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Abstract

We present an alternative method to calculate the directional distribution after secondary scattering of light in an
atmosphere, and apply it to the correction developed by Nakajima and Tanaka [1] as implemented in the DISORT
radiative transfer solver. This method employs the scattering phase functions directly, instead of expanding over their
Legendre moments as in the original formulation, and hence is not compromised in cases where a prohibitive number
of moments is required to maintain accuracy. The new approach is designed to be particularly efficient in the strongly
forward-scattering case, which arises for example in problems involving cloud-ice or dust particles. We have implemented
this in a newly rewritten C-code version of DISORT that provides additional computational efficiencies via dynamic and
cache-aware memory allocation. The new version uses less memory and runs considerably faster than the original, while
producing results with equal or greater accuracy.
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1. Introduction

Atmospheric radiative transfer has been a topic of in-
creasing interest for decades, and a variety of computa-
tional algorithms for solving the radiative transfer equa-
tions are available [e.g. 2]. For the calculation of radiance,
which is the quantity of interest when simulating remote
sensing instruments, two methods dominate the field: the
discrete-ordinate method (DOM) [3] and the Monte Carlo
method [4–6]. The former is computationally the faster of
the two, but has the disadvantage that it becomes increas-
ingly complex when polarisation [7, 8], spherical geome-
try [9], or even horizontally inhomogeneous atmospheres
[10, 11] are of interest. The latter handles these effects
more readily, and is often used for validation of DOM
results, but is generally more computationally expensive,
although recent developments have enabled Monte Carlo
methods to compete with discrete-ordinate methods for
some applications [12–14].
The discrete-ordinate method calculates the radiance

(often called the intensity) for a preset number of streams
or directions, nstr, such that the scattering phase function
(SPF) is described by appropriate Legendre coefficients
[15]. It is in the nature of the DOM that it can only take
into account the first (nstr − 1) Legendre coefficients, the
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nstr coefficient is then usually handled by the delta-M scal-
ing method [16]. For those scattering directions where the
radiance is sensitive to small-scale detail in the phase func-
tion, in particular for forward scattering and any special
angles related to particle geometry (e.g. rainbows), errors
can be significantly reduced, often below 1%, by employ-
ing an intensity correction method (ICM) [1]. This method
corrects the radiances obtained by the DOM for small-scale
features from single and double scattered light. However,
the original ICM approach was designed with moderately
formed scattering phase functions in mind, since at the
time computational power was limited. Today, strongly
forward-peaked SPFs, such as those that arise in the study
of ice clouds [17], are of great interest, and for such ex-
treme SPFs, Legendre expansions with tens of thousands
of coefficients are necessary to obtain sufficient precision,
which can render the original ICM approach computation-
ally expensive, especially for the calculation of the double
scattered light corrections.
To address this issue, we present an alternative method

to calculate the intensity corrections that uses the SPFs
directly as a function of scattering angle, rather than as
an expansion in Legendre polynomials. In Section 2 we
formulate the double-scattering problem in terms of the
squared SPF expressed both ways, in Section 3 we de-
scribe the new correction algorithm, and in Section 4 we
show how to optimize the scattering-angle grid on which
the SPF is defined to reduce memory requirements. The
method has been implemented into a new C-code version
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of DISORT, c_disort1, which employs dynamic memory
allocation and cache-aware structures that significantly re-
duce run time, as described in Appendix A. Since DIS-
ORT does require nstr Legendre coefficients to work, we
present a fast yet accurate method to calculate them from
the SPF in Appendix C.
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Figure 1: Scattering phase function (SPF) with strong forward peak
vs. scattering angle. The black line depicts the SPF for ice crys-
tals using the parameterization by Baum [17] with effective radius
reff = 60μm and wavelength λ = 500nm; the red line shows the SPF
resulting when expanding the original SPF into 20000 Legendre co-
efficients and then transforming the coefficients back to a SPF. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

2. Calculating the squared SPF

The objective is to find the directional distribution af-
ter double scattering for a given scattering phase function,
P (Ω,Ω0), where Ω0 and Ω are unit vectors in the ini-
tial and final directions, respectively. We will only con-
sider randomly oriented and spherical particles such that
P (Ω,Ω0) = P (μ), where μ = Ω ·Ω0 = cos θ, and θ is the
scattering angle. The formal solution is

