
New search strategies and a new derived

inequality for efficient k-medoids-based

algorithms

C.-S. Chiang1, S.-C. Chu2, J. F. Chang3 & J.-S. Pan4

1 Department of Industrial Engineering and Management,

Chien Kuo Institute of Technology, Changhua, Taiwan
2 Department of Information Management, Cheng Shiu University,

Kaohsiung, Taiwan
3 Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan
4 Department of Electronic Engineering,

Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan

Abstract

In this paper, a new inequality is derived which can be used for the problem of

nearest neighbor searching. We also present a searching technique referred to as

a previous medoid index to reduce the computation time particularly for the k-

medoids-based algorithms. A novel method is also proposed to reduce the com-

putational complexity by the utilization of memory. Four new search strategies

for k-medoids-based algorithms based on the new inequality, previous medoid

index, the utilization of memory, triangular inequality criteria and partial distance

search are proposed. Experimental results demonstrate that the proposed algorithm

applied to the CLARANS algorithm may reduce the computation time from 88.8%

to 95.3% with the same average distance per object comparing with CLALRANS.

The derived new inequality and proposed search strategies can also be applied to

the nearest neighbor searching and the other clustering algorithms.

1 Introduction

The goal of clustering , in general, is to group sets of objects into classes such that

homogeneous objects are placed in the same cluster while dissimilar objects are

in separate clusters. Clustering (or classification) techniques are common forms

© 2004 WIT Press, www.witpress.com, ISBN 1-85312-729-9

Data Mining V, A. Zanasi, N. F. F. Ebecken & C. A. Brebbia (Editors)



of data mining [1] and have been studied extensively in image compression [2],

texture segmentation [3], computer vision [4], vector quantization [5, 6], medicine

and marketing. Recent works in the database community have been proposed

including CLARANS [15], BIRCH [9], CURE [10], CACTUS [11],

CHAMELEON [12] and DBSCAN [13]. No single algorithms is appropriate for

all types of objects, nor are all algorithms suitable for all problems, however, the

k-medoids algorithms [8] have been experimentally shown to be more robust and

effective than k-means [7] in the presence of noise and outliers and are not gener-

ally influenced by the order of presentation of objects.

Partitioning Around Medoids (PAM) [8], Clustering LARge Applications

(CLARA) [8] and Clustering Large Applications based on RANdomized Search

(CLARANS) [14] are three well known k-medoids-based algorithms. To improve

the performance of medoids generation, Clustering Large Applications based on

Simulated Annealing (CLASA) algorithm applied the simulated annealing to select

better medoids [16]. The fuzzy theory is also applied to develop fuzzy k-medoids

algorithms [17] and genetic algorithm is applied to get genetic k-medoids algo-

rithm [18]. In this paper, we derive a new inequality for the problem of nearest

neighbor searching and present the technique of previous medoid index, the uti-

lization of memory for efficient clustering algorithms.

2 Proposed algorithms

2.1 Literature review

The basic idea of k-medoids-based algorithms are designed for processing large

data set, however, all existing k-medoids-based algorithms are exhaustive enu-

meration. The computational complexity of k-medoids-based algorithms can be

reduced by applying the concept in VQ-based codeword search [19, 20, 21, 22,

23, 25, 26, 27, 28, 30, 31, 32]. In VQ-based signal compression, the efficient

codeword searching algorithms have never been applied to k-medoids-based algo-

rithms. The partial distance search (PDS) algorithm [19] is a simple and effi-

cient codeword search algorithm which consists of a simple modification to the

way that distances are calculated. During the computation of the distance mea-

sure, if the partial distance exceeds the distance to the nearest neighbor found

so far, the computation is premature. Given the squared Euclidean distance mea-

sure, one object x = x1, x2, . . . , xk and two medoids (i.e. representative objects)

op = op1, op2, . . . , opk and oj = oj1, oj2, . . . , ojk, assume the current minimum

distance is

D(x, op) =
d∑

i=1

(xi − opi)
2 = Dmin, (1)

if

h∑

i=1

(xi − oji)
2
≥ Dmin, (2)

then D(x, oj) ≥ D(x, op), (3)
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where 1 ≤ h ≤ k. The efficiency of PDS is derived from the elimination of an

unfinished distance computation if its partial accumulated distortion is larger than

the current minimum distance. This will reduce (k−h) multiplications and 2(k−h)
additions at the expense of h comparisons.

