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Traditionally, the sensor network design procedure was based on positioning sensors
so that certain network monitoring capabilities (e.g., observability, redundancy, and
error detectability) of key variables are assured at minimum sensors cost. We present
a new approach that is based on maximizing economic value of information minus
cost instead of the traditional approach that requires the satisfaction of performance
targets. This article presents the conceptual aspect and computation issues of this
new approach: the connection between the new approach and the traditional mini-
mum-cost approaches is explored and the computational methods to solve the pro-
posed problem are presented. VVC 2010 American Institute of Chemical Engineers AIChE J,

57: 2136–2148, 2011
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Introduction

The problem of optimum selection of sensor location is
referred to as sensor network design problem (SNDP).
Because of economic reasons, not every process variable of
interest can be measured by a sensor. In the context of data
treatment techniques like data reconciliation and gross errors
detection, the location of measured points (i.e., location of
sensors) has direct effect on the accuracy of estimators of
variables of interest (key variables), which in turn affects
process plant performance because these estimators are used
to make decisions.

Prior works on the SNDP are extensive. Bagajewicz1 offers
a description and a review of almost all published works up
to year 2000. Despite the large amount of published research
works on this problem, the scope/target of the SNDP is sur-
prisingly limited. The SNDP can be divided into two classes.

Class one: designing sensor network for process
monitoring purposes

More specifically, the sensor networks are designed to
provide accurate estimators (measured or estimated value)

for the process variables of interest (key variables). The
most popular model formulation is to find cost-optimal sen-
sor network satisfying a certain number of pre-specified
requirements (e.g., observability and redundancy of key vari-
ables). The problems of data reconciliation and gross error
detection of partly measured systems are inherent parts of
the process monitoring-focused SNDP. A different approach
that also belongs to this class is that of estimation reliability
(instead of the estimation precision) where it is considered
either as an objective or a constraint (this approach, based
on the concept of system reliability, was introduced by Ali
and Narasimhan2). A few examples of research works on
process monitoring-targeted SNDP are: Madron and
Veverka3 used multiple Gauss Jordan elimination to achieve
observability of all key variables at minimum sensor cost.
Meyer et al.4 and Luong et al.5 used graph-theoretic meth-
ods. Chmielewski et al.6 used branch and bound method
with linear matrix inequalities transformation to obtain a so-
lution. Sen et al.7 and Carnero et al.8,9 used genetic algo-
rithms (GAs). Most recently, Kelly and Zyngier10 presented
a mixed integer linear programming (MILP) model based on
the Schur complements theorem to design sensor network
for process monitoring purpose. Branch and bound (tree
search) methods were particularly used in our research
group. Among them the tree search methods based on cutsets
(Gala and Bagajewicz11,12) were shown to be very efficient
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for linear systems. In addition, the equation-based method
(Nguyen and Bagajewicz13) and level traversal methods
(Nguyen and Bagajewicz14) were developed for nonlinear
systems.

Class two: designing sensor network for process fault
detection and identification purposes

This problem is based on the principle that a process fault
(malfunction/failure in an instrument in a process) at one
point in the system will propagate to other locations in the
system, which would eventually be detected by the sensors-
based monitoring system. The problem of detecting and
identifying faults (using various well-established techniques)
is an inherent part of the problem. A few examples of
research works on SNDP for process fault diagnosis are
described next. Raghuraj et al.15 and Bhushan and Rengasw-
amy16,17,18 presented sensor network design formulation
based on fault diagnosis criteria. Musulin et al.19 used GA in
the design of sensor network for principal components analy-
sis monitoring. Bhushan et al.20 presented a framework for
designing robust sensor network for reliable process fault di-
agnosis; the problem was then solved by using constraint
programming (Kotecha et al.21,22).

All the published work on SNDP for process monitoring
purposes focuses on finding more efficient computational
methods to solve the problem in which the sensors’ cost is
minimized and the popular specifications on precision, resid-
ual precision, error detectability and resilience, and estima-
tion reliability are used as performance targets. There is
trade-off between cost and performance (process monitoring
capability) of the sensor network: if one asks for higher level
of performance, one would have to pay more in sensors’ cost
(use more sensors). When there is such a trade-off, the right
strategy is to simultaneously optimize both cost and perform-
ance of the sensor network. This simultaneous optimization of
performance and cost can be done by solving the design prob-
lem using different levels of design specifications, thus con-
structing a pareto optimal curve (Bagajewicz and Cabrera23).
The right strategy to do this kind of optimization is obtaining
an economic indicator for performance of the network and
then maximizing the difference between the economic indica-
tor and cost of the sensor network. This would be the utility
function of the multiobjective (cost and performance) optimi-
zation. We call this approach a value-optimal SNDP, the tra-
ditional minimum sensors cost approach with requirements on
performance targets being termed cost-optimal SNDP. This
approach has been conceptually discussed in the seminal pa-
per by Bagajewicz et al.24 From then on, the work by Nara-
simhan and Rengaswamy25 is the only published work that
discusses the value of a sensor network as a performance
measure from the fault diagnosis perspective).

From the monitoring perspective, the following works
paved the way to obtain the value of information: Bagaje-
wicz26 introduced the concept of software accuracy that
essentially encompasses all the aforementioned performance
measures (observability, redundancy, error detectability, etc.)
of sensor network. The economic value of software accuracy
was also quantified (Bagajewicz27) and an efficient approxi-
mate method was developed to evaluate the economic value
of accuracy (Nguyen et al.28). Thus, the first necessary step

in developing the value-optimal SNDP, the quantification of
economic indicator of performance of sensor network, has
been solved; the problem remaining is to investigate the
value-optimal SNDP and to find efficient methods to solve
the proposed problems.

This article presents a new approach to design sensor net-
works (for process monitoring purposes) that maximizes the
economic value of accuracy (value-optimal SNDP). Relation-
ship between this new approach and the traditional cost-opti-
mal approach is discussed and computational methods to
solve the problem are presented.

This article is organized as follows: first, the concepts of
software accuracy and economic value of accuracy are
briefly reviewed, followed by description of computational
methods to evaluate software accuracy and its associated
economic value. The value-optimal SNDP and efficient
methods to solve the proposed problems are then presented.