P 2(μ) =
1
4π

∫
4π

d2Ω1 P (Ω ·Ω1) P (Ω1 ·Ω0) , (1)

where the two-dimensional integration over all directions
after the first scattering, Ω1, takes into account all possible
combinations of scattering directions.
In the original intensity-correction method, Eq. (1) is

solved by expanding the SPF in terms of Legendre poly-
nomials, Pl(μ),

P (μ) =
m∑

l=0

(2l + 1)glPl(μ) (2)

1The source code is freely available as part of the radiative transfer
package libRadtran [18] at www.libradtran.org.
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Figure 2: Illustration of the angles and directions used in the inte-
gration of Eq. (1) shown in the x-z plane. Here, cos θ1 = μ1 and
cos θ2 = μ2. Note that in this example φ = φ1 = 0.

where m is the truncation limit of the infinite series of
Legendre coefficients, gl, which may be computed via or-
thogonality such that

gl =
1
2

∫ 1

−1

dμPl(μ)P (μ). (3)

Equation (2) is substituted into Eq. (1) and the addition
theorem for spherical harmonics is applied (see e.g. Chan-
drasekhar [19, chapter VI, page 86]), yielding the form
used by Nakajima and Tanaka [1],

P 2(μ) =
m∑

l=0

(2l + 1)g2
l Pl(μ) . (4)

Figure 1 illustrates the strong forward peak typically
associated with ice crystals. For such problems, to increase
accuracy the truncation limit m must be taken so large
that it not only renders the Legendre expansion compu-
tationally inefficient, but the recursive calculation of the
Legendre polynomials becomes numerically unstable. In
the example of Figure 1, the average accuracy of the Leg-
endre expansion reaches a minimum of few % using 20000
Legendre coefficients, after which the differences between
the original SPF and the SPF corresponding to the Leg-
endre polynoms increase again.
As an alternative, here we seek to numerically integrate

Eq. (1) itself in a manner that enhances the sampling of
the SPF where it is needed. We start by rewriting Eq. (1)
in terms of a double integration over the cosines of the two
sequential scattering angles, as depicted in Fig. 2. Because
Eq. (1) depends only on μ, we set Ω0 = (0, 0, 1) and define

Ω(μ, φ) =
(√

1− μ2 cos φ,
√

1− μ2 sin φ, μ
)

, (5)

where φ is an azimuthal angle, with an analogous expres-
sion for Ω1(μ1, φ1), such that Eq. (1) becomes

P 2(μ) =
1
4π

∫ 1

−1

dμ1

∫ 2π

0

dφ1P (μ2) P (μ1) . (6)
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The explicit dependence of μ2 on the other angles may be
derived via trigonometry and substitution of φ1 − φ with
φ1,

μ2 = μμ1 +
√

1− μ2

√
1− μ2

1 cos φ1. (7)

To optimize the sampling points for the integration, we
employ the cumulative distribution function of the SPF,

F (μ) ≡
∫ μ

−1

dμ̂ P (μ̂) ; dF1 ≡ P (μ1) dμ1 , (8)

such that Eq. (6) becomes

P 2(μ) =
2
4π

∫ 2

0

dF1

∫ π

0

dφ1 P (μ2) , (9)

where use has been made of the symmetry about π of the
dφ1 integration, μ2(μ, μ1, φ1) = μ2(μ, μ1, 2π − φ1). By
sampling with equidistant dF1 intervals instead of dμ1 in-
tervals, the resolution is naturally enhanced in the first
forward peak in Eq. (6), P (μ1). This achieves the first
half of our goal.
What remains is to simultaneously resolve the second

forward peak in an efficient manner. To accomplish this,
we use the following symmetry: In Eq. (1), interchanging
μ1 and μ2 leads to the same contribution to the integral.
Therefore, we can drop all parts of the integral where μ2 >
μ1 and multiply the remaining integral by a factor of 2,
such that Eq. (9) becomes

P 2(μ) = 2
2
4π

∫ 2

0

dF1

∫ π

0

dφ1 P (μ2) Ξ(μ1 − μ2). (10)

where Ξ(x) is the Heaviside step function, equal to 1 for
x > 0 and 0 for x < 0. This integral is well sampled
for phase functions that have a strong forward peak, be-
cause the sampling point density is high where P (μ1) is
large, i.e. in the forward peak, and P (μ2) cannot be much
larger than P (μ1) because μ2 < μ1 (see also the SPF in
e.g. Fig. 1).
Finally, the dφ integration can be performed analyti-

cally, as is shown in Appendix B. The integration over
dF1 is performed using the trapezoidal-rule integration.

