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In this paper we present several new sequential Monte Carlo (SMC) algorithms for online estimation

(filtering) of nonlinear dynamic systems. SMC has been shown to be a powerful tool for dealing

with complex dynamic systems. It sequentially generates Monte Carlo samples from a proposal

distribution, adjusted by a set of importance weight with respect to a target distribution, to facilitate

statistical inferences on the characteristic (state) of the system. The key to a successful implementation

of SMC in complex problems is the design of an efficient proposal distribution from which the Monte

Carlo samples are generated. We propose several such proposal distributions that are efficient yet easy

to generate samples from. They are efficient because they tend to utilize both the information in the

state process and the observations. They are all Gaussian distributions hence are easy to sample from.

The central ideas of the conventional nonlinear filters, such as extended Kalman filter, unscented

Kalman filter and the Gaussian quadrature filter, are used to construct these proposal distributions.

The effectiveness of the proposed algorithms are demonstrated through two applications—real time

target tracking and the multiuser parameter tracking in CDMA communication systems.

Keywords: bayesian inference, sequential Monte Carlo, kernel representation, nonlinear dynamic

system

1. Introduction

Consider the following nonlinear dynamic system described by

a state-space model

xt = f (xt−1) + ut , (1)

yt = h(xt ) + vt , (2)

t = 0, 1, . . . ,

where (1) is the state equation, with f (·) being the nonlinear

state transition function, and the state noise ut ∼N (0, Q) being

white and stationary; and where (2) is the measurement equa-

tion, with h(·) being the nonlinear measurement function, and

the measurement noise v t ∼N (0, R) being white and stationary,

and independent of the state noise ut . Such nonlinear dynamic

systems arise frequently from many areas in science and engi-

∗This work was supported in part by the U.S. National Science Foundation (NSF)
under grants CCR-9875314, CCR-9980599, DMS-9982846, DMS-0073651
and DMS-0073601.

neering, such as communications, radar tracking, sonar ranging,

and satellite or airplane orbit tracking.

In general, a statistical inference problem for the above non-

linear dynamic system involves computing the expected value of

some function ψ(·) of the state variable xt conditioned on the ob-

servations y1:t � (y1, y2, . . . , yt ) up to time t, i.e., E{ψ(xt ) | y1:t }.
Starting with p(x0) � p(x0 | y0) as the prior for x0, the posterior

density p(xt | y1:t ) can be obtained for t = 1, 2, . . . by using the

Bayes rule as follows

p(xt | y1:t−1) =
∫

p(xt | xt−1) p(xt−1 | y1:t−1) dxt−1,

p(xt | y1:t ) =
1

C
p(yt | xt , y1:t−1) p(xt | y1:t−1),

with C �

∫

p(yt | xt , y1:t−1) p(xt | y1:t−1) dxt .

However, this solution is often analytically intractable due to

nonlinearity.
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The classical inference methods for nonlinear dynamic sys-

tems are the extended Kalman filter (EKF) and its variants,

which are based on linearization along the trajectories. The EKF

has been successfully applied to numerous nonlinear problems.

However, if the system exhibits severe nonlinearity, the perfor-

mance of the EKF may not be satisfactory. Thus many algorithms

have been developed to improve upon the EKF performance.

Most of these algorithms fall into two categories, model-based

algorithms and nonlinear Kalman filters. In model-based algo-

rithms, the posterior density is approximated by an expansion

using certain basis functions. For example, the Gaussian sum

filter (Alspace and Sorenson 1972) approximates the posterior

density by a mixture of Gaussians; whereas the reduced suffi-

cient statistics algorithm (Kulhavý 1990, Agate and Iltis 1999)

approximates the posterior density by the well-known Haar basis

function under the wavelet framework. On the other hand, non-

linear Kalman filter algorithms attempt to choose a set of deter-

ministic points to capture the posterior mean and the covariance

accurately. Two representative algorithms in this class are the un-

scented Kalman filter (UKF) (Julier and Durrant-Whyte 2000,

Merwe et al., 2000) and the Gaussian quadrature Kalman filter

(QKF) (Ito and Xiong 2000). The UKF is based on the so-called

“sigma points”, and the QKF is based on the Gauss-Hermite

quadrature integration rule. One of the significant advantages of

these algorithms is that they don’t need the calculation of the

Jacobian matrix, often a computational intensive component in

the EKF.

