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in corridoio: ci manchi.

Abstract. The paper is devoted to the problem of discriminating between operational and natural modes of structures excited by
generic inputs. This case often occurs when the system under analysis holds rotating parts and is contemporary excited by ambient
noise; in this case the output-only techniques may fail being easily trapped in a misinterpretation of the system eigenvalues. A
survey of the methods available in literature is given, together with the explanation of their failures. To solve this problem, two
new techniques are introduced and their capabilities are checked with numerical and experimental data from a paper machine.

1. Introduction

Output-only modal analysis has been widely adopted in recent years as a powerful tool for dynamic linear systems
identification. Its success is probably due to the fact that measuring the forcing excitation of a structure is impossible
in many cases. Among the algorithms developed and used to extract modal parameters, some have reached a high
degree of robustness and reliability, such as the ARMAV and eigensystem realisation type algorithms. Due to their
robustness, these algorithms have been extensively adopted in a number of situations, where the white Gaussian
input requirement is not fulfilled or, moreover, the input noise is represented by a combination of a coloured noise
mixed with pure harmonic components. Quite often, the case occurs when dealing with rotating machinery, where
the unbalances play a fundamental role and many harmonics may appear in the output spectrum, so that system
eigenfrequencies become hardly masked.

A review of the existing methods is presented along the paper and their performances tested on numerical and real
systems. Two new approaches are proposed, based on the presence of pure tones in the output signals; they seem to
be robust and give better results if compared with other methods from literature.

2. Problem statement

2.1. Formulation as a test of hypothesis

A versatile model for the vibration signal of mechanical systems can be interpreted as a mixture of three types of
components:

i) periodic components – also referred to as pure tones or harmonics – which usually originate from the forced
response of the system to periodic excitation forces,
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ii) structural resonances which originate from the response of the system to transient and random forces,
iii) and background noise which usually accounts for anything else that does not fit in the two previous categories.

In the mathematical language, such a vibration signal can be expressed as

x(t) =

J
∑

j=1

Aje
2ℑπfjt +

K
∑

k=1

hk(t) ∗ sk(t) + n(t) (1)

where * denotes convolution, ℑ is the complex imaginary, A j , j = 1, . . . , J are the complex coefficients of pure
tones positioned at frequencies fi, hk(t), k = 1, . . . , K are the impulse responses of structural resonances excited
by some random forces sk(t), and n(t) is a covariance-equivalent process that accounts for the background noise.
Model (1) leads to a mixed-spectrum in the Fourier domain, i.e. a mixture of a discrete density –sometimes referred
to as a line-spectrum- due to components of type (i) and a continuous density due to components of type (ii) and
(iii). Specifically, if Sz(f) denotes the power spectral density of signal z(t), then

Sx(f) =

J
∑

j=1

|Aj |
2δ(f − fj) +

K
∑

k=1

|Hk(f)|2Ssk
(f) + Sn(f) (2)

with δ(f) the Dirac impulse and Hk(f) the Fourier transform of hk(t).
The issue we are concerned with in this paper is to state whether, at any given frequency f of the spectrum, a pure

tone is present or not. In other words, we wish to test between the two hypotheses:
(

H0 : “there is no pure tone at frequency f”
H1 : “a pure tone is present at frequency f”

In theory, this seems not to be a problem at all since a pure tone is materialised by a Dirac impulse in the spectrum
and this would have a very different shape than the spectral density of a resonance or of the background noise.
This reasoning rapidly turns out to be naive in the real world, because of the uncertainty principle. The uncertainty
principle says that a measured signal x(t) cannot have an infinite frequency resolution. A the extreme, if the time
record is not long enough, the frequency resolution may be too poor to resolve between a presumed Dirac impulse
and a sharp-pointed resonance. This difficulty was early recognised by Bartlett who observed that “given only a
finite number of observations and no further information, it is impossible to distinguish strict harmonic components
from peaks in the continuous spectrum of arbitrarily small width” [1]. Indeed, distinguishing between the two types
of components is made even worse in presence of strong background noise, because the characteristic pedestal of a
sharp-pointed resonance then gets completely masked by the noise spectrum, and what emerges above the baseline
really looks like the neck of a Dirac. This is illustrated in Fig. 1.