3. Intensity correction in DOMs

The above method was used to alter the original inten-
sity correction [1] as implemented in the discrete-ordinate
solver DISORT [3]. Defining the residual phase function,
P ′′(μ), to be the SPF minus the delta-M scaled SPF, the
intensity correction is proportional to [3, A.13]

ΔIICM ∝ 2P ′′(μ)− P ′′2(μ) . (11)

The original ICM requires calculation of P ′′ and P ′′2 using
the Legendre moments. Here, P ′′ is calculated from the
SPF minus the delta-M scaled SPF, and P ′′2 is calculated
from P ′′ using the method described in Section 2, with the
following consideration.
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Figure 3: Radiance calculations as a function of viewing angle with
respect to the sun; the sun’s zenith angle is 30◦. The upper panel
shows transmittance, defined as radiance divided by extraterrestrial
irradiance, for the original and new intensity-correction methods
(ICMs), and for Monte Carlo MYSTIC calculations. The results
are practically indistinguishable. The lower panel compares various
DISORT calculations, using Monte Carlo MYSTIC output as the
baseline. The statistical error for the MYSTIC calculation is shown
as the dotted-black line, with maximum value 0.07%. The red line
is for the original ICM, the solid-black line is for the new ICM with
moderate resolution (NF = 100), and the dashed-black and green
lines are for low and high resolutions (NF = 40 and NF = 250),
respectively. Note that the double-scattering correction as imple-
mented by Nakajima and Tanaka is only performed for sun-observer
angles less than 10◦. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this
article.)

Note that P ′′ often has negative values, since it is the
residual SPF, such that the cumulative distribution F from
Eq. (8) is no longer monotonic. For this reason, we choose
the sampling points according to the cumulative distribu-
tion of the absolute value of P ′′, Fabs, by substituting the
integrand dF1 with

2
Fabs(μ = 1)

sign (P ′′(μ)) dFabs, (12)
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where the first fraction is a normalization factor.
We have experimented with the original and the new

treatment of the ICM for a range of setups: i) wavelength
varied from 400nm to 2100nm, ii) sun zenith angle varied
from 0◦ to 70◦, iii) observation angle varied from look-
ing directly into the sun to 10◦ off (the traditional range
for applying the ICM), iv) water clouds with the optical
depth from 0.1 to 10, and effective radius from 1μm to
25μm, v) ice clouds with optical depth from 0.01 to 2, and
the effective radius from 5μm to 40μm, using the Baum
parameterization [17], and vi) all ten aerosols types from
the OPAC database [20] with optical depth from 0.01 to
2. We have also created scenes with mixed effective radii
and extinction coefficients, and scenes with various com-
binations of water clouds, ice clouds and aerosols. The
number of sampling points used for the dF1 integration in
the new ICM, NF , was set to 100, nstr was 16.
For an independent comparison, we ran Monte Carlo

simulations for a subset of the setups with the MYSTIC
code [4] using the variance reduction method VROOM
[13], which is also part of libRadtran. The radiances were
calculated using 107 photons each, leading to a relative
statistical error of at most 0.07%.
Figure 3 shows a comparison of radiance calculations

for a sample setup with DISORT using both versions of
the ICM, and with MYSTIC. The DISORT calculations
were performed using the new C-code version of DISORT
(c_disort; see Appendix A), which is part of the open-
source radiative transfer package libRadtran. The example
shown consists of a parameterized [17] thin ice cloud layer
with τ = 0.814, reff = 20μm between the altitudes 5–6
km, sun zenith angle 30◦, and wavelength λ = 500nm; the
radiance is evaluated at the surface. The two ICMs agree
to better than 0.2%, as seen in the top panel of Fig. 3. We
use the MYSTIC calcuation as the baseline in the bottom
panel of Fig. 3 by differencing the MYSTIC and DISORT
results. We see that the differences between DISORT and
MYSTIC are larger than the differences between the two
DISORT ICM methods. In fact, for the ice-cloud cases we
have examined, which are the most difficult for the origi-
nal method to handle, the new ICM results are never less
accurate than the original. Thus, the new ICM is a valid
replacement. The question then turns to computational
performance.
Table 1 compares the computational times of the two

different ICM algorithms run in c_disort. We see that the
new ICM is always faster for the calculation of radiances.
In particular, when many directions and/or altitudes are
calculated, the speed-up can be more than a factor of eight.
The computational time needed for the ICM only can even
exceed a speedup factor of 50. Note that the speed-up is
less pronounced for SPFs needing fewer Legendre coeffi-
cients (e.g. water clouds).
We conclude that replacing the old ICM by the new

ICM using NF = 100 significantly speeds up DISORT
without loss of accuracy.