Recently, the sequential Monte Carlo (SMC) methodology

(Arulampalam et al. 2002, Chen and Liu 2000, 2001, Doucet

1999, Doucet et al. 2001, Liu 2001, Liu and Chen 1998, Pitt and

Shephard 1999, Shephard and Pitt 1997) emerged in the fields of

statistics and engineering, has shown a great promise in solving

a wide class of nonlinear filtering problems. The SMC method

is also named the condensation algorithm in computer vision

(Dellaert et al. 1999; Isard and Blake 1996, 1997, 1998, Thrum

et al. 2001). The SMC method uses Monte Carlo simulation to

solve on-line estimation problems in dynamic systems. By re-

cursively generating Monte Carlo samples of the state variables

or some other latent variables, these methods can easily adapt to

the dynamics of the underlying stochastic systems. Although it

can be shown that the resulting sample density approaches the

true posterior density as the Monte Carlo sample size tends to

infinity, the performance/efficiency of the SMC methods with

finite Monte Carlo sample size depends largely on the proposal

distribution. The proposal distribution in Gordon, Salmon and

Ewing (1995) makes use of only the state equation, without ex-

ploiting the new measurement. In Liu and Chen (1998), a better

proposal distribution is recommended. It fully utilizes the infor-

mation in both the state process and the observation. However,

generating samples from it is often difficult due to the nonlinear

nature of the system.

In this paper we develop several new sequential Monte Carlo

(SMC) algorithms. Specifically we propose several proposal dis-

tributions within the SMC framework. They are efficient because

they tend to utilize both the information in the state process and

the observations. They are also easy to sample from since all of

them are Gaussian distributions. The central ideas of the con-

ventional nonlinear filters such as EKF, UKF and QKF are used

to construct these proposal distributions.

The remainder of the paper is organized as follows. Section

2 briefly reviews the SMC algorithm and the role of its pro-

posal distribution. In Section 3, we present several new pro-

posal distributions to be used in the SMC framework. In Section

4, we demonstrate the effectiveness of the proposed algorithms

through two applications—real time target tracking and the mul-

tiuser parameter tracking in CDMA communication systems.

2. Background

2.1. The general SMC algorithm

Consider the dynamic system given by (1) and (2). Denote

x1:t � (x0, x1, . . . , xt ) and y1:t � ( y0, y1, . . . , yt ). Suppose an on-

line inference of x1:t is of interest; that is, at current time t we wish

to make a timely estimate of a function of the state variable x1:t ,

say ψ(x1:t ), based on the currently available observation, y1:t .

The optimal solution (in the minimum mean-square error sense)

to this problem is E{ψ(x1:t ) | y1:t } =
∫

ψ(x1:t )p(x1:t | y1:t )dx1:t .

In most cases, an exact evaluation of this expectation is often ana-

lytically intractable because of the high complexity of such a dy-

namic system. Sequential Monte Carlo methods, which are based

on importance sampling, provide us with viable approaches to

the required estimation.

The basic idea of importance sampling is to draw m random

samples {x( j)
1:t }m

j=1 from some proposal distribution q(x1:t | y1:t )

with the same support as p(x1:t | y1:t ). By associating a weight

w
( j)
t = p(x

( j)
1:t | y1:t )/q(x

( j)
1:t | y1:t ) to the sample x

( j)
1:t in j-th Markov

stream ( j = 1, . . . , m), we can approximate the quantity of

interest, E{ψ(x1:t ) | y1:t }, by

E p{ψ(x1:t ) | y1:t } ∼=
1

Wt

m
∑

j=1

w
( j)
t ψ

(

x
( j)
1:t

)

,

with Wt �
∑m

j=1 w
( j)
t . The pair (x

( j)
1:t , w

( j)
t ), j = 1, . . . , m, is

called a properly weighted sample with respect to the target

distribution p(x1:t | y1:t ).