Software Accuracy

Accuracy has been defined as precision plus bias
(Miller29). However, the definition is of less practical use
because the bias size is generally unknown. Recently, Baga-
jewicz26 introduced the concept of software accuracy in the
context of data reconciliation and gross error detection being
used to detect biases. In such context, accuracy was defined
as sum of precision and induced bias instead of the actual
bias. The induced bias d̂ and the software accuracy are
shown next (Bagajewicz26):

d̂ ¼ E½x_� � x ¼ ½I� SW�d (1)

âi ¼ r̂i þ d�i (2)

where âi; r̂i; d
�
i are the accuracy, precision (square root of

variance Sii) and the induced bias of the estimator, respec-
tively. Also I is the identity matrix, S is the variance matrix of
measurements, and W is calculated as W ¼ A

T (ASAT)�1
A

(A is process constraints matrix), and d is the vector of actual
biases in measurements.

By definition, the accuracy value relies on how one calcu-
lates the induced bias. From Eq. 1, it is clear that the induced
bias is the function of undetected biases whose sizes can be
any value below the threshold detection values and their loca-
tion can be anywhere in the system. Thus, the induced bias is
a random number. At first, Bagajewicz26 proposed to calculate
the induced bias as the maximum possible value, but more
recently, Bagajewicz30 and Bagajewicz and Nguyen31 pro-
posed to calculate the induced bias as the expected value of
all possible values instead, which is more realistic, and used a
Monte Carlo simulation-based procedure to obtain such
expected value as well as some approximate method to per-
form the necessary integral calculations numerically.

Economic Value of Accuracy

Bagajewicz et al.32 introduced the theory of economic
value of precision and developed formulas for assessing
downside financial loss incurred by production loss. They
argued that, due to inaccuracy (caused by random errors) of
the estimator of a product stream flow rate, there is a finite

AIChE Journal August 2011 Vol. 57, No. 8 Published on behalf of the AIChE DOI 10.1002/aic 2137



probability that the estimator is above the target but in fact
the real flow is below it. In such situation and under the
assumption that the operators did not make any correction to
the production throughput set point when the estimator sug-
gested that the targeted production has been met or sur-
passed, the production output will be below the target and fi-
nancial loss occurs. The financial loss under simplified
assumptions of negligible process variations and normal dis-
tributions of the process variation and the measurements was
found to be DEFL ¼ 0:19947� Ks � T � r̂p where Ks is the
cost of the product (or the cost of inventory) and T is the
time window of analysis (Bagajewicz et al.32).

Using the same concept of downside financial loss, Baga-
jewicz27 extended the theory of economic value of precision
to include the effect of (induced) bias, namely the economic
value of accuracy. The expression for financial loss DEFL
considering bias is given by (Bagajewicz27):

DEFL ¼ W0DEFL0 þ
X
i

W1
iDEFL

1
��
i
þ
X
i1;i2

W2
i1;i2

DEFL2
���
i1;i2

þ…
P

i1;i2;:;iN

Wn
i1;i2;:;iN

DEFLN
���
i1;i2;:;iN

ð3Þ

In this equation, Wn
i1;i2;::;iN

and DEFLN
���
i1;i2;::;iN

are the aver-

age fraction of time the system is in the state containing n
gross errors i1, i2,… ,iN and its associated financial loss,

respectively. The financial loss for system containing n
biases i1, i2,… ,iN are integrals that do not have analytical

solution:

DEFLN
��
i1;i2;:::;iN

¼KsT

2

Zþ1

�1

Zþ1

�1
:::

Zþ1

�1
f ðh1; h2; ::: hnÞdh1dh2:::dhn

where h1, h2, … hn are bias sizes. A detailed expression and

procedure to calculate the financial losses DEFLN
��
i1;i2;::;iN

can be found in Nguyen et al.28 In turn, if the probability
of failure of sensor ‘‘i1’’ is fi1ðtÞ, then the associated fraction
of time that the system is in that specific state (contain-
ing the specific set of gross errors i1, i2,… ,iN) is
Wn

i1;i2;:::;inb
¼ fi1ðtÞ:::finðtÞ

Q
s6¼i1;:::s6¼in

½1� fsðtÞ�.
The instrumentation upgrade (adding new sensors)

would reduce the individual financial loss (i.e.,
DEFL0;DEFL1

��
i
;DEFL2

��
i1;i2

:::) in Eq. 3 (the main reason is
that there are more measurements to improve precision of
estimators and detect biases), the result is that financial loss
would decrease.

Applications of the theory of economic value of precision/
accuracy for the determination of economical benefit of
instrumentation upgrade (IU) were shown by Bagajewicz
et al.32 and Bagajewicz.27 The economical benefit of an
instrumentation upgrade was calculated as the difference in
downside financial loss (DEFL) before and after such
upgrade. The net present value of instrumentation upgrade
was then given by:

NPV ¼ dn DEFLðbefore IUÞ � DEFLðafter IUÞf g
� cost of IU ð4Þ

where dn is sum of discount factor for n years. The cost can
be the cost of purchasing of new sensor (when adding new
sensors) or the cost of license (when installing data reconcil-
iation software). A large value of the net present value of
instrumentation upgrade may justify this type of investment.
Case studies on the value of performing data reconciliation
as well as savings of adding new sensors at selected loca-
tions to the sensor network of a crude distillation unit were
provided by Bagajewicz et al.32 and Bagajewicz.27

The financial loss DEFLN
��
i1;i2;::;iN

corresponding to the
presence of a specific set of gross errors i1, i2,… ,iN can be
evaluated using two methods (Nguyen et al.28):
• Approximate method.
• Monte Carlo simulation.
The principle of the approximate method is to partition

the space of variables into several subspaces. In some sub-
spaces, the expression for financial loss DEFLN

��
i1;i2;::;iN

can
be evaluated analytically, whereas in the others the expres-
sion has to be evaluated approximately (Nguyen et al.28).
The partition of the space of variables is illustrated in Figure
1 for the case of two biases present in the system.

In the region where both biases are detected, the expres-
sion for financial loss can be calculated analytically, whereas
in the others, an approximate scheme is used to evaluate the
expression (Nguyen et al.28).

The Monte Carlo method (for calculating

DEFLNji1;i2;:::;iN¼KsT
2

Rþ1
�1

Rþ1
�1 :::

Rþ1
�1 f ðh1; h2; :::hnÞdh1dh2:::dhn)

comprises three steps:
(i) Sampling the independent variables (the biases sizes

h1, h2, … hn) according to their distributions, which are
assumed to be normal distributions;
(ii) Evaluating the integrand functions;
(iii) Evaluating the value of the integral (i.e., DEFLN

��
i1;i2;::;iN

)
as the mean value of the values of the integrand functions after
a certain number of samplings (e.g., 1000 samplings). More
details can be found in Nguyen et al.28

Similarly, the stochastic accuracy can be evaluated using
the same two methods, the approximate method and a Monte
Carlo simulation, with slightly different integrand functions
in the case of the approximate method and evaluating depar-
tures from true values instead of economic losses in the
Monte Carlo simulations.