Vidal proposed the approximating and elimination search algorithm (AESA) [20]

whose computation time is approximately constant for a codeword search in a large

codebook size. The high correlation characteristics between data vectors of adja-

cent speech frames and the triangular inequality elimination (TIE) criterion were

utilized to VQ-based recognition of isolated words [21]. However, the TIE crite-

rion requires considerable memory of size
(N−1)N

2 to store the distance between

any pair of codewords. The equal-average nearest neighbor search (ENNS) algo-

rithm [22, 32] uses the mean of an input vector to eliminate the impossible code-

words. This algorithm reduces a great deal of computation time compared with

the conventional full-search algorithm with only k additional memory, where k is

the number of codewords (or the number of medoids for k-medoids-based algo-

rithms). The improved algorithm [23] uses the variance as well as the mean of

an input vector. It can be referred to as the equal-average equal-variance nearest

neighbor search (EENNS) algorithm.

The bound for Minkowski metric and quadratic metric was derived and applied

to codeword search [24]. The partial distance search (PDS) [19], absolute error

inequality criterion (AEI) [25] and the improved absolute error inequality criterion

(IAEI) [26] are all special cases in the bound for Minkowski metric. An inequal-

ity was also derived from IAEI criterion to improve the codeword search of the

image coding [27]. This inequality can be interpreted as the generalized form of

the basic inequality used in ENNS algorithm [22]. The improved ENNS algorithm

in paper [27] can be referred to as IENNS algorithm. In that algorithm, a vector is

separated into two sub-vectors, one is composed of the first half of the coordinates

and the other is composed of the remaining coordinates. Two inequalities based

on the sums of its two sub-vectors are used to reject those codewords which can-

not be rejected by ENNS algorithm. A new inequality was also derived based on

Hadamard transform for efficient codeword search [29] demonstrated it is superior

to ENNS and IENNS algorithms. An inequality for fast codeword search based on

the mean-variance pyramid was also derived [28] and an inequality designed based

on the training approach was also proposed for efficient codeword search [30].

2.2 Derivation of new inequality

Triangular inequality elimination (TIE) criteria are efficient methods for applying

to nearest neighbor search. Let X be the set of objects and O be the set of medoids

and x, y, z belong to the set X . Assume the distance measure existing for defining

the mapping d : X × X → R, is used to fulfill the following metric properties:

d(x, y) ≥ 0; (4)

d(x, y) = 0 iff x = y (5)
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d(x, y) = d(y, x) (6)

d(x, y) + d(y, z) ≥ d(x, z) (7)

Let o1, o2, o3 be three different medoids and t be an object, then three criteria are

obtained as follows:

• Criterion 1. Given the triangular inequality:

d(t, o2) + d(t, o1) ≥ d(o1, o2); (8)

if d(o1, o2) ≥ 2d(t, o1), (9)

then d(t, o2) ≥ d(t, o1). (10)

• Criterion 2. Given the triangular inequality:

d(o3, o2) ≤ d(t, o2) + d(t, o3); (11)

if d(t, o1) + d(t, o2) ≤ d(o3, o2), (12)

then d(t, o1) ≤ d(t, o3). (13)

• Criterion 3. Assume d(t, o1) ≤ d(t, o2);

Given d(t, o2) − d(t, o3) ≤ d(o3, o2), (14)

if d(o3, o2) ≤ d(t, o2) − d(t, o1) (15)

then d(t, o3) ≥ d(t, o1). (16)

In Criterion 1, these distances between all pairs of medoids are computed in

advance. If Eq.12 is satisfied, then we omit the computation of d(x, o2) if d(x, o1)
has already been calculated. In this paper, Criterion is modified for a squared error

distance measure. A table is made to store the one-fourth of squared distance

between medoids,

if d2(o1, o2)/4 ≥ d2(x, o1),

then d(x, o2) ≥ d(x, o1).

By merging criteria 2 and 3, we may get the following criterion, i.e.,

if d(x, o1) ≤ |d(o3, o2) − d(x, o2)| (17)

then d(x, o3) ≥ d(x, o1) (18)

Set

o2 = �0 (zero vector).