To implement an online estimation, a set of random samples

properly weighted with respect to p(x1:t | y1:t ) are needed at ev-

ery time t. The Markovian structure of the system allows us to

implement a recursive importance sampling strategy. Suppose

a set of properly weighted samples {(x( j)
1:t−1, w

( j)
t−1}m

j=1 with re-

spect to p(x1:t−1 | y1:t−1) are available at time (t − 1). Although

p(x1:t | y1:t ) is often a probability density from which it is dif-

ficult to draw samples {(x( j)
1:t )}m

j=1, they can be drawn from an

factorized importance density q(x1:t | y1:t ) given by

q(x1:t | y1:t ) = q(xt | x1:t−1, y1:t )q(x1:t−1 | y1:t−1), (3)
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with associated weights

w
( j)
t ∝

p
(

x
( j)
1:t

∣

∣ y1:t

)

q
(

x
( j)
1:t

∣

∣ y1:t

)
∝ w

j
t−1

p(yt | x1:t )p
(

x
( j)
t

∣

∣ x
( j)
1:t−1

)

q
(

x
( j)
t

∣

∣ yt

)
. (4)

Then the sequential importance sampling procedure can be

summarized as the following procedure (Chen and Liu 2000,

Kong, Liu and Wang 1994, Liu and Chen 1995, 1998).

For j = 1, . . . , m,

• Draw a sample x
( j)
t from a proposal distribution q(xt | x

( j)
1:t−1,

y1:t ) and let x
( j)
1:t = (x

( j)
1:t−1, x

( j)
t );

• Compute the importance weight w
( j)
t by (4).

• Do resampling if the effective sample size m̄ t is below a spec-

ified threshold:

– Sample a new set of streams {x̂( j)
t }m

j=1 from {x( j)
t }m

j=1 with

probability proportional to the importance weights

{w( j)
t }m

j=1;

– Assign equal weight to each stream in {x̂
( j)
t }, i.e., ŵ

( j)
t =

1
m

, j = 1, . . . , m.

The algorithm is initialized by drawing a set of i.i.d. samples

x
(1)
0 , . . . , x

(m)
0 from p(x0), which corresponds to the prior dis-

tribution of x0. In resampling, the effective sample size m̄ t is

defined as Liu and Chen (1998)

m̄ t �
m

1 + v2
t

,

where vt is called the coefficient of variation given by

v2
t =

1

m

m
∑

j=1

(

w
( j)
t

w̄t

− 1

)2

,

with w̄t = 1
m

∑m
j=1 w

( j)
t .

The resampling step is an important component of the SMC al-

gorithm. Heuristically, resampling can provide chances for good

sample streams to amplify themselves and hence “rejuvenate”

the sampler to produce a better result for future states as sys-

tem evolves. It can be shown that the samples drawn by the

above resampling procedure are also indeed properly weighted

with respect to p(xt | y1:t ), provided that m is sufficiently large

(Doucet 1999, Chen and Liu 2000, Doucet et al. 2000, Liu and

Chen 1998). In practice, when small to modest m is used (we use

m = 100 in this paper), the resampling procedure can be seen

as a trade-off between the bias and the variance. That is, the new

samples with their weights resulting from the resampling pro-

cedure are only approximately proper, which introduces small

bias in the Monte Carlo estimation. On the other hand, however,

resampling significantly reduces the Monte Carlo variance for

future samples.