Hence, the actual difficulty in our issue is really to discriminate between pure tones and sharp-pointed resonances
buried into strong additive noise. In this respect, the non-trivial part of our test of hypotheses could be reformulated
as:

Discriminate between:
(

H ′
0 : “a sharp-pointed resonance is present at frequency f”

H1 : “a pure tone is present at frequency f”

2.2. Requirements

This paper is largely devoted to comparing different techniques for solving the aforementioned issue. Therefore,
it is essential to have a fair basis of comparison on which to draw sound conclusions. We propose to introduce the
following requirements which guarantee that any proposed solution has realistic potentials for real world applications.

R1) Independence to the number of tones
The number of pure tones should not be a parameter to be identified. This is a strong requirement when dealing

with mechanical systems vibrations where hundreds of tones are commonly encountered.
R2) Independence to the nature of noise
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Fig. 1. Example of a mixed-spectrum composed of a pure tone at f = 0.0625, two sharp-pointed resonances at f = 0.18 and f = 0.35 with
damping ratios of 10−4 and 10−3 respectively, and additive white noise. Global signal-to-noise ratio is 0 dB.

The proposed solution should be able to cope with any type of noise, in terms of colour, probability distribution,
and time characteristics. It should not be confined to the usually presumed white Gaussian stationary environment,
an assumption that turns out to be unrealistic in most practical instances. Is also included in this requirement the
capacity to recognise a sharp-pointed resonance as a coloured “noise” and not as a pure tone.

R3) Robustness to the level of additive noise

The proposed solution should be able to cope with strong additive noise, a situation that again is commonplace
when dealing with mechanical systems. When necessary, this quality will be measured by the discrimination power
(quality of correctly choosing assumption H0 or H1) versus the signal-to-noise ratio.

R4) Minimum number of parameters to be tuned by the user

The proposed solution should be as transparent as possible to the user and should not rely on too much of his/her
intervention.

3. A brief literature review

It seems that the issue exposed in this paper, under this point of view, has rarely been addressed in the specialised
literature. In this section, we review some of the existing approaches which relate more or less to our concern and
could help to make it evolve.

3.1. Approaches based on periodogram statistics

These early techniques used the fact that, under the null hypothesis H 0, high spectral peaks occur with low
probability in the periodogram. Any peak higher than a statistical threshold can therefore be associated with a pure
tone, given a small probability of error. In the case the noise is white, the statistical threshold is simply computed
by averaging the periodogram ordinates. This is the so-called Fisher’s g-test which has extensively been used in
the past [2]. However, if the noise is coloured, then the statistical threshold becomes a function of frequency and
Fisher’s test must be adapted. The chief idea proposed so far is to compute the threshold from the underlying
continuous spectrum. The difficulty is that the latter is generally unknown and must be obtained from an estimate
of the mixed spectrum where all suspicious peaks possibly indicating the presence of pure tones are omitted. But
this is exactly what one is looking a technique for! Some approaches have been proposed to force a solution into
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this vicious circle, based on unusual spectral estimates [3,4], but none of them is free of deficiency and, in any case,
can deal with sharp-pointed resonances. Therefore requirement R2 is not met. Priestley has suggested an original
procedure which apparently alleviates this trouble [5,6], but requirement R4 precludes its presentation here due to
its high complexity.

3.2. High resolution techniques

Numerous approaches have been developed in order to bypass the uncertainty principle induced by the Fourier
transform. They are referred to as high resolution techniques in the literature, because they can theoretically provide
perfect frequency resolution even from finite length records. In essence, most of these approaches rely on the
property that the eigendecomposition of the autocorrelation matrix of a mixed signal has its principal eigenspace
spanned by the signal (i.e. the set of pure tones) and its orthogonal eigenspace spanned by the noise [7,8]. In turn, the
dimension of the principal eigenspace also gives the number of pure tones in the signal. However, it is well-known
that this theory only works with moderate white noise, but is seriously hampered in the case of coloured noise [9].
Therefore requirement R2 is not met. Alternative approaches have been proposed to cope with coloured noise [10],
but the most efficient of them rely on identifying a complete model of the signal, including the noise structure (e.g.
by means of an ARMA model) [11]. This is in contradiction with requirement R4, and generally R1.