Both the stochastic accuracy and financial loss are indica-
tors of the quality of measurements: smaller values of sto-
chastic accuracy and financial loss indicate better quality of
data (i.e., a better sensor network that provides more accu-
rate reconciled data).

Connections Between Software Accuracy and
Expected Economic Loss

Because software accuracy is defined as precision plus
induced bias, the requirement on accuracy value encom-
passes the requirements on precision, gross errors detect-
ability, and gross errors resilience. More specifically, a
sensor network that renders good (small) software accu-
racy for variables of interest needs to possess all of the
followings:

(i) Good precision of estimators of key variables.
(ii) Good level of redundancy (i.e., enough measured vari-

ables) to detect biases so that undetected biases would have
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small magnitudes; this property is directly related to gross
errors detectability.
(iii) Smearing effect of undetected biases on estimators of

key variables is limited (such that estimation accuracy is
small even though undetected biases are large); this property
is directly related to gross errors resilience.

These needed network’s capabilities generally require a
good level of software redundancy (i.e., more sensors than
the number of key variables). To improve estimation accu-
racy, it is usually needed to use more sensors. The same
thing is stated for financial loss, that is, sensor network
would have small financial loss if it possesses the three
aforementioned properties and it is necessary to use more
sensors to reduce financial loss.

The exception to this generalization does exist. Indeed, there
exists a situation in which the undetected biases can be very
large, for example, two gross errors cancel out each other such
that these two biases are undetected (by using measurement
test) no matter how big they are. This phenomenon is
explained by the theory of gross errors equivalency (Bagaje-
wicz and Jiang33). To illustrate it, consider the system shown
in Figure 2. The two biases in S2 and S3 cannot be detected (no
matter how big they are) if they are equal but in opposite sign
(because the material balance is satisfied in such case). The
region of undetected biases for such case is shown in Figure 3.

However, gross errors are not unbounded. If a bias in a
measurement passes a certain threshold, which is usually a
certain percentage of the normal value of the variable, by
common sense the operators can tell that there is bias in the
measurement. The threshold above which bias is detected by
the operators’ judgment is used as (upper) limit for bias. Fig-
ure 4 shows such limits for both cases.

Thus, the accuracy calculations need to be made using
additional box constraints on each variable.

� dmax;s � dðpÞcrit;s � dmax;s 8s (5)

Consider now a procedure to design a sensor network
based on adding one instrument at a time, like the tree
search procedure. If a new measurement forms such a set of
(unbounded) undetected gross errors with existing measure-
ments (whereas the original network does not have that set),
the software accuracy and financial loss increase when this
new measurement is added to the network. We call this the
‘‘Atypical’’ case because occasionally one might see deterio-
ration in accuracy when sensors are added. The ‘‘Atypical
case’’ and the ‘‘Typical case’’ of software accuracy and fi-
nancial loss as function of the number of measurements are
shown in Figure 5.

As can be seen from Figure 5:
• The jumps (steep slopes) in Figure 5 corresponding to

the case where the newly added measurement contributes
significantly to the process monitoring capabilities of the
sensor network (e.g., observability and redundancy of key
variables). On the other hand, if ‘‘meaningless’’ measure-
ment (that contributes almost nothing to the process monitor-
ing capabilities of the sensor network) is added, the accuracy
and financial loss are almost unchanged.
• Generally, adding sensors improves accuracy and finan-

cial loss.
• If bias in the newly added sensor is very difficult to be

detected, accuracy and financial loss would increase when
adding that sensor. However, continue adding more sensors
would again improve accuracy and financial loss.

Software accuracy can be used as a constraint in the com-
monly used cost-optimal SNDP.

Value-Optimal SNDP

The problem formulation for cost based accuracy-con-
strained SNDP is as follows:

Figure 1. Different regions when two gross errors are
present in the system.

Figure 2. Illustrated example.

Figure 3. Illustration of biases equivalency.

Figure 4. Box and rhombus constraints defining unde-
tected biases.
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8i

ciqi

s:t:

aiðqÞ � a�i 8i 2 NS

qi ¼ 0; 1 8i

(6)

where qi is the element of the vector of binary variable
indicating that a sensor is located in variable i, ci is the cost of
such a sensor and Ns represents the set of variables where an
accuracy specification ai(q) is required, and a�i the associated
threshold values. To this formulation, other constraints can be
added (precision, reliability, etc.) specifically, even though the
accuracy usually contains all of them.

Problem (6) can be readily solved by using any suitable
branch and bound method developed in our group (e.g., the
cutset-based method or the breadth-first tree search method).

Departing from the above minimum cost paradigm, the
proposed value-optimal problem formulation is as follows:

Max VðqÞ � cðqÞf g
s:t:

cðqÞ � b

(7)

where V(q) is the economic value of the data provided by the
sensor network (function of measurement locations q), c(q) is

cost of sensors, and b is limit on budget. If the budget
limitation is not used, the problem becomes an unconstrained
optimization problem where VðqÞ � cðqÞf g is maximized. In
turn, the value of a sensor network is given by

VðqÞ ¼ DEFLðno sensorÞ � DEFLðwith sensorsÞf g
¼ RDEFL� DEFLðqÞ ð8Þ

The financial loss when there is no sensor is a large value,
denoted as RDEFL (a reference value). Thus, VðqÞ � cðqÞf g
is given by:

VðqÞ � cðqÞf g ¼ RDEFL� fDEFLðqÞ þ cðqÞgf g (9)

Thus, maximizing value minus cost is equivalent to mini-
mizing financial loss plus the cost of the sensor network
(DEFLðqÞ þ cðqÞ).

As discussed above, DEFL(q) is not monotonic with the
addition of sensors, but cost is. Thus, the sum of those is not
monotonic with the addition of sensors and many local min-
ima could be observed in a method that relies on the addi-
tion of sensors as a procedure (tree search methods). We
note that it is not simple to write Karush–Kuhn–Tucker
(KKT) conditions and solve this problem using conventional
mathematical programming techniques. In fact, a numerical
method in the form of approximate method or Monte Carlo
method, as discussed above, must be used to calculate the
objective function (more specifically, to calculate the finan-
cial loss). Thus, the only applicable methods are the tree
enumeration method and GA, a very popular stochastic
search method to solve combinatorial optimization problem.