2.2. The proposal distribution

In the SMC algorithm, the choice of the proposal distribution

q(x
( j)
t | x

( j)
1:t−1, y1:t ) is directly related to the efficiency of the

algorithm. A straightforward choice of proposal distribution q(·)
is based on the state equation (1)

q
(

xt

∣

∣ x
( j)
1:t−1, y1:t

)

= p
(

xt

∣

∣ x
( j)
1:t−1, y1:t−1

)

= p
(

xt

∣

∣ x
( j)
t−1

)

, (5)

with weight

w
( j)
t = w

( j)
t−1 p

(

yt

∣

∣ x
( j)
t , y1:t−1

)

= w
( j)
t−1 p

(

yt

∣

∣ x
( j)
t

)

,

where the last equality follows from the observation equation

(2). This class of SMC algorithms is also called bootstrap filter

or SIR particle filter (Doucet et al. 2001; Gordon, Salmon and

Ewing 1995). Such an approach is easy to implement, since it

is easy to generate samples from the Gaussian state transition

density p(xt | x
( j)
t−1) and to compute the weights based on the

Gaussian observation density p(yt | xt ). However, often times

such a proposal distribution is not efficient since it does not

exploit the information in the most recent observation yt . Note

that the information on the current state xt comes from two

sources: xt−1 through the state equation (1) and yt through the

observation equation (2). When the information in yt is strong,

it is important to exploit it in generating the importance samples

to gain efficiency.

To fully exploit the information in both Xt−1 and Yt , it is

suggested in Chen and Liu (2000), Doucet (1999), Doucet et al.

(2001), Kong, Liu and Wong (1994), and Liu and Chen (1998)

to use the following proposal distribution

q
(

xt

∣

∣ x
( j)
1:t−1, y1:t

)

= p
(

xt

∣

∣ x
( j)
1:t−1, y1:t

)

= p
(

xt

∣

∣ x
( j)
t−1, yt

)

, (6)

with the weight update given by

w
( j)
t = w

( j)
t−1 p

(

yt

∣

∣ x
( j)
1:t−1, y1:t−1

)

= w
( j)
t−1 p

(

yt

∣

∣ x
( j)
t−1

)

= w
( j)
t−1

∫

p(yt

∣

∣ xt )p
(

xt

∣

∣ x
( j)
t−1

)

dxt .

The advantage of the above proposal distribution can be seen by

rewriting the weight expression (4) as

w
( j)
t = w

( j)
t−1

p
(

x
( j)
1:t−1

∣

∣ y1:t

)

p
(

x
( j)
1:t−1

∣

∣ y1:t−1

)

p
(

x
( j)
t

∣

∣ x
( j)
1:t−1, y1:t

)

q
(

x
( j)
t

∣

∣ x
( j)
1:t−1, y1:t

)
.

Intuitively, the second ratio is needed to correct the discrepancy

between p(x
( j)
t | x

( j)
1:t−1, y1:t ) and q(x

( j)
t | x

( j)
1:t−1, y1:t ) when they

are different. This second ratio tends to increase the variation in

the weight distribution, hence results in less efficiency (Liu and

Chen 1998).

3. New SMC algorithms for nonlinear

dynamic systems

It is generally quite difficult to directly generate samples from

p(xt | x
( j)
t−1, yt ) in (6) due to its complexity in nonlinear systems.

Thus we are interested in finding some proposal distributions that

are “close” to p(xt | x
( j)
t−1, yt ) and yet easy to sample from. In

this paper, we propose to use Gaussian proposal distributions

q
(

xt

∣

∣ x
( j)
t−1, yt

)

= N
(

x
( j)
t |t , B

( j)
t

)

.
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Fig. 1. The posterior density p(xt | y1:t ) is approximated by the discrete

point mass of x
( j)
t (left) or the kernel based density representation at

discrete points x
( j)
t with dynamic bandwidth (right)

We study several approaches to obtain the proper x
( j)
t |t and B

( j)
t

so that the proposal distribution is close to the “optimal” distri-

bution p(xt | x
( j)
t−1, yt ).