3.3. Stochastic subspace identification and stabilisation diagrams

Hereafter a class of output-only techniques is briefly described, which has gained attention in the last years due
to a high level of efficiency and reliability. These techniques are adopted under the assumption that the input on the
structure is white. However in many practical situations this assumption is not realistic and if harmonics exist they
will be identified as structural resonances, since a non zero damping ratio is estimated.

In case of unknown inputs acting on a structure, a stochastic model can be used to identify the model, i.e., the input
terms are implicitly modelled by the noise terms. So, following discrete time stochastic state space formulation is
considered [12–14]:

x(k + 1) = Ax(k) + w(k)
(3)

y(k) = Cx(k) + v(k)

where w(k) is the process noise vector, due to disturbances and modelling inaccuracies (nonlinearities for example),
while v(k) is the measurement noise, due to sensor inaccuracy; x(t) is the state vector and y(t) is the response of
the structure. Both w(k) and v(k) are assumed to be zero mean, white vector sequences.

Natural frequencies and damping ratios of the vibrating structure are obtained by performing the eigenvalue
decomposition of matrix A

A = ΦΛΦ−1 (4)

while the r-th mode shape at the sensor locations is given by the observed parts of the r-th system eigenvector

ψr = Cφr (5)

The estimation of the matrices A and C in Eq. (3), up to a similarity transformation and using only output
measurements y(k), is called the stochastic realisation problem [13] and has been addressed by many researchers in
the control and statistics field. In particular, a wide class of methods has recently gained attention for its robustness
and efficiency and has been successfully adopted in many circumstances [14–16]. These are called subspace methods
because they retrieve system related matrices as subspaces of projected data matrices [12]. In the following, a
covariance-driven subspace method is briefly described, namely the Canonical Variate Analysis (CVA).

The first step consists in assembling the block Hankel matrix H and the block Toeplitz matrices ℜ+ and ℜ− [13,
14]. The Hankel and Toeplitz matrices involve only sampled covariance matrices [17], which are an estimate of the
“true” covariance matrices of a stochastic process of infinite length.

The Canonical Variate Analysis requires the computation of the full-rank factorisation of ℜ+ and ℜ−:
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(a) (b) 

Fig. 2. CVA on the signal of Fig. 1. (a) Global frequency stabilisation diagram. (b) Occurrence diagram of the extracted frequencies. The two
resonances and the pure tone are clearly identified but it is impossible to distinguish between them.

ℜ+ = L+(L+)T , ℜ− = L−(L−)T (6)

which gives two weighting matrices for the Hankel matrix H . Consequently, a normalised Hankel matrix H ∗ is
defined, with the following Singular Value Decomposition:

H∗ = (L+)−1H [(L−)T ]−1 = UΣV T (7)

where Σ = diag(σ1, . . . , σN ), σ1 � σ2 . . . σn � 0.
After some algebraic manipulations [13,17] an estimate is obtained for A, whose eigenvectors and eigenvalues

give mode shapes, eigenfrequencies and damping ratios for each mode.
The system model order n is generally selected so that σn ≫ σn+1 (i.e., assuming σn+1 = . . . = σN = 0).

However, it is generally not possible to find a strong discontinuity in the decreasing order of the σ values so that, in
order to select the physical modes, stabilisation diagrams for both eigenfrequencies and damping ratios are needed.
The choice of the correct model order n still represents one of the main drawbacks of the CVA method (and of other
identification methods) and different criteria are available in the technical literature [17].

In Fig. 2(a) the frequency stabilisation diagram for the signal of Fig. 1 is depicted: if the assumption of white
excitation is violated, harmonics are identified as structural modes. The occurrence histogram of the extracted
frequencies is shown in Fig. 2(b). It is impossible to distinguish the pure tone from the resonance because in the first
case the identified damping ratio is not exactly zero, as shown in Fig. 3.