It can be seen that in the above optimization problem, if
the sensors are expensive and/or Ks value (cost of product)
is small, then the cost term dominates the financial loss term
and the optimal solution would contain a small number of
sensors. On the other hand, if the products are expensive
(i.e., large Ks values) and/or the sensors are cheap, the finan-
cial loss factor dominates the cost factor and the optimal so-
lution would contain a large number of sensors. This means
that at fixed sensors cost, if Ks value increases, the number
of sensors in optimal network would increase as evidenced
in the illustrated example shown next.

Before we proceed to present computational methods to
solve the proposed problems, we discuss the connection
between this new approach (value-optimal SNDP without
any constraint on performance target) and the traditional
cost-optimal approach that minimizes sensors cost subjected
to requirements on performance target.

Connection Between the Value and the
Cost-Optimal Paradigms

The connection is discussed through an illustrated example
shown below:

Example 1

Consider the following process example, which is shown in
Figure 6. The flow rate, precision, and cost of sensors for
example 1 are shown in Table 1. The proposed SNDPs were

Figure 5. Accuracy and financial loss as function of
number of sensors.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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implemented in Fortran running on a 2.8-GHz Intel Pentium
CPU, 1028-MB RAM PC. This example problem is solved
using the tree search (branch and bound) method using indi-
vidual measurements (Bagajewicz34) without stopping crite-
rion, so the obtained solution is guaranteed to be optimal so-
lution.

Traditional Cost-Optimal Approach not Based on Accura-
cy. The design specifications for four design cases are
shown in row 2 to row 7 of Table 2. The last two rows
show the optimal solution (optimal measurements location
and optimal cost).
• For design case 1.1c: in addition to the specifications

used in design case 1.1b, it is required that biases whose
magnitude is greater than four times the standard deviation
be detected. It should be noted that, although design case
1.1.c uses more specifications than design case 1.1b, the
optimal solution is unchanged.
• For design case 1.1d: in addition to the specifications

used in design case 1.1c, it is required that the induced
biases in key variables caused by any biases in the system
be less than 3 times the standard deviation.
• As one increases the level of specifications (e.g., more

requirements to be satisfied), the obtained (feasible) solution
would contain more sensors. This could be adding new sen-
sor (e.g., {S1, S6, S7} ==> {S1, S5, S6, S7}) or using a differ-
ent set of sensors ({S1, S5, S6, S7} ==> {S1, S2, S4, S5, S6}).
• It should be noted that in design case 1.1a where only

observability is required, because a good level of precision
is used (estimation precision is 1.5% vs. sensor precision ¼
2%), the number of measurements in optimal sensor network
is more than the number of key variables (the optimal sensor
network renders redundancy of level one for key variables).

Cost-Optimal SNDP with Requirement on Accuracy. The
SNDP requesting a satisfactory accuracy value of key varia-
bles is illustrated next. The requirement on accuracy
(aiðqÞ � a�i ) is the only constraint in the problem. The
results are shown in Table 3. The design specifications are
shown in rows 2 and 3 of Table 3, the optimal solutions are

shown in row 5 (optimal measurement placement) and row 6
(optimal cost). The (software) accuracy values of key varia-
bles corresponding to the optimal solutions are shown in
row 4.
• For the design cases 1.2a–1.2e, the desired value of ac-

curacy decreases (from 4.0 to 1.5), which requires more sen-
sors to be used. In design case 1.2a, basically only observ-
ability is required for the two key variables S1 and S5. In
design cases 1.2b and 1.2c, the obtained optimal solutions
render redundancy of level one for key variables (the two
key variables are still observable if one removes any one
sensor out of the three-sensor solutions). It can be seen that
the optimal solution in the design case 1.2c is the same as
the solution obtained in design case 1.1a (column 2, Table
2) where a good level of precision (1.5%) is used.
• When a smaller accuracy threshold (design case 1.2d) is

required, both redundancy (of key variables) and gross error
detection capability of the network are required; hence more
sensors need to be used. It can be seen that the optimal solu-
tion in the design case 1.2d is the same as the solution
obtained in design case 1.1c (column 4, Table 2) where both
estimation redundancy and gross error detection capability
are required.
• Design case 1.2d is the extreme case where the required

accuracy threshold is so small such that all sensors need to
be used to meet the requirement.

Value-Optimal SNDP. The SNDP simultaneously mini-
mizing financial loss and cost of a sensor network is illus-
trated next. This problem does not have any constraint. The
economic parameters used in the expressions to evaluate fi-
nancial loss are as follows: the time window of analysis T is
30 days (this is based on the argument that, by means of
production accounting calculation every month, one can
detect the loss in production that has been covered by biased
measurement); the cost of product Ks (or cost of inventory)
for the two key variables S1 and S5 are shown in row 3 of
Table 4. The financial losses of the optimal sensor networks
are shown in row 6 of the Table 4.

Figure 6. Example process.

Table 1. Data for Example 1

Stream Flow Rates Sensor Precision (%) Sensor Cost

S1 100 2 55
S2 140 2 40
S3 140 2 60
S4 20 2 50
S5 120 2 45
S6 20 2 55
S7 100 2 60

Table 2. Results for Example 1—Cost-Optimal SNDP

Case Study 1.1a 1.1b 1.1c 1.1d

Key variables S1 and S5 S1 and S5 S1 and S5 S1 and S5
Requirement Observability Redundancy Redundancy and

error detectability
Redundancy and error

detectability and resilience
Precision thresholds 1.5% 1.5% 1.5% 1.5%
Residual precision thresholds 4% 4% 4%
Error detectability thresholds 4 4
Error resilience threshold 3
Measured variables S1, S6, S7 S1, S5, S6, S7 S1, S5, S6, S7 S1, S2, S4, S5, S6
Sensors cost 170 215 215 245
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As can be seen from Table 4:
• When the cost of product Ks increases, financial loss

increases.
• As explained above, when Ks value increases, the num-

ber of sensors in optimal network increases.
• In design case 1.3a, Ks value is small: the cost factor

dominates the financial loss factor ==> cost needs to be mini-
mized and the optimal network contains only enough sensors
to guarantee observability of key variables. This optimal net-
work is the same as the optimal network obtained in design
case 1.2a where only observability of key variables is
required (by using a large accuracy threshold).
• In the opposite case, design case 1.3d, Ks value is large:

financial loss needs to be minimized and the optimal net-
work contains all sensors (the same result as the result
obtained in design case 1.2e). This is an extreme case.
• In design cases 1.3b and 1.3c, Ks value is moderate,

the optimal networks contain enough sensors that can guar-
antee some degree of estimation redundancy and gross
error detection capability. The optimal networks in these
two design cases are respectively the same as the networks
obtained in the two design cases 1.2c and 1.2d and also
the two design cases 1.1a and 1.1c as shown in columns 4
and 5 of Table 3 (SNDP with accuracy constraint) and col-
umns 2 and 4 of Table 2 (traditional cost-optimal SNDP).
These two optimal networks have good process monitoring
capability (good accuracy value and good gross error detec-
tion capability).