In standard SMC algorithms, the properly weighted samples

are viewed as a discrete approximation (with point mass at the

discrete points x
( j)
t ) to the target distribution p(xt | y1:t ). That

is,

p(xt | y1:t )
∼=

m
∑

j=1

w jδ
(

xt − x
( j)
t

)

,

where δ(·) is the Dirac delta function. On the other hand, using

these samples, we can also approximate the target distribution

by a kernel density estimate

p(xt | y1:t )
∼=

m
∑

j=1

w j K j

(

xt − x
( j)
t

)

,

where K j (·) is a certain kernel function. For example, if we use

a Gaussian kernel K j (·) = φ(·; 0, P
( j)
t ) (where φ(·; 0, P ) denote

a GaussianN (0, P) density function), then effectively the target

Fig. 2. The propagation of the posterior density p(xt | y1:t ) of the state from (t − 1) to t based on the discrete point mass of x
( j)
t (left) or the kernel

based density representation at discrete points x
( j)
t with dynamic bandwidth (right)

distribution can be viewed as an approximation by a Gaussian

mixture. Figure 1 illustrates the discrete density approximation

and the kernel density approximation. The kernel method in

SMC was firstly proposed in Liu and West (2001) to add the

Gaussian disturbance to each discrete sample to increase sam-

ple diversity. Note that, the kernel bandwidth P
( j)
t reflects the

tradeoff between the bias and variance in the density estimate.

When P
( j)
t = 0, the kernel density estimate reduces to the dis-

crete representations.

We are interested in propagating the posterior density of the

state from (t − 1) to t. As shown in the left part of Fig. 2, in

the discrete representation case, we propagate each individual

sample x
( j)
t−1 using a Gaussian proposal distribution that is close

to p(xt | x
( j)
t−1, yt ).

On the other hand, if we adopt the Gaussian kernel approx-

imation case, as shown in the right part of Fig. 2, we prop-

agate each Gaussian component N (x
( j)
t−1, P

( j)
t−1) still using a

Gaussian proposal distribution that is close to p(xt | x
( j)
t−1, yt ).

Hence, we will use a Gaussian proposal distribution that is

close to the distribution
∫

p(xt | xt−1, yt )p( j)(xt−1)dxt−1, where

p( j)(xt−1) ∼ N (x
( j)
t−1, P

( j)
t−1). This distribution takes in some ad-

ditional variation in the j-th sample.

Let π
( j)
t−1 be the joint distribution of (xt−1, ut , vt )

where xt−1 ∼ δ(xt−1) or xt−1 ∼N (x
( j)
t−1, P

( j)
t−1). And denote

E
π

( j)
t−1

, Var
π

( j)
t−1

and Cov
π

( j)
t−1

as respectively the mean, variance

and covariance operator with respect to π
( j)
t−1.

To obtain the mean and covariance matrix for the Gaussian

proposal distribution for the j-th stream, we start by assuming

Xt and Yt are jointly Gaussian, given xt−1 either being fixed at

x
( j)
t−1 or following a Gaussian distribution N (x

( j)
t−1, P

( j)
t−1). It then

follows that p(xt | yt ) is Gaussian with mean and covariance
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given respectively by

x
( j)
t |t � E

π
( j)
t−1

{Xt | Yt }

= E
π

( j)
t−1

{Xt } + L
( j)
t

(

yt − E
π

( j)
t−1

{Yt }
)

, (7)

Σ
( j)
t |t � Var

π
( j)
t−1

{Xt | Yt }

= Var
π

( j)
t−1

{Xt } − L
( j)
t Cov

π
( j)
t−1

{Yt , Xt }, (8)

with L
( j)
t � Cov

π
( j)
t−1

{Xt , Yt }
(

Var
π

( j)
t−1

{Yt }
)−1

, (9)

The proposal distribution is then chosen to be

q
(

Xt

∣

∣ x
( j)
t−1, yt

)

= N
(

x
( j)
t |t , B

( j)
t

)

,

where B
( j)
t = h2

qΣ
( j)
t |t . The bandwidth matrix for the Gaussian

kernel representation at time t (for the next iteration) can be

chosen as

P
( j)
t = h2

k�
( j)
t |t .