Hence

if d(x, o1) ≤ |d(o3, �o) − d(x,�0)|, (19)

then d(x, o3) ≥ d(x, o1). (20)
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For Euclidean distance measure and given

dmin = d(x, o1),

if dmin ≤ |

√

√

√

√

d
∑

i=1

o2
3i −

√

√

√

√

d
∑

i=1

x2
i |, (21)

then d(x, o3) ≥ dmin. (22)

Since

√

∑d

i=1 o2
3i can be calculated off line and

√

∑d

i=1 x2
i is only computed

once for the nearest neighbor search, the derived inequality (Eq. 22 Eq. 25) is

very efficient for the problem of nearest neighbor search.

2.3 Previous medoid index

Most of the k-medoids-based algorithms have to examined whether a nonmedoid

object is a good replacement for a current medoid. Since only one medoid is

changed, most of the objects will belong to the cluster represented by the same

medoid. By using this property, we may calculate the distance between the object

and its previous medoid index firstly. Owing to the probability is very eminent for

the object belong to the same medoid index, the distance is very small. If we get

a very small distance between the object and one medoid, then it is easier to use

Criterion 1 of TIE, partial distance search or the derived inequality to reduce the

distance computation.

2.4 Utilization of memory

Assume k medoids oj , j = 1, . . . , k, are chosen from T objects xi, i = 1, . . . , T
and the number of dimension for each object or medoid is n. The size of the mem-

ory for all objects in the database is Tn. If the distance table for each pair of

objects, d(xi, xj), i �= j, i, j = 1, . . . , T are stored, then the size of memory for

the distance table is
T (T−1)

2 . If this memory is available, then the distance calcula-

tion need be performed just the once, whether for the PAM, CLARA and CLARANS

algorithms. All these algorithms will thus be very efficient, and the computational

complexity will be similar. Unfortunately, if object numbers are large, memory is

not always available. We thus propose a new approach which uses only T − k
memory to store the distance, but it may reduce the number of distance compu-

tations from (T − k)k to T − 1 + r(k − 1) (i.e. from O(Tk) to O(T )) for the

test of the swap between object onew and oold. ,where r is the number of objects

whose nearest medoids are swapped. The probability to swap the nearest medoid

with any object is 1/k, so r ≈ T/k. Assume NM(xi) is the nearest medoid to
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the object xi before swap, the total distance difference before and after the swap

of object onew and medoid oold can be expressed as

D′
t − Dt =

∑

i�=new,NM(xi) �=oold

min[d(xi, NM(xi)), d(xi, onew)]+

min[d(oold, oj), d(oold, onew), j = 1, . . . , k, j �= old]+
∑

i�=new,NM(xi)=oold,xi∈Sp

d(xi, op) −
∑

i

d(xi, NM(xi)) (23)

If the distances d(xi, NM(xi)), i = 1, . . . , T − k are stored, then only (T −
k − 1 − r) distances need to be computed for d(xi, onew), i = 1, . . . , T − k, i �=
new, NM(xi) �= oold and k distances computation for d(oold, oj) and

d(oold, onew), j = 1, . . . , k, j �= old and rk distances computation for d(xi, op),
i = 1, . . . , T −k, NM(xi) = oold. Since the size (T −k) memory space is gener-

ally reasonable for the clustering of the objects with memory size Tn, it is useful

approach. Note that this approach can be applied to PAM, CLARA, CLARANS and

our proposed CLASA algorithms.

3 Experimental results

3.1 Databases

Three artificial databases were used for the experiments as follows:

1. 3,000 objects with 8 dimensions are generated from the Gauss-Markov source

that is of the form yn = αyn−1+wn where wn is a zero-mean, unit variance,

Gaussian white noise process, with α = 0.5.

2. 12,000 objects with 2 dimensions collected from twelve elliptic clusters.

3. 5000 objects with 2 dimensions are generated from curve database. The

object (x, y) is collected from the form −2 ≤ x ≤ 2 and y = 8x3 − x.

3.2 Experiments

In this paper, four search strategies are presented. These four search strategies are

applied to CLARANS algorithm. The CLARANS-TP algorithm is the first extended

version of CLARANS algorithm that applies the first criterion of triangular inequal-

ity elimination (TIE). CLARANS algorithm with previous medoid index, TIE and

PDS is referred to as CLARANS-ITP. CLARANS with the proposed utilization of

memory is referred to as CLARANS-M. Application of the proposed new inequal-

ity, previous medoid index, the proposed utilization of memory and partial distance

search algorithm to CLARANS is referred to as CLARANS-MITmP. Experiments

were carried out to test the number of distances calculation and the average dis-

tance per object for CLARANS, CLARANS-TP, CLARANS-ITP, CLARANS-M and

CLARANS-MITmP algorithms. Since the computation time depends not only on

the clustering algorithm but also on the use of computation facility. It is better
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Table 1: Results of experiment for Gauss-Markov source.