3.4. Spectral matrix factorisation

The idea was initially proposed in [18], and later reintroduced under the new name “Frequency Domain Decom-
position” (FDD) in [19]. It can also be seen as an extension of the Complex Mode Indicator Function (CMIF)
introduced in [21]. The idea relies on exploiting the interactions between several simultaneous measurements, say

xi(t) =

J
∑

j=1

Aije
2ℑπfjt +

K
∑

k=1

hik(t) ∗ sk(t) + ni(t) (8)

taken at locations i = 1, . . . , I on the structure. An Hermitian I × I spectral density matrix Sx(f) = [Sxixj
(f)]

is then formed whose diagonal entries contain the auto-spectra of the signals and the out-of-diagonal entries their
cross-spectra. It has been claimed that the singular values of the spectral density matrix can indicate whether a
spectral peak is due to a pure tone or to a sharp-pointed resonance. The assertion is that a spectral tone shares its
power among several singular values whereas a resonance does not [19,20].
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(a) (b) 

Fig. 3. CVA on the signal of Fig. 1. (a) Damping stabilisation diagram for the pure tone at f = 0.0625. (b) Damping stabilisation diagram for
the resonance at f = 0.35.

Unfortunately, despite being occasionally verified on actual data, this assertion does not enjoy the privilege of
infallibility and therefore is not a rule. We prove it by means of two counter-examples.

To start with, let us consider the full-expression of the spectral density matrix

Sx(f) = AD(f)A∗ + H(f)Ss(f)H(f)∗ + Sn(f) (9)

where A = [Aij ] is the matrix of the complex coefficients of the tones, D(f) = [δ(f − f j) · δij ] is a diagonal
matrix1 containing Dirac impulses, H(f) = [Hij(f)] is the transfer matrix containing possible resonances and the
exponent ∗ stands for the transpose conjugate operator.

a) First counter-example

For frequency f = fj where a pure tone occurs (assumption H1),

Sx(fj) = aja
∗

j δ(0) + H(fj)Ss(fj)H(fj)
∗ + Sn(fj)

where aj stands for the jth column of matrix A. In theory, since δ(0) = ∞,

Sx(fj) = aja
∗

j δ(0) (10)

which is a rank-one matrix. This means that the power of the pure tone at f = f j is entirely carried by the unique
nonzero singular value of the spectral density matrix, a property that violates the aforementioned assertion. Of
course, due to the use of finite length records in spectral estimates, the estimated power of the signals at frequency
f = fj never goes to infinity. But Eq. (11) will still hold approximately whenever the signal-to-noise ratio of a pure
tone is high.

b) Second counter-example

For frequencies f �= fj , j = 1, . . . , J where only noise is present (assumption H0),

Sx(f) = H(f)Ss(f)H(f)∗ + Sn(f) (11)

In general, the spectral density matrix of Eq. (12) will share its power among several singular values, except in
the following special case:

i) Ss(f) is a rank-one matrix and
ii) Ss(f) = σ2

n(f) · I i.e. is spherical.

1δij stands for the Kronecker symbol which equals 1 when i = j and 0 otherwise.
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Fig. 4. A typical example where the FDD technique is taken at fault. Three output signals were simulated by exciting a linear system with three
independent white forces. Resonances are as in Fig. 1. Independent additive noises were added on the outputs such as to produce a signal-to-noise
ratio of 20 dB.

Property (i) means that only one excitation force impinges on the system, and property (ii) that the noises are
spatially uncorrelated and of equal power (or negligible), respectively. In all other cases not satisfying (i) and (ii),
the aforementioned assertion is again violated. This demonstrates that it is straightforward to construct examples
where the “spectral matrix factorisation” approach does not work. Figure 4 illustrates such an example.

3.5. Approach based on amplitude distributions

It has been suggested that signals stemming from pure tones and resonances can be differentiated from their
amplitude distributions. Indeed, the amplitude distribution of a sinusoid has a characteristic basin-like shape (i.e.
bimodal with two maxima at its extremities and a minimum at its center) that is very different from the bell-shaped
distribution of a resonance, which actually can be shown to be asymptotically Gaussian as a result of the central limit
theorem. A successful application of this idea is presented in [20]. However, what is really tested there is whether
a frequency component is a pure tone or not, but not whether a pure tone is present or not. This subtle difference
occults the fact that a pure tone may possibly be embedded in additive noise and, actually, no results were given on
how this latter situation may affect its theoretical amplitude distribution. Another shortcoming of this approach is
that it necessitates demodulating the signals at each frequency of interest, which rapidly becomes cumbersome when
many spectral peaks are to be tested. Therefore, this approach does not satisfy requirement R4 and requirement R3
remains to be proved.