The above results clearly indicate that the entities software
accuracy and the associated economic value (financial loss
DEFL) encompass all the mentioned process monitoring per-
formance measures of sensor network (precision, error
detectability, etc.): if one reduces accuracy threshold or if
the products are more pricey (larger Ks value), one asks for
higher performance of sensor network (e.g., the sensor net-
work needs to satisfy error detection capability in addition to
observability and redundancy of key variables). The nice
thing about the value-optimal approach is that the users need
not to worry about what threshold values to be used in the
constraints in traditional cost-optimal SNDP: a small Ks

value would ask for decent performance of sensor network
while a large Ks value asks for sensor network with very
high performance, including the extreme case where all sen-
sors are measured.

The rest of this article focuses on the computational meth-
ods to solve the value-optimal SNDP (as mentioned above,
the accuracy-constrained SNDP is a constrained optimization
problem that can be readily solved by using any appropriate
branch and bound method that has been developed, for
example, the cutset-based method proposed by Gala and
Bagajewicz11).

Two methods that do not guarantee global optimality are
proposed in this work for problems in which exhaustive enu-
meration is impractical. These methods are: GA and Cutset-
based method.

Genetic algorithm

The proposed optimization problem is amenable to the use
of a standard GA because:
• The problem is a combinatorial optimization problem

involving binary variables (vector q).
• There are no constraints, although when capital budget

constraints are added a penalty function can be added to the
evaluation of fitness.
• The objective function is a complicated function with

many extrema.
In brief, the GA method is based on the principles of

genetics, natural selection and evolution; it ‘‘allows a popu-
lation composed of many individuals to evolve under speci-
fied selection rules to a state that maximizes the ‘‘fitness,’’
i.e., minimizes the cost function’’ (Haupt and Haupt35). The
algorithmic procedure and detailed description of the well-
known GA method can be found in various textbooks such
as the Haupts’ book.35

The GA is briefly described as a seven-step procedure as
follows:
(1) Variable encoding and decoding: this step involves the

conversion (i.e., encoding) of the values of decision varia-
bles into an appropriate representation (a chromosome).
Decoding is the reverse process of encoding.
(2) Initialization of population: this step involves ran-

domly generating a population of N chromosomes. The size
of population, N, is a GA parameter.
(3) Natural selection: this step involves three operations:

(i) evaluating the cost function corresponding to each chro-
mosome/individual in the population, (ii) sorting the popula-
tion in descending order of ‘‘fitness,’’ (iii) selecting a portion
of population with good fitness value to keep and discarding
the rest.
(4) Selection: selecting and pairing the retained (survived)

chromosomes to produce offspring for the next generation.

Table 3. Results for Example 1—Cost-Optimal SNDP with Accuracy Constraint

Case Study 1.2a 1.2b 1.2c 1.2d 1.2e

Key variables S1 and S5 S1 and S5 S1 and S5 S1 and S5 S1 and S5
Accuracy thresholds (%) 4 3 2 1.8 1.5
Accuracy value (%) as1 ¼ 3.36 as1 ¼ 2.22 as1 ¼ 1.90 as1 ¼ 1.65 as1 ¼ 1.499

as5 ¼ 2.85 as5 ¼ 1.99 as5 ¼ 1.81 as5 ¼ 1.49 as5 ¼ 1.27
Measured variables S1, S6 S1, S5, S6 S1, S6, S7 S1, S5, S6, S7 All variables
Sensors cost 110 155 170 215 365

Table 4. Results for Example 1, Value-Based SNDP

Case Study 1.3a 1.3b 1.3c 1.3d

Key variables S1 and S5 S1 and S5 S1 and S5 S1 and S5
Ks value Ks1 ¼ 2 Ks1 ¼ 10 Ks1 ¼ 30 Ks1 ¼ 60

Ks5 ¼ 2 Ks5 ¼ 10 Ks5 ¼ 20 Ks5 ¼ 50
Measured

variables
S1, S6 S1, S6, S7 S1, S5, S6, S7 All

Sensors cost 110 170 215 365
Financial loss 78.6 219.9 451.8 824.9
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(5) Mating: offspring of the paired chromosomes (parent)
are produced through the crossover process whereby the
parent’s genetic codes are passed on to the offspring.
(6) Mutation: random mutations alter a certain percentage

of the bits in the list of chromosomes. Mutation points are
randomly selected from the population; with each mutation
point, changing a 1 to a 0 and visa versa. The number of
mutation points is defined by mutation rate, which is the
fraction of the number of mutation points divided by the
total number of bits in the population.
(7) Convergence: after the mutation step, a next genera-

tion population is generated, which contains new chromo-
somes. The same cycle (steps 3–6) is repeated unless con-
vergence criterion is met, which is to terminate the GA
procedure if the best objective value obtained in each iter-
ation does not change after a predetermined number of
iterations.

The parameters involved in the GA method are the size of
population, the portion of population to keep, the mutation
rate and the selection and crossover methods. The methods
for the GA operators and the values are intuitively chosen in
accordance with the scale of the problem using the guide-
lines provided in the literature (Haupt and Haupt35). They
are as follows:
• Selection: roulette wheel selection method.
• Crossover: two-point crossover method.
• Population size ¼ 20.
• Fraction of population to keep ¼ 0.5.
• Mutation rate ¼ 0.2.
These parameters are used in the medium size problem

shown in the illustrated example section. For bigger scale
problems, a larger population size and a greater mutation
rate should be used.

Cutset-based tree search method

The calculation procedure is based on a tree search proce-
dure with branching and stopping criteria (Bagajewicz34) and
is described next:
(1) Find all the cutsets of the process graph.
(2) Consider only cutsets that contain at least one key

variable, put them to a list of cutsets.
(3) Remove key variables out of the cutsets in the list and

consider them as separate cutsets, e.g., if [1 2 3 4] is a cutset
and ‘‘1’’ and ‘‘3’’ are key variables then consider [1], [3],
and [2,4] as separate cutsets.
(4) Sort these cutsets in ascending order of their cost (cost

of a cutset is equal to sum of the costs of the sensors placed
on the streams of that cutset).
(5) Start with the root node with no cutsets being added,

i.e., t ¼ {0, 0, 0…), trivially infeasible.
(6) Use branching criterion to develop branches of the

tree (add cutsets to vector t).
(7) While performing the branching criteria, if any set of

measurements has already been evaluated in previous nodes,
that node is not continued. This occurs frequently because
one set of measurements can be a result of the union of dif-
ferent sets of cutsets.
(8) Continue adding cutsets until the stopping criterion is

met. In such case, the algorithm backs up two levels and
develops the next branch.