CLARANS CLARANS-TP CLARANS-ITP CLARANS-M CLARANS-MITmP

seed Count of Count of Count of Count of Count of Ave. dist.

distance (105) distance (105) distance (105) distance (105) distance (105)

1 37604 17658 12572 2330 1784 4.43227

2 53234 24865 17678 3293 2524 4.35912

3 37512 17629 12346 2324 1779 4.38063

4 40559 19101 13342 2511 1923 4.39766

5 39694 18521 13058 2458 1880 4.36724

6 41370 19318 13672 2563 1963 4.38396

7 32312 14962 10566 2004 1526 4.37978

8 39600 18442 12956 2455 1877 4.39364

9 36707 17091 11972 2276 1737 4.37717

10 35835 16671 11879 2221 1699 4.40632

Ave. 39443 18426 13004 2444 1869 4.38778

to choose one measure criterion so that the measure results are the same for all

types of computers and this measure criterion is proportional to the computation

time. That is why we choose the number of distance calculation as the bench-

mark. Squared Euclidean distance measure is used for the experiments. The Gauss-

Markov source was used for the first experiment. 32 medoids are selected from

3000 objects. For CLARANS algorithm, the parameters numlocal and maxneigh-

bor are set to 5 and 1200, respectively. Experimental results are shown in Table 1,

comparing with CLARANS, CLARANS-MITmP, CLARANS-M, CLARANS-ITP and

CLARANS-TP may reduce the computational complexity by 95.3%, 93.8%, 67%

and 53.3%, respectively.

The twelve elliptic clusters were used for the second experiment. 12 medoids

are selected from 12000 objects. For CLARANS algorithm, the parameters num-

local and maxneighbor are set to 5 and 1800, respectively. As shown in Fig. 1,

comparing with CLARANS, CLARANS-MITmP, CLARANS-M, CLARANS-ITP and

CLARANS-TP may reduce the computational complexity by 88.8%, 84%, 84.3%

and 61.2%, respectively.

The curve database was used for the third experiment. 20 medoids are selected

from 5000 objects. For CLARANS algorithm, the parameters numlocal and

maxneighbor are set to 5 and 1250, respectively. As shown in Table 2, comparing

with CLARANS, CLARANS-MITmP, CLARANS-M, CLARANS-ITP and

CLARANS-TP may reduce the computational complexity by 94.3%, 90.2%, 92%

and 74.4%, respectively.

4 Conclusions

In this paper, we derive a new inequality for the problem of nearest neighbor

search, propose the utilization of memory and technique of previous medoid index

for clustering algorithm. Four extended versions of CLARANS algorithm are pre-

sented. Experimental results based on Gauss-Markov, elliptic and curve databases

demonstrate that applying the proposed hybrid method using derived new inequal-
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Figure 1: Performance comparison of CLARANS, CLARANS-TP, CLARANS-ITP,

CLARANS-M and CLARANS-MITmP for twelve elliptic clusters.

Table 2: Results of experiment for curve clusters.

CLARANS CLARANS-TP CLARANS-ITP CLARANS-M CLARANS-MITmP

seed Count of Count of Count of Count of Count of Ave. dist.

distance (105) distance (105) distance (105) distance (105) distance (105)

1 65238 18049 5314 6380 3700 2.15118

2 62596 17214 5061 6074 3549 2.18127

3 70159 18097 5683 6894 3986 2.17871

4 71881 18528 5795 7029 4076 2.19157

5 57354 13927 4529 5604 3264 2.15642

6 62320 14631 4930 6095 3548 2.15689

7 65016 17204 5227 6360 3695 2.17072

8 63664 16960 5111 6198 3640 2.14399

9 55060 13399 4386 5384 3140 2.18530

10 48389 11093 3834 4739 2763 2.16522

Ave. 62166 15910 4987 6076 3536 2.16813

ity, previous medoid index, utilization of memory and partial distance search to

CLARANS may reduce computational complexity from 88.8% to 95.3% compar-

ing with CLARANS. Note that the proposed four search strategies may apply to the

other clustering algorithms.
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