3.6. Approach based on “families of spectra”

This is probably the most relevant solution to the present issue that has been proposed so far. It exploits the
fact that spectral estimates of a pure tone have amplitudes that grow without bound as the duration of the record
increases (it approaches the theoretical Dirac impulse), whereas spectral estimates of a random noise stabilise around
a constant (the expected value of the noise power). Therefore, superposing on the same plot several spectral estimates
corresponding to different record lengths readily indicates where the pure tones are, if any.

The original work of [22] and [23] demonstrated this mechanism for the Minimum Variance estimate. Actually,
the Minimum Variance estimate does not show clear advantage in the case of long data records as is commonplace
in vibration analysis, and requires tremendous computational efforts. Therefore we advocate applying the same
idea to classical spectral estimates based on the smoothed or averaged periodogram. Into addition, we propose a
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Fig. 5. Estimated indicator Rq(f) on the signal of Fig. 1, with q = 2. Note that the pure tone at f = 0.0625 is correctly indicated, but the
two resonances at f = 0.18 and f = 0.35 are incorrectly recognised as tones. Virtually similar results have been obtained using the Minimum
Variance estimate, however at the price of much more severe computational efforts.

refined indicator that tries to give a binary (0 or 1) answer. Specifically, if Ŝ
(qN)
x (f) and Ŝ

(N)
x (f) are the averaged

periodograms computed on qN(q > 1) and N points, respectively,

Rq(f) =
1

q − 1

(

Ŝ
(qN)
x (f)

Ŝ
(N)
x (f)

− 1

)

=

{

1 under H1

0 under H0
q > 1 (12)

But again, there is a subtle difference between this ideal binary conclusion and what is obtain in practice, since a
pure tone is unlikely to occur alone, but rather in conjunction with additive noise –this important point was occulted
in the aforementioned references. This means that the presence of a pure tone is indicated by a value of R q(f)
somewhere between 0 and 1.

From now on, it seems that the “family-of-spectra” approach fulfils all requirements R1 to R4. However simulations
have shown that it hardly meets requirement R2 when it is faced with very sharp-pointed resonances, as illustrated
in Fig. 5.

3.7. Discussion

The above review has shown that none of the existing approaches are fully satisfactory with respect to the assigned
requirements R1-R4. Indeed, most approaches can hardly discriminate between a tone and a resonance. Despite these
shortcomings, the periodogram and the refined “family-of-spectra” approaches should however be acknowledged
for trying to propose a binary (0 or 1) answer as to whether a frequency component is a pure tone or not.

As a conclusion, there is a need for developing new techniques that evidence better efficiency than the existing
ones. In the next two sections, we introduce two new solutions based on original but different approaches. The first
one takes advantage of the fact that pure tones have deterministic envelopes. The second one exploits the difference
that exists between the correlation lengths of tones and random noises.

4. A solution based on envelope statistics

From the statistical point of view, a pure tone is a deterministic signal, i.e. it can be perfectly predicted from a
finite number of its past values. Therefore, it has a non-zero expected value which equals itself (almost surely), and
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Fig. 6. The envelope indicator is based on the property that the envelope of a pure tone is constant (a), whereas that of a random noise is random
(b).

its variance is identically zero. On the other hand, a random noise, by definition, has a non-zero variance and this is
independently of its spectral density and probability density function. These observations are relative to ensemble
statistics, but they also hold for certain time statistics provided the signals are ergodic (which simply means that time
statistics converge to deterministic values, whatever these values).