Branching criterion

A cutset is added in the direction of minimum cost, that
is, the newly added cutset is chosen such that the cost
obtained by its union with the existing active cutsets is mini-
mum.

An alternative branching has also been investigated, which
is choosing cutsets in the direction of minimizing the objec-
tive function. It is found that this branching criterion
requires much longer computational time than the other
(direction of minimum sensors cost). In fact, for the small
scale example given above (Figure 6), this branching crite-
rion requires roughly 10 times more computational time than
the other criterion. For medium or large-scale problems, the
difference is much larger. This is because the calculation of
financial loss is an intensive computation duty, especially for
middle or large-scale problems.

The task remaining is to find a proper stopping criterion.

Stopping criteria

In the branch-and-bound method, in each node of the
search tree, it is necessary to find the lower bound for the best
solution obtainable if continuing exploring down the branch of
the tree. If that bound is not better than the current best solu-
tion (the incumbent) obtained so far, stop exploring down the
branch. Unless the bound is obvious, it is found by solving
relaxation subproblems (e.g., linear programming (LP)-relaxa-
tion, Lagrangean relaxation) in the subspace of variables.
Unfortunately, none of the established techniques to find the
bound is applicable to our problem; the main reason is that
there is no explicit expression for the objective function.

The proposed stopping criterion is as follows: In each
node, the two terms DD and DC are defined and calculated
as follows:
• Change in financial loss: DD ¼ DEFL (current node) �

DEFL (sensor network with maximum number of sensors).
• Change in cost: DC ¼ Cost (sensor network with maxi-

mum number of sensors) � Cost (current node).
The change in financial loss (DD) indicates the maximum

gain in financial loss, whereas the change in cost (DC) indi-
cates the maximum cost incurred if one continues exploring
down the tree from the current node. It can also be shown
that if {DC � DD} of current node[ {DC � DD} of previ-
ous node then the objective value of current node \ the
objective value of the previous node. The reason why DD
and DC are used is illustrated in Figures 7 and 8, where
‘‘MNS’’ is used to denote the network with maximum num-
ber of sensors (i.e., all sensors are used).

One should always start exploring the branch with nodes
that have DD [ DC or {DC � DD} \ 0 (in region I); the
relationship DD[ DC implies that one can reduce the objec-
tive function if continuing exploring down the tree.

Thus, DD and DC are used because:
(i) The optimal solution cannot be in the region where

not all key variables are observable (region I, Figure 7),
which always has DD[ DC.
(ii) The relationship DD [ DC implies that there is high

potential of reducing the objective function when exploring
down the tree; if DD\ DC: less potential.
(iii) If (DC � DD) of node 1 [ (DC � DD) of node 2

then objective value of node 1 \ objective value of node 2.
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Using this relationship, with reference to Figure 8, we would
have objective values of nodes B,C,D \ objective values of
all the nodes that have (DC � DD) \ 0 (the region on the
left hand side).

The proposed stopping criterion is:
• Exploring down the branch until DD\ DC.
• When DD \ DC, explore further down the branch until

objective value of current node [ objective value of previ-
ous node.

The essence of this proposed stopping criterion is, in a
branch of the tree, locating a local minimum in the region of
less potential of reducing objective function.

We now investigate the possibility that the global optimal
solution is missed because the proposed stopping criterion
stops the tree search before it reaches global optimal. This is
illustrated by in Figure 9 (pathway A)

We have a conjecture (based only on testing) that there
always exists a monotonic pathway to reach global optimum
(pathway B in Figure 9). A proof of this assertion is left for
future work. The supporting reasons for the conjecture are:
• A union of variables (streams) is a result of many com-

binations (unions) of cutsets. This fact implies that, when

cutsets are used in the tree search procedure, a specific set
of active streams (measurements) can be reached by follow-
ing many pathways (branches) in the tree. Table 5 shows an
estimate of how many pathways (using cutsets) to reach a
specific set of active streams (i.e., measurements location)
for the Madron process problem (shown in next section).
• In most of the cases one can find a pathway in which

the objective function is a monotonic decreasing function
until it reaches the optimal solution (or at least objective
function is monotonic decreasing in the region DD \ DC
where the stopping criterion is considered). Note that chang-
ing the pathway is actually following another branch in the
tree. We do not claim that one can always find such a path-
way because there is no mathematical proof for this, but we
have not found a counter example in which the global solu-
tion cannot be reached by following any branch or pathway
using the stated stopping criteria.

The third row of Table 5 shows the number (N1) of possi-
ble combinations (sets) of cutsets from a given number of
cutsets, whereas the fourth row shows the number (N2) of
candidate solutions (i.e., measurements locations) resulting
from the same given list of cutsets. The ratio N1/N2 is an in-
dicator of how frequently the situation that two sets of cut-
sets result in the same measurements location (by union
operation) can occur. For example, if the ratio is 100, then
among 100 possible combinations of cutsets, only one com-
bination leads to a candidate solution, the remaining 99 com-
binations are disregarded because they result in the same
measurements location. This also means that expectedly
there are 100 pathways to reach a specific set of active
measurements. The information shown in Table 5 is obtained
from the Madron example (containing 24 streams, shown in
next section).

Table 5 shows that only roughly 50,000 candidate solu-
tions (each solution is a specific set of measurement loca-
tions, for comparison, the total number of such set of mea-
surement locations is 224 � 1) resulted from the (2100 � 1)
possible combinations of cutsets. This result reveals that the
number of pathways (built on cutsets) to reach a specific set
of measurements is very large.

All these discussions make us conclude that:
• Because there are so many pathways to reach a candi-

date solution, if the global optimal solution is not reachable

Figure 7. Differentiation of regions using DD and DC.
[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 8. Use of DD and DC in stopping criterion.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

Figure 9. Illustration of missing optimal solution
because of stopping criterion.
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in a pathway (because that pathway is not monotonic), it
would be reachable in another pathway. Thus, the chance of
finding global optimal solution is very high.
• The bad side of this fact is that the stopping criterion

may not have any effect at all, that is, one candidate solution
if not reachable in a pathway can still be reachable in
another pathway. The result is that the number of candidate
solutions explored is equal (or almost equal) for both cases:
with and without stopping criterion. The obtained results
from the Madron example confirm this speculation.
• Thus, it can be predicted that the performance of the

presented stopping criterion is not satisfactory: the reduction
in computational time is insignificant (because the number
of candidate solutions explored is almost equal for both
cases: with and without stopping criterion) and there is no
guarantee of optimality (although the chance of finding opti-
mal solution is very high). However, it is the best criterion
that we can find for this type of problem. Separate work36

focuses on improving the efficiency of cutset-based method
by using parallel computing rather than finding a better stop-
ping criterion.