NμxNz no ICM original ICM new ICM
# of directions [s] [s] [s]

1x1 0.14 0.19 0.15
1x12 0.20 0.34 0.21
100x1 0.33 3.03 0.36
100x12 1.27 12.6 1.47

Table 1: Computational times for the calculation of radiances with
DISORT for the simulations shown in Fig. 3. The left-most column
denotes the number of radiances calculated in a single DISORT call.
Nμ is the number of directions for which the radiance was calculated,
Nz the number of altitudes.

4. Optimizing grid for SPF

The grid on which the SPF is defined as a function of
the scattering angle can also be optimized in order to save
memory consumption. This may be obtained by the fol-
lowing procedure: First, we calculate the SPF on a fine,
equidistant angular grid θfine (e.g. Δθfine = 0.1◦), for ex-
ample using the Mie tool by Wiscombe [21] which is in-
tegrated in libRadtran. Then we start the construction
of our optimized grid with two grid points, θ1 = 0◦ and
θn = 180◦, n = 2. Then we iteratively add intermediate
grid points using the following procedure: Given two ad-
jacent grid points θi and θi+1, i ∈ [1, n − 1], we calculate
the error we would obtain in the SPF for each θfine if we
would interpolate linearly between them,

ΔP (θfine) =
∣∣∣P (θfine)− P̃

∣∣∣ , (13)

where

P̃ ≡ P (θi) +
θfine − θi

θi+1 − θi

(
P (θi+1)− P (θi)

)
, (14)

for all θi < θfine < θi+1. We choose the θfine for which
ΔP (θfine) is maximal and add this point to the optimized
grid. The procedure is repeated iteratively until the maxi-
mum ΔP (θfine) is smaller than a critical value, say 1%. If
it happens that the final resolution of the optimized grid is,
in places, equal to the fine grid, then a refinement is per-
formed for these regions, i.e. the procedure is continued
using a finer initial grid.
Figure 4 shows the first 25 grid points chosen by the

algorithm for two examples of SPFs at λ = 500nm, for a
Mie calculation for water droplets with reff = 10μm and
a gamma size distribution with an effective variance of
0.1, and for ice crystals with an effective radius reff =
60μm using the parameterization by Baum [17]. For the
Mie example the angular resolution of the initial grid is
set to Δθ = 0.01◦, corresponding to 18000 grid points,
and the Baum parameterization provides the SPF on 498
grid points with varying angular resolution, the highest
resolution being in the forward direction with Δθ = 0.01◦.
The optimized grid for the water droplets has 147 grid

points; the one for the ice crystals has 189. Comparing the
former with the number of Legendre coefficients needed
to describe the SPF properly, 827, we see that we can
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Figure 4: Example of optimized grids for water droplets (dashed
curve) and ice crystals (solid curve) parameterized by [17]. The
figure shows the SPF as a function of the scattering angle. The first
25 grid points chosen by the algorithm described in Section 4 are
depicted by asterixes and circles for ice crystals and water droplets,
respectively (the rest are omitted for clarity).

save memory by saving the SPF as a function of scattering
angle instead of saving the Legendre coefficients. This is
even the case if we additionally save the first 128 Legendre
coefficients, which are needed by DISORT if one wants
to calculate with 128 streams. For water droplets with
larger effective radius the memory reduction is even more
pronounced.

5. Conclusions

We have described an alternate way to calculate the
double scattering phase function (SPF) introduced by Naka-
jima and Tanaka [1], which uses the SPF as a function of
the scattering angle, instead of the Legendre coefficients.
With this new method, the calculation of the intensity cor-
rection for radiances in discrete-ordinate radiative transfer
codes is performed considerably faster, especially in the
presence of strongly forward-scattering hydrometeors (ice
crystals, large water droplets) and dust, without loss of
accuracy. In particular for large ice crystals, the origi-
nal method for intensity correction often cannot produce
correct results because in practice the Legendre expan-
sion of the phase function does not converge. We have
also demonstrated how to significantly reduce the memory
and disk space requirements needed for the SPFs. For ice
clouds, the memory reduction can be up to a factor of 22,
and disk space is reduced by a factor of 8 in the solar spec-
trum. The simulations performed in this paper were done
using the new C-code version of DISORT 2.1, c_disort,
which has been written to initialize and use memory signif-
icantly more efficiently than the original Fortran version,
as described in Appendix A.
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Appendix A. C_DISORT