We demonstrate here how the above observations apply to the envelope of frequency components. Specifically,
let Xw(t, f) be the discrete-time Fourier transform of signal x(t) along a data segment of length N , anchored at
time t, and tapered by a data window w(t). The quantity |Xw(t, f)| is usually viewed as a function of frequency,
e.g. a collection of periodograms indexed by time t. It can also be viewed as a function of time, the interpretation
being that of the envelope of the frequency component at frequency f . If x(t) = A je

2ℑπfj t is a pure tone, then it is
an easy matter to check that |Xw(t, f)| = |Aj | · |W (0)|, f = fj with W (f) the discrete-time Fourier transform of
the data window w(t). In this case, the envelope is a constant value over t. Therefore, its temporal variance is

Vart{|Xw(t, f)|} =
〈

|Xw(t, f)|2
〉

− 〈|Xw(t, f)|〉
2

= 0 (13)

where 〈·〉 denotes the time average operator. On the other hand, if x(t) = n(t) is a purely random noise (null
hypothesis), then the envelope |Xw(t, f)| is itself a random quantity and there will exist a non-empty set of frequencies
f such that Vart{|Xw(t, f)|} > 0. This idea is illustrated in Fig. 6. The exact value of the temporal variance
depends on the time-distribution of the envelope, a quantity that, in general, is unknown. However, it can be shown
under mild condition that it is lower bounded by the variance obtained from invoking the Central Limit theorem,
i.e. by assuming that Xw(t, f) is distributed according to a complex normal law. Since the modulus of a complex
normal variable is Rayleigh distributed, it comes that2

Vart{|Xw(t, f)|}

〈|Xw(t, f)|2〉
� 4 − π > 0, f �= 0 mod(1/2) (14)

Results of Eqs (14) and (15) suggest the following binary indicator:

I(f) =
1

π − 4

(

π

〈

|Xw(t, f)|2
〉

〈|Xw(t, f)|〉
2 − 4

)

, f �= 0 mod(1/2) (15)

which ideally takes the values:
{

I(f) � 0, under H0

I(f) = 1, under H1
(16)

Note that this result is independent of the nature of the noise, be it normally distributed or not, be it stationary or
not, and be it large-band or not. This is why it is expected to work well, in particular when it will come to distinguish
between pure tones and sharp-pointed resonances.

2The symbol mod stands for modulo. It appears here as a result of taking the discrete Fourier transform of sampled data, which has a real
value at every frequency f = k/2, k ∈ Z .
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Fig. 7. Estimated indicator I(f) on the signal of Fig. 1. (a) Signal-to-noise ratio = ∞. (b) Signal-to-noise ratio = 0 dB. The two resonances are
correctly recognised as not being tones. Note the high level of estimation noise.

The proposed indicator can easily be estimated from a single data record, for instance by using the Welch’s method.
The so-defined estimator is asymptotically unbiased and consistent, independently of the choice of the data window.
Into addition, it can be combined with a statistical threshold which indicates which spectral peaks are statistically
believed to be pure tones, as illustrated in Fig. 7.

5. A solution based on correlation time

A fundamental property which has not been exploited so far, is that a pure tone has a periodic autocorrelation
function, whereas a random noise has an autocorrelation function that ultimately dies to zero. Specifically, if
Rx(τ) = 〈x(t + τ)x(t)〉 denotes the (time-averaged) autocorrelation function of signal x(t), then R x(τ) contains a
periodic waveform at frequency fj if x(t) = Aje

2ℑπfj t, and Rx(τ) → 0 as |τ | → ∞ if x(t) = n(t). This idea is
illustrated in Fig. 8. More formally, let us define the correlation time of signal x(t) as that time-lag τ C such that

|Rx(τ)| < ε · Rx(0), ∀|τ | � τC (17)

where 0 < ε << 1 is set arbitrarily small by the user (τC may be seen as the effective time it takes for Rx(τ) to
expand fully until it dies to zero). Hence, clearly τC = ∞ under H1 and τC < ∞ under H0.

The above discussion suggested that the behaviour of Rx(τ) at large values of τ can be used as a discriminating
tool for the issue at hand. In fact, Priestley was the first to propose a solution based on this property to detect the
presence of harmonics in a time series [5,6]. We propose here a solution that is believed to be technically simpler.
It is based on the work presented in reference [24,25]. The idea may be summarised as follows.