The performance of the proposed methods is shown in the
following example.

Example 2

All of the proposed methods were implemented in Fortran.
The exhaustive tree search, the GA method and the cutset-
based method were run on a 2.8-GHz Intel Pentium CPU,
1028-MB RAM PC.

The flowsheet of the example, which was introduced by
Madron and Veverka3 is given in Figure 10. Madron and
Veverka3 did not report flow rates, so the flowrate values
shown in Table 6 were taken from Bagajewicz.34 The preci-
sion and cost of sensors are also given in Table 6.

Information used in the calculation of financial loss is as
follows:
• Probability of sensors ¼ 0.1 (for all sensors).
• Biases (in failed sensors) are assumed to follow normal

distribution with zero means and standard deviations ¼ 4.0
(for all sensors).
• Windows time of analysis T ¼ 30 days.
• The Ks values (cost of product or cost of inventory)

vary with design case studies, which are shown in Table 7.
The 10 design case studies together with the optimal solu-

tions obtained by using the Cutset-based methods are shown
in Table 7.

Exhaustive Tree search using individual sensors

When the tree search method is conducted using individ-
ual measurements (Bagajewicz34) instead of cutsets the pro-

cedure took a very long time. This is because the problem
contains 24 streams, and hence, the total number of candi-
date solutions is 224 � 1 ¼ 16.78 millions. In fact, after one
month (30 days) of running time, the computational process
was terminated. When stopped, the tree search explored only
4.19 millions of candidate solutions (and was able to identify
the optimal solution shown in row 2 of Table 7), hence the
estimated computation time of this method is 120 days (4
months). Computational time in other design case studies
should be at the same magnitude with this computational
time (120 days). Thus, this method is applicable for small
scale problems only.

Exhaustive tree search using cutsets

The last four columns of Table 7 show details of the opti-
mal solutions (number of sensors, their location, cost, and fi-
nancial loss). These optimal solutions are obtained by using
the Cutset-based tree search method described in the above
section without a stopping criterion, which means that, in
each design case all the candidates for optimal solution are
explored, thus the identified solutions are global optima.

A few observations can be withdrawn from the above
results:
• The locations of key variables can greatly affect the fi-

nancial loss and the obtained optimal network as evidenced
in design cases 2.1–2.6: all of these six design cases have
three key variables with similar Ks values (only locations of
key variables are different) but the number of sensors in
optimal network can change significantly (from 4 to 12). It
can be seen that if S1 is a key variable (all design cases
except cases 2.3, 2.4, and 2.5), the optimal network contains
a large fraction of available sensors; if S1 is not a key vari-
able (design cases 2.3, 2.4, and 2.5) the optimal network
contains a small number of sensors. The reason is that bias
in measurement S1 is more difficult to be detected than other

Figure 10. Flowsheet of Madron and Veverka’s
problem.

Table 5. Estimate of Pathways (Built on Cutsets) to Reach a Specific Set of Measurements

Case 1 2 3 4

Key variables {S1, S9, S14} {S1, S5, S22} {S1, S5, S24} {S1, S7, S24}
Number of key variables 3 3 3 3
Number of cutsets containing at least one key variable 99 97 102 108
Number of possible combinations of cutsets (N1) 299 � 1 297 � 1 2102 � 1 2108 � 1
Number of candidate solutions (N2) 46,042 64,781 39,552 38,365
N1/N2 1.38 � 1025 2.45 � 1024 1.28 � 1026 8.46 � 1027
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measurements, so more sensors are needed if S1 is a key
variable.
• As Ks values increase, the financial loss term dominates

the cost term and optimal network would contain more sen-
sors to reduce financial loss as evidenced in design cases 2.6
and 2.7 (same key variables, different Ks values) and design
cases 2.8–2.10.
• There is a very high chance that all key variables appear

in the optimal solutions (i.e., all key variables are measured):
this is the case in all 10 design case studies under considera-
tion.

Genetic algorithm

The performance of the GA method is shown in Table 8.
In each design case, two attempts were made to solve the
problem using GA, the better one among the two results

obtained from these two attempts (in term of quality of
objective value) is reported. In Table 8, the second and third
columns show details (the number and the location of sen-
sors) of the solutions obtained by GA method. The fourth
column shows objective values of these solutions. For com-
parison, the optimal objective value (summation of sensors
cost and financial loss shown in Table 7) is also shown in
column five. The last column shows computational time of
the GA method.

As shown in Table 8:
• Although the GA method does not guarantee optimality,

it is able to locate optimal solution in two design cases 2.3
and 2.8. Moreover, in the other three design cases (2.7, 2.9,
and 2.10), the best solutions obtained by GA are ‘‘very
good’’: they are very near to the optimal solutions.
• Computational time of the GA method is acceptable: it

solves this problem within an hour.

Table 7. Results for the Madron and Veverka’s Problem

Case
Study

Key
Variables Ks Value

Number
of Sensors Measured Variables

Sensors
Cost

Financial
Loss

2.1 1, 9, 14 Ks1 ¼ 25 11 1, 2, 3, 4, 8, 9, 10, 12, 13, 14, 20 137 415.1
Ks9 ¼ 20
Ks14

¼ 20
2.2 1, 5, 22 Ks1 ¼ 25 11 1, 2, 3, 4, 5, 8, 10, 12, 13, 20, 22 158 471.4

Ks5 ¼ 20
Ks22 ¼ 20

2.3 2, 6, 24 Ks2
¼ 25 4 2, 6, 19, 24 57 400.1

Ks6 ¼ 20
Ks24 ¼ 20

2.4 4, 9, 23 Ks4 ¼ 25 4 4, 9, 17, 23 47 283
Ks9

¼ 20
Ks23 ¼ 20

2.5 4, 5, 24 Ks4 ¼ 25 4 4, 5, 19, 24 67 527.1
Ks5 ¼ 25
Ks24

¼ 45
2.6 1, 5, 24 Ks1 ¼ 25 12 1, 2, 3, 4, 5, 8, 10, 12, 14, 19, 20, 24 175 498.7

Ks5 ¼ 20
Ks24 ¼ 20

2.7 1, 5, 24 Ks1
¼ 45 15 1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 18, 19, 20, 24 210 891.2