DISORT 2.1 is a widely used discrete-ordinate radiative-
transfer solver written in Fortran 77 [3]. In Summer 2010,
T. Dowling rewrote the code, including its LINPACK com-
ponents, plus the two-stream option added by A. Kylling,
as a 100% C, double precision package called c_disort.
This appendix provides a brief overview, complete details
may be found at www.libradtran.org.
Structurally, the biggest break from the Fortran DIS-

ORT 2.1 code is the replacement of static memory with dy-
namic memory throughout c_disort. The Fortran version
is a mix of mostly single precision with some double pre-
cision for critical linear-algebra operations, whereas the C
version is 100% double precision. Significantly, occasional
erroneous numerical spikes seen in the Fortran version are
absent in the C version, which we attribute to the uniform
double precision of the latter.
Most Fortran “GO TO” jumps are eliminated, some by

replacing with logically equivalent while or break state-
ments, and others by appropriate use of if else state-
ments (a few C goto calls remain in the LINPACK com-
ponents in c_disort). Cosmetic changes include replacing
the 6-letter names in the Fortran version with more read-
able names, for example

secsca() → c_secondary_scat()
terpev() → c_interp_eigenvec()

The consistent use of the c_ prefix is adopted to prevent
name collisions with other libradtran packages. All the
comments from the Fortran version are preserved, and ad-
ditional comments are added to improve source-code clar-
ity.
In terms of runtime efficiency, the most helpful change

turns out to be re-writing how arrays are initialized. In
the Fortran version, all of the multidimensional array el-
ements are set to zero using nested loops, whether or not
this is necessary. In the C version, dynamic memory is
allocated with zeros using calloc(), which is efficient be-
cause modern operating systems give idle cpu cores the
housekeeping task of zeroing out pages of unused memory,
yielding a “poor man’s parallel” advantage. Moreover, only
those arrays that require it are subsequently zeroed after
being allocated, and fast memset() calls are used rather
than nested loops wherever possible.
The input and output variables are organized into struc-

tures, as mentioned in the previous section. The Fortran
version of DISORT is known for its long argument list. In
contrast, the C version passes one input and one output
structure pointer, which streamlines argument-reference
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overhead and also makes the code easier to read. In ad-
dition, internal arrays are also organized into arrays of
structures where feasible. The result is that the data val-
ues are stored in a striped manner, which improves cache
locality. In contrast, the Fortran version stores each array
separately, and in a padded manner, which leads to cache
misses and reduced performance. The key paradigm shift
being addressed here is the recognition that the modern
cpu core is starved for data (because cpu speed has out-
stripped memory recall speed).
As a performance benchmark we used disotest, the

nearly exhaustive suite of example test cases that is de-
livered with DISORT. The new C version runs disotest
12 times faster than the Fortran version. This is in addi-
tion to the speed-ups mentioned in the body of the paper,
which only compare different ICM algorithms running the
C version.
Finally, an advantage of the C version in terms of

‘customer experience’ is that its dynamic memory allo-
cation ensures that the end user cannot configure memory
in a wasteful manner, which experience shows occurs fre-
quently with the Fortran version. The speed-up is less
dramatic if the static array sizes in the Fortran version are
trimmed to be as small as possible for a given job (which
requires recompiling), but if the Fortran arrays are set too
large, we have timed the Fortran version in field applica-
tions to be running over twenty times slower than the C
version.

Appendix B. Analytic dφ integration

We want to find an analytic solution to the integral∫ π

0

dφ1P (μ2) Ξ(μ1 − μ2) . (B.1)

First, we substitute the integration variable φ1 by μ2:

dφ1 =
(

dμ2

dφ1

)−1

dμ2

=
(
−
√

1− μ2

√
1− μ2

1 sin φ

)−1

dμ2 . (B.2)

Using Eq. (7) to write sin φ as a function of μ, μ1 and μ2,
and inserting Eq. (B.2) into Eq. (B.1), we obtain∫ π

0

dφ1P (μ2) Ξ(μ1 − μ2)

=
∫ μmax

μmin

dμ2
P (μ2)√

1− μ2 − μ2
1 − μ2

2 + 2μμ1μ2

,(B.3)

where

μmin = μ2(φ1 = π)
μmax = min (μ2(φ1 = 0), μ1) (B.4)

can be obtained using Eq. (7). Between two grid points
on which the SPF is defined, μi and μi+1, we can linearize

the SPF in μ,

P (μ) = Ci + Diμ; Di =
P (μi+1)− P (μi)