Consider two segments of data x(t + n) and x(t + n + N + ∆), n = 0, . . . , N − 1 where the delay ∆ is
non-negative so that the segments do not overlap. Segment x(t + n + N + ∆) may be seen as the future version of
segment x(t + n) and, as such, it is legitimate to wonder if it can be linearly predicted from the latter. To answer
this problem, it is more convenient to switch to the frequency domain, where the data segments are replaced by their
discrete-time Fourier transforms Xw(t, f) and Xw(t + N + ∆, f). It is well known then that the desired optimal
prediction filter has complex gain given by

G∆(f) =
〈Xw(t + N + ∆, f)X∗

w(t, f)〉

〈|Xw(t, f)|2〉
(18)

On the one hand, if x(t) = Aje
wℑπfjt, then any future segment of data is perfectly predictable, whatever the

value of ∆, because the correlation time τC of the signal is infinite [23]. On the other hand, if x(t) = n(t), then the
prediction is less and less accurate as ∆ becomes large – when ∆ has become greater than the correlation time τ C ,
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Fig. 8. The correlation time indicator is based on the property that the autocorrelation function of a pure tone has an infinite duration (a), whereas
that of a random noise is transient (b).
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Fig. 9. Estimated indicator |G∆(f)| on the signal of Fig. 1. Signal-to-noise ratio = ∞. Results are superposed for different values of the delay
∆. The two resonances are revealed by the convergence to zero of the indicator, with increasing ∆.

the best predicted value is virtually zero. Therefore,
{

|G∆(f)| = 1, ∀∆ under H1

|G∆(f)| = O(ε), ∆ � τC under H0
(19)

Result Eq. (20) naturally suggests using |G∆(f)| as an indicator.
The indicator |G∆(f)| is easily estimated from a single data record, for instance by using the Welch’s method.

Again, a statistical threshold can be placed on its estimate, so that the procedure perfectly fulfils requirements
R1, R3 and R4 of section III. The only possible difficulty with this strategy is how to set the delay ∆, since its
requested minimum value depends on the unknown correlation time τ C , which can be extremely large in case of
a sharp resonance. We have found that the best solution is to plot the indicator for increasing values of ∆, say
∆k, k = 0, 1, 2, . . . ,∆k+1 > ∆k. This is not really computationally demanding when the Fast Fourier Transform
algorithm is used to estimate Eq. (19). Then, those spectral peaks which tends to zero with increasing ∆ k can
unambiguously be associated with random components. Figures 9 and 10 illustrate this fact.
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Fig. 10. Estimated indicator |G∆(f)| on the signal of Fig. 1. Signal-to-noise ratio = 0 dB. For ∆ > 16000, the two resonance can unambiguously
be recognised as not being tones.

6. Application to actual signals

The application described hereafter concerns a paper machine designed and mounted some decades ago, with a
specific velocity range of the paper strip. A paper machine under operation represents an interesting system to test
such a kind of technique, because it is mainly built as a huge mechanical system of hundreds of different diameter
cylinders, driven by a single belt, few meters large, which is the paper strip under forming. Obviously, the paper
is driven by the cylinders, moved by electrical motors, but, under the kinematic point of view, the difference is
negligible. Cylinders are very heavy, even tenth of tons each, and usually well balanced unless a residual unbalance
is always present. The different diameters of cylinders are the origin of the different rotating speeds; each cylinder is
hence a source for an harmonic excitation. The output-only analysis was devoted to predict the possible consequences
over a machine section, due to the speed increase needed to increase the production. An impulsive excitation was first
applied to the most critical part of the machine (with zero paper strip velocity), to detect eigenfrequencies and mode
shapes of the structure. Then the machine was given the normal speed to quantify the actual excitation sources due
to unbalances and to validate the modal parameter extraction of the previous step. Clearly a “coloured” excitation
was present in the latter case.

Figure 11 shows the power spectral densities of some acceleration signals captured at different locations on the
machine. The sampling frequency is 256 Hz and the frequency resolution is 0.5 Hz. Numerous peaks are clearly
noticeable in the spectra, which are indicated by vertical dotted lines. The question is which of these peaks are
produced by the kinematics of the machine, and which are assigned to natural vibration modes.

Results of the CVA are shown in Fig. 12.
The spectral analysis of the vibration signals has revealed many peaks in the frequency domain. However, the

kinematics of the system indicates that only a few of them can be related to the characteristic frequencies of rotating
parts, i.e. the cylinders with different diameters. The other peaks are suspected to be generated by resonances. In
order to validate this opinion, the techniques discussed in this paper have been tested and compared.