Ks5 ¼ 36
Ks24 ¼ 45

2.8 1, 7, 24 Ks1 ¼ 25 12 1, 2, 3, 4, 7, 8, 10, 12, 13, 19, 20, 24 157 538.8
Ks7

¼ 20
Ks24 ¼ 25

2.9 1, 7, 24 Ks1 ¼ 45 19 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 23, 24 251 859.3
Ks7 ¼ 40
Ks24

¼ 45
2.10 1, 7, 24 Ks1 ¼ 80 22 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24 302 1471.8

Ks7 ¼ 70
Ks24 ¼ 80

Table 6. Data for the Madron and Veverka’s Problem

Stream Flow Sensor Cost Sensor Precision (%) Stream Flow Sensor Cost Sensor Precision (%)

1 140 19 2.5 13 10 12 2.5
2 20 17 2.5 14 10 12 2.5
3 130 13 2.5 15 90 17 2.5
4 40 12 2.5 16 100 19 2.5
5 10 25 2.5 17 5 17 2.5
6 45 10 2.5 18 135 18 2.5
7 15 7 2.5 19 45 17 2.5
8 10 6 2.5 20 30 15 2.5
9 10 5 2.5 21 80 15 2.5
10 100 13 2.5 22 10 13 2.5
11 80 17 2.5 23 5 13 2.5
12 40 13 2.5 24 45 13 2.5
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• In general, performance of the GA method is accepta-
ble. Additionally, the GA method does not exhibit scaling
problem (computational time does not increase exponentially
with the size of the problem). To increase the chance of
locating optimal solution, one can adjust the GA parameters
(increase the size of population and/or mutation rate); or
simply rerun GA many times (each GA run generally gives
a different result).

Comparison with the cutset-based tree search
method with stopping criteria

The performance of the cutset-based tree search methods
are compared in Table 9.

Column 2 of Table 9 shows the number of cutsets (contain-
ing at least one key variable) in the corresponding design
problems, the last column shows computational time of cut-
set-based method when stopping criterion is used. When stop-
ping criterion is not used, the computational time is almost
the same (the difference is usually not more than 5 min).

As can be seen from Table 9:
• When the stopping criterion is used, the cutset-based

method is able to locate optimal solutions (although optimal-
ity is not guaranteed if the stopping criterion is used).
• The stopping criterion has ‘‘little’’ effect: the number of

nodes explored and computational time when stopping crite-
rion is used are almost unchanged when compared with the
case stopping criterion is not used. Only in the design case
2.2 that there is a small difference in number of nodes
explored between the two cases (results of other case studies
(not shown here) of Madron example also testify this fact).
Thus, it may be not necessary to use stopping criterion in
cutset-based tree search method.

• Small size and medium size testing problems (the 7-
stream example 1 and the 24-stream Madron problem) reveal
that there is little different between the two cases: using
stopping criterion and not using criterion. In other words, the
stopping criterion does not help reduce computational time.
It takes very long time to solve the large-scale problems (the
ones with at least 40 streams) in both cases (with and with-
out stopping criterion) so it is not known whether the stop-
ping criterion indeed has some effect in reducing computa-
tional time for large-scale problems. For large-scale prob-
lems, we look for a better method rather than finding
another stopping criterion. This is left for future work.
• It may also be not necessary to use branching criterion

(just put cutsets in numbered order like [1] ==> [12] ==>
[123]). The advantage of using branching criterion is that
optimal solution is usually identified earlier than the case
where branching criterion is not used: among the ten design
case studies, there are six design cases where optimal solu-
tion is located within the first 20 nodes explored. This is
very beneficial if the computational process has to be termi-
nated halfway because the computational time becomes too
long. The disadvantage is that using branching criterion costs
more time.
• Performance of cutset-based method is acceptable for

this medium size Madron problem. However, because this
method exhibits scaling problem, it is not efficient enough
for large-scale problems.

Conclusions

In this work, a value-paradigm to design sensor network is
presented. This new approach simultaneously optimizes

Table 9. Performance of Cutset-Based Method

Case Study Number of Cutsets

Number of Nodes Explored

Computational TimeWith Stopping Criterion No Stopping Criterion

2.1 99 46,042 46,042 9 h 4 min
2.2 97 64,773 64,781 11 h 44 min
2.3 108 38,070 38,070 4 h 20 min
2.4 105 28,178 28,178 2 h 45 min
2.5 105 34,134 34,134 3 h 31 min
2.6 102 39,552 39,552 7 h 57 min
2.7 102 39,552 39,552 7 h 56 min
2.8 108 38,365 38,365 8 h 2 min
2.9 108 38,365 38,365 8 h 3 min
2.10 108 38,365 38,365 8 h 1 min

Table 8. Performance of the GA Method

Case
Study

Number
of Sensors Measured Variables

Objective
Value

Optimal
Objective
Value

Computation
Time

2.1 13 1, 2, 3, 4, 8, 9, 10, 12, 13, 14, 17, 20, 23 568.1 552.1 54 min
2.2 13 1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 19, 20, 22 653.6 629.4 54 min
2.3 4 2, 6, 19, 24 457.1 457.1 25 min
2.4 6 4, 8, 9, 17, 21, 23 349.9 330 17 min
2.5 8 4, 5, 7, 13, 14, 19, 21, 24 614.8 594.1 20 min
2.6 15 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 18, 19, 20, 24 686.9 673.7 32 min
2.7 19 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 23, 24 1104.7 1101.2 55 min
2.8 12 1, 2, 3, 4, 7, 8, 10, 12, 13, 19, 20, 24 695.8 695.8 38 min
2.9 18 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 23, 24 1111.7 1110.3 39 min
2.10 23 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 1775.5 1773.8 59 min
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performance and cost of sensor network. The connection
between the value-paradigm and the traditional cost-optimal
approach is also discussed and illustrated.

The value-optimal SNDP is a computationally challenging
problem because this is an unconstrained optimization prob-
lem with an objective function that needs to be evaluated
numerically.

The GA is the most commonly used optimization tech-
nique for this kind of problem; the GA is satisfactorily effi-
cient enough but it does not guarantee optimality.

The cutset-based method without stopping guarantees opti-
mal solution. If a stopping criterion is used, the cutset-based
method is still able to locate optimal solution but optimal so-
lution is not guaranteed and the stopping criterion has little
effect in reducing computational time. Both methods solve
small and medium size problems within an acceptable com-
putational time. More efficient method that guarantees opti-
mal solution for large-scale problems are needed and are left
for future work. One such advance in computational effi-
ciency is reported separately.36
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