding site, binding
sites missing sequence or position information, binding
sites whose position is annotated as start site, binding sites
whose position is less than -3000 or greater than 0, and
sequences with two reported binding sites contradicting
each other in the sequence are removed. The remaining
binding sites are implanted into three type of background

Results obtained form two independent and our scoring schemas, by the first test method on 'algorithm-real' sandve's bench-markFigure 6
Results obtained form two independent and our scoring schemas, by the first test method on 'algorithm-real' 
sandve's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numeri-
cally scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are shown 
from top to down respectively.
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sequences. In addition in each data set some sequences
without motifs are also inserted and consequently 52
motifs of each type are obtained. Since each data set con-
tains some motif with non-similar length, and some
sequences in each data sets do not have any motif, we
omit some sequences in the data sets and finally, for each
data set types, we have chosen 16 motifs that at least have
4 motif instances with the same length. It should be noted
that the PWM is made from this data but the test is done
on all member of these data set.

Similar to the Sandve's benchmark data sets we have run
this benchmark with independent position scoring and
our scoring schemas, but not with dependent scoring
schema; since dependency between the positions of
motifs are not available for these data sets, therefore the
dependent scoring schema can not be tested on these data
sets. For each samples in this benchmark, third test
method have been done. First, the PWM corresponding to
motifs in each data set are constructed, and then we sup-
pose these motif are known and we try to predict motifs
in all data set background sequences. The Average and
Combined obtained results of each measurement on this

Results obtained form two independent and our scoring schemas, by the second test method on 'algorithm-real' sandve's benchmarkFigure 7
Results obtained form two independent and our scoring schemas, by the second test method on 'algorithm-
real' sandve's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is 
numerically scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are 
shown from top to down respectively.
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benchmark based on 'generic', 'Markov', and 'Real' data
sets are shown in Figures 10, 11, and 12 respectively. We
have also done statistical analysis on 16 nCC values on the
first and second test methods. P5, 3, 1 and P5, 3, 3 which fol-
low normal distribution so we use t-test on (5, 3, 1, 5, 3,

3). The calculated p-values indicate that 5, 3, 3  5, 3, 1 (p-
value = 1). P6, 3, 1 and P6, 3, 3 which do not follow normal
distribution, we use the Wilcoxon signed-ranks on (6, 3, 1,
6, 3, 3). The calculated p-value indicates that 6, 3, 3  6, 3,

1 (p-value = 0.9881). P7, 3, 1 and P7, 3, 3 which follow normal

distribution so we use the t-test on (7, 3, 1, 7, 3, 3). The cal-
culated p-value indicates that 7, 3, 3  7, 3, 1 (p-value =
0.9843). In this case we can also see that our scoring
schema is performed better than independent scoring
schema in each data set.

Conclusion
In this work, we investigate the dependencies within tran-
scription factor binding sites, and present a simple way for
modeling these dependencies. We have developed a new

Results obtained form two independent and our scoring schemas, by the first test method on 'model-real' sandve's benchmarkFigure 8
Results obtained form two independent and our scoring schemas, by the first test method on 'model-real' 
sandve's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numeri-
cally scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are shown 
from top to down respectively.
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scoring schema for known binding site perdition. In this
scoring schema the joint information content and mutual
information are used as a measure of dependency
between position in TFBS. We have evaluated different
aspects of the scoring schema and this method is imple-
mented and tested on real data sets. The results are com-
pared with two well known scoring schemas. For
comparison some statistical measurements are considered
which show our scoring schema can improve motif pre-
diction.

For investigating the improvement of our scoring schema
on sTP, we calculated sTP of three scoring schema on all
seven tested data sets and we observed that, on all the
tested data sets our scoring schema show an average %21
improvement comparing to the independent scoring
schema and also %11 improvement comparing to the
dependent scoring schema on sTP.

For indicating the predicting power of our approach
against the independent scoring schema, we have per-
formed a gene wide search on Yeast genome which con-

Results obtained form two independent and our scoring schemas, by the second test method on 'model-real' sandve's bench-markFigure 9
Results obtained form two independent and our scoring schemas, by the second test method on 'model-real' 
sandve's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numeri-
cally scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are shown 
from top to down respectively.
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sists of 16 chromosomes, for REB1 TF with 19 TFBSs,
ROX1 TF with 8 TFBSs, UASH TF with 21 TFBSs and URS1
TF with 14 TFBSs [33]. For each TF, a profile is created
based on its TFBSs, and each TFBS is scored by its profile
based on our scoring schema. The minimum obtained
score is considered as a cutoff for this TF for our scoring
schema. With respect to this cutoff value, the Yeast genome
is searched for detecting these TFBSs with our scoring
schema, and all subsequences with a score above the cutoff
are reported as motif instances. Finally the nTP, nFN, and
nFP criteria are calculated for these motifs. The above
process is also repeated for independent scoring schema
and the nTP, nFN, and nFP criteria for motif instances
which found by this scoring schema, are also calculated.
The Table 1 show the nTP, nFN, and nFP values obtained
by our scoring schema and independent scoring schema
for detecting TFBSs of REB1, ROX1, UASH and URS1. As
we can see, in this table values of these criteria of our scor-
ing schema are higher, which show a better prediction.

In general, the obtained results on the biological data sets
demonstrated that the joint information content and
mutual information provide a better and more general cri-
terion to investigate the relationship between positions in
the TFBS, and motif detection can be improved with the
scoring schema that considers dependency in TFBSs.
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Results obtained form two independent and our scoring schemas, by the third test method on 'Generic' Tompa's benchmarkFigure 10
Results obtained form two independent and our scoring schemas, by the third test method on 'Generic' 
Tompa's benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numeri-
cally scaled based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are shown 
from top to down respectively.
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Results obtained form two independent and our scoring schemas, by the third test method on 'Real' Tompa's benchmarkFigure 12
Results obtained form two independent and our scoring schemas, by the third test method on 'Real' Tompa's 
benchmark. These results include nPC, nCC, nSp, nSn, nPP sPP, and sAP values as shown in X axis. Y axis is numerically scaled 
based on 0.2 unit for these values. In this figure, results obtained by Average and Combined methods are shown from top to 
down respectively.

Table 1: The nTP, nFN, and nFP values obtained by our scoring 

and independent scoring schema on REB1, ROX1, UASH and 

URS1.

Scoring Schema TF nTP nFN nFP

Our scoring REB1 140 64 16590

Independent scoring REB1 140 64 7264880

Our scoring ROX1 96 8 1632

Independent scoring ROX1 96 8 5067288

Our scoring UASH 270 66 2130

Independent scoring UASH 270 66 347040

Our scoring URS1 182 0 1534

Independent scoring URS1 182 0 115427
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