The parameters hq determines how much variation we put in

the proposal distribution. For discrete representation, one usually

choose hq = 1 since in this case the proposal distribution should

be as close to p(xt | x
( j)
t−1, yt ) as possible. On the other hand, with

the Gaussian mixture representation, certain shrinkage (hq < 1)

has been found to be very helpful. It tries to compensate the extra

variation introduced in the kernel estimation.

The parameter hk plays the role of adjusting the influence

range of the kernel. Intuitively, an increase of hk will increase

the diversity of the particle, and hence will help to find the global

optimum solution. However, the efficiency of the SMC may be

sacrificed because of the increasing of variation and possibility

of introducing many inefficient particles. Note that if hk = 0,

then the kernel density approximation reduces to the discrete

representation. If hk = 1 is used, the bandwidth may approach

to a constant in some cases when the variance �
( j)
t |t is stable.

In what follows we discuss three approaches to computing the

first-order moments

E
π

( j)
t−1

{Xt }, and E
π

( j)
t−1

{Yt }, (10)

and the second-order moments

Var
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
}

, Var
π

( j)
t−1

{Yt }, and Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }, Yt

}

(11)

appeared in (7)–(9), under both the discrete density approxima-

tion and the Gaussian kernel density approximation. They are

the key components of EKF, UKF and QKF. Note that the con-

ventional filters EKF, UKF and QKF are obtained with the newly

estimated value and variance at time t as the starting point input

into the Gaussian kernel density approximation at next time t +1

and repeating this procedure at next time, and so on.

3.1. Extended Kalman filter

In EKF, the state equation (1) is first linearized by its first-order

Taylor series expansion at E
π

( j)
t−1

{xt−1} = x
( j)
t−1:

E
π

( j)
t−1

{Xt } ∼= f
(

x
( j)
t−1

)

+ F
( j)
t

(

xt−1 − x
( j)
t−1

)

+ ut , (12)

with F
( j)
t �

∂
∂x

f (x)|
x=x

( j)
t−1

. Then the measurement equation (2)

is linearized at E
π

( j)
t−1

{Xt } = f (x
( j)
t−1):

yt
∼= h

(

f
(

x
( j)
t−1

))

+ H
( j)
t

(

xt − f
(

x
( j)
t−1

))

+ vt , (13)

with H
( j)
t �

∂
∂x

h(x)|
x= f x

( j)
t−1

. Based on the above linearization,

the moments in (10) and (11) can be approximated as follows

(the discrete case uses P
( j)
t−1 = 0).

E
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼= f

(

x
( j)
t−1

)

,

E
π

( j)
t−1

{Yt } ∼= h
(

f
(

x
( j)
t−1

))

,

Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼= F

( j)
t P

( j)
t−1

(

F
( j)
t

)T + Q,

Cov
π

( j)
t−1

{Yt } ∼= H
( j)
t

[

F
( j)
t P

( j)
t−1

(

F
( j)
t

)T + Q
]

×
(

H
( j)
t

)T + R,

Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }, Yt

} ∼= F
( j)
t P

( j)
t−1

(

F
( j)
t

)T (

H
( j)
t

)T
.