μi+1 − μi
;

Ci = P (μi)−Diμi. (B.5)

Inserting this into Eq. (B.3) we can solve the integral an-
alytically between any two grid points. The solution is∫

dμ2
P (μ2)√

1− μ2 − μ2
1 − μ2

2 + 2μμ1μ2

= −Di

√
1− μ2 − μ2

1 − μ2
2 + 2μμ1μ2

−(Diμμ1 + Ci) arcsin
−μ2 + μμ1√

1− μ2
√

1− μ2
1

. (B.6)

For the special cases μ2(φ1 = 0) and μ2(φ1 = π)
this term simplifies to +(Diμμ1 + Ci)π/2 and −(Diμμ1 +
Ci)π/2, respectively.

Appendix C. Fast derivation of Legendre coeffi-
cients

Between each pair of neighboring sampling points of
the SPF we interpolate the SPF linearly, as in Eq. (B.5).
Then the formula for calculating the Legendre coefficient
becomes

gl =
1
2

∑
i

∫ μi+1

μi

(Ci + Diμ)Pl(μ)dμ (C.1)

This formula contains two integrals, the solutions of which
are: ∫

Pl(μ)dμ =
1
l

(Pl+1(μ)− μPl(μ)) (C.2)

and ∫
μPl(μ)dμ =

1
l − 1

(
l + 2
l + 1

μPl+1(μ) (C.3)

−μ2Pl(μ)− 1
l + 1

Pl+2(μ)
)

.

Here we show the derivation of Eqs. (C.2) and (C.3).
We start with Rodrigues’ formula for the Legendre

polynomial, and perform some transformations:

Pl+1(x) =
1

2l+1(l + 1)!
dl+1

dxl+1

[
(x2 − 1)l+1

]
=

1
2l+1(l + 1)!

dl

dxl

[
(x2 − 1)l(l + 1)2x

]
=

2(l + 1)
2l+1(l + 1)!

dl

dxl

[
(x2 − 1)lx

]
=

1
2ll!

{
x

dl

dxl

[
(x2 − 1)l

]
+ l

dl−1

dxl−1

[
(x2 − 1)l

]}

= xPl(x) + l

∫ x

x0

Pl(x′)dx′. (C.4)
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The first and last part of Eq. (C.4) can be rewritten as∫ x

x0

Pl(x′)dx′ =
1
l

(Pl+1(x)− xPl(x)) (C.5)

This is the solution to Eq. (C.2); x0 drops out when the
integration borders are defined.
The integral Eq. (C.3) is obtained as follows (the first

step is partial integration):∫ x

x1

x′Pl(x′)dx

= x

∫ x

x1

Pl(x′)dx′ −
∫ x

x1

[∫ x′

x1

Pl(x′′)dx′′
]

dx′

= x

∫ x

x1

Pl(x′)dx′ −
∫ x

x1

[
Pl+1(x′)− x′Pl(x′)

l

− Pl+1(x1)− x1Pl(x1)
l

]
dx′

= x

∫ x

x1

Pl(x′)dx′ − 1
l

∫ x

x1

Pl+1(x′)dx′

+
1
l

∫ x

x1

x′Pl(x′)dx

+
[
Pl+1(x1)− x1Pl(x1)

l

]
(x− x1) (C.6)

The third term in the last equation needs to be moved to
the left side of the equation. Then, using Eq. (C.5) in the
second step, we obtain(

1− 1
l

)∫ x

x1

x′Pl(x′)dx

= x

∫ x

x1

Pl(x′)dx′ − 1
l

∫ x

x1

Pl+1(x′)dx′

+
[
Pl+1(x1)− x1Pl(x1)

l

]
(x− x1)

= x
Pl+1(x)− xPl(x)

l
− x

Pl+1(x1)− x1Pl(x1)
l

−Pl+2(x)− xPl+1(x)
l(l + 1)

+
Pl+2(x1)− x1Pl+1(x1)

l(l + 1)

+
[
Pl+1(x1)− x1Pl(x1)

l

]
(x− x1) (C.7)

This results in∫ x2

x1

x′Pl(x′)dx =
1

l − 1
(C.8)

[
l + 2
l + 1

xPl+1(x)− x2Pl(x)− 1
l + 1

Pl+2(x)
]x2

x1

,

which is Eq. (C.3).
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