Figure 13(a) displays the results obtained from the FDD technique. It can be seen that the so-obtained singular
spectra are difficult to interpret. Indeed, if one applies the rule that a pure tone shares its power among several
singular values, then most of the peaks of Fig. 13(a) should be assigned to harmonics. This is in contradiction with
the system kinematics.

Figure 13(b) displays the results obtained from the “family of spectra” technique. Here again, most if not all of
the peaks are recognised as harmonics. This results supports the analysis of Section 3.6 where it was demonstrated
that the “family of spectra” technique has an exaggerated tendency to classify spectral peaks as pure tones.
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Fig. 11. Power spectral densities computed at different sensors. The spectra have been purposely shifted along the vertical axis for better
visualisation. Vertical dotted lines indicate the peaks of greatest power.

Fig. 12. CVA on the six-channel signal: on the left is shown the occurrence histogram of the extracted frequencies at the current velocity of the
paper strip [990 m/1’]. Asterisks and circles denote respectively the unbalances at the current velocity and at the future velocity [1150 m/1’], d
indicating the diameter of the cylinders in the machine section under test.

Figure 14(a) displays the results obtained with the envelope indicator. These exhibit a clear difference with those
previously obtained. A number of spectral peaks are now recognised as not being true harmonics. This is for instance
the case for the major peaks at 20 Hz, 25 Hz, 49.5 Hz, and 65.5 Hz which are undoubtedly related with lightly
damped resonances of the system.

Finally, Fig. 14(b) displays the results obtained with the correlation time indicator. These are very similar to those
of the envelope indicator, and results were found to stabilise as soon as ∆ = 1000. The only difference is that
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Fig. 13. a) The FDD applied to the six-channel signal. This results in six singular spectra sharing the total power of the signals. b) The estimated
indicator Rq(f), q = 2 (average over the six channels).

0 20 40 60 80 100 120 
0 

0.2 

0.4 

0.6 

0.8 

1 
I( f ) 

0 20 40 60 80 100 120 
0 

0.2 

0.4 

0.6 

0.8 

1 

Frequency [Hz] 

|G ( f )| 
∆ 

threshold at α = 1% 

α = 1% 

α = 5% 

Fig. 14. a) The envelope indicator and b) the correlation time indicator with ∆ = 1000 averaged over the 6 channels.

harmonics are recognised with a smaller level of significance – i.e. probability of type I error.

Compilations of the results from Figs 14(a) and 14(b) leads to useful observations that can now be used to perform

the output-only modal analysis of the system on a sounder basis. These are summarised in Table 1.
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Table 1
Characterisation of the greatest identified peaks in the range [0 ; 100 Hz]

Position True harmonic Resonance

6.5 ×
10 ×
12.5 ×
20 ×
25 ×
30 ×
36.5 ×
40 ×
46 ×
49.5 ×
59.5 ×
63.5 ×
69.5 ×
65.5 ×
72.5 ×
74.5 ×
82 ×
95.5 ×
86.5 ×

7. Conclusion

This paper was concerned with the issue of discriminating between pure tones and sharp-pointed resonances
of vibrating systems. This is a critical problem that arises in many engineering applications, and especially in
output-only modal analysis where it is of prime importance to differentiate operational modes from natural modes
with low damping.

The issue was shown to be difficult to solve. A number of existing approaches have been reviewed, but none of
them proved completely satisfying. Therefore we have proposed two new approaches, with the requirements that
they should be as universal as possible and robust against additive noise.

The first approach makes use of the property that a pure tone is deterministic whereas a random noise is not.
This property was found to materialise well on the complex envelope of spectral components, from which an ad hoc
indicator was derived. The second approach makes use of the property that the autocorrelation function of a pure
tone is periodic whereas that of a random noise is transient.

The effectiveness of our approaches was demonstrated on simulated and actual signals. The key advantages of
the proposed indicators are twofold. First, they are simple and fast to compute, because they are based on FFT
estimation techniques. Second, they can be complemented by statistical tests that provide answers as whether a
spectral peak is a pure tone or not within given levels of significance, i.e. probabilities of error.
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