3.2. Unscented Kalman filter

The unscented transformation (UT) is a method of approximat-

ing the mean and variance of a nonlinearly transformed random

vector. Let z be an nz-dimensional random vector with mean z̄

and variance Σz . Suppose that we want to compute the mean

and variance of y = g(z). The UT chooses a set of (2nz + 1)

deterministic weighted points (called sigma points) {ξℓ, ωℓ} as

follows (Julier and Durrant-Whyte 2000, Merwe et al. 2000):

ξ0 = z̄, ω0 = κ/(nz + κ), ℓ = 0, (14)

ξℓ = z̄ +
√

nz + κ[
√

Σz]ℓ,

ωℓ = κ/(2nz + κ), ℓ = 1, 2, . . . , nz, (15)

ξℓ = z̄ −
√

nz + κ[
√

Σz]ℓ−nz
,

ωℓ = κ/(2nz + κ), ℓ = nz + 1, nz + 2, . . . , 2nz, (16)

where κ > 0 is a parameter; [
√

Σz]ℓ denotes the ℓ-th column of

the square root ofΣz . Note that the weights satisfy
∑2nx

ℓ=0 ωℓ = 1.

The mean and variance of y = g(z) are approximated by

ȳ ∼=
2nz
∑

ℓ=0

ωℓg(ξℓ),

Σy
∼=

2nz
∑

ℓ=0

ωℓ[g(ξℓ) − ȳ][g(ξℓ) − ȳ]T .
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It is known that the sigma points capture the first-order and the

second-order Tailor expansion of the nonlinear equation accu-

rately, with errors only in the third- and higher-order expansion.

Furthermore, the errors introduced in the third- and higher-order

expansion can be scaled to some extent by the choice of the pa-

rameter κ . However, if the nonlinearities are very severe, the

above approximation may be inaccurate. In that case the scaled

unscented transformation (Julier and Durrant-Whyte 2000) can

be employed by introducing another positive scaling parameter

α, so that the sigma points are replaced by

ξ′
ℓ = z̄ + α(ξℓ − z̄), ℓ = 0, . . . , 2nz, (17)

ω′
ℓ =











ω0

α2
+

(

1 −
1

α2

)

, ℓ = 0,

ωℓ

α2
, ℓ = 1, . . . , 2nz .

(18)

Using the above unscented transformation, we can approximate

the first-order and the second-order moments in (10) and (11) as

follows.

Discrete density case:

In this case the random vector z is set as z = [uT
t , vT

t ] where

ut and vt are respectively the state noise and the measurement

noise defined in (1) and (2). We set nz = nu + nv , there nu and

nv are the corresponding dimensions of ut and vt respectively.

By letting

z̄ = 0, and Σz =

[

Q 0

0 R

]

,

we calculate the sigma points {(ξℓ, ωℓ), ℓ = 0, 1, . . . , 2nz} ac-

cording to (14)–(16) or (17) and (18). Denote ξu
ℓ as the com-

ponents of ξℓ corresponding to the state noise sample ut . And

similarly define ξv
ℓ . Then based on the state-space model (1)

and (2), the moments in (10) and (11) are approximated by the

following:

E
π

( j)
t−1

{

Xt } ∼= f
(

x
( j)
t−1

)

,

E
π

( j)
t−1

{Yt } ∼=
2nz
∑

ℓ=0

ωℓh
(

f
(

x
( j)
t−1

)

+ ξu
ℓ

)

� ȳt ,

Var
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼= Q,

Var
π

( j)
t−1

{Yt } ∼=
2nz
∑

ℓ=0

ωℓ

[

h
(

f
(

x
( j)
t−1

)

+ ξu
ℓ

)

+ ξv
ℓ − ȳt

]

·
[

h
(

f
(

x
( j)
t−1

)

+ ξu
ℓ

)

+ ξv
ℓ − ȳt

]T
,

Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }, Yt

} ∼=
2nz
∑

ℓ=0

ωℓξ
u
ℓ

[

h
(

f
(

x
( j)
t−1

)

+ ξu
ℓ

)

+ ξv
ℓ − ȳt

]T
.

Gaussian kernel density case:

In this case we set the random vector z = [xT
t−1 uT

t vT
t ]T and

nz = nx + nu + nv . By letting

z̄ =
[(

x
( j)
t−1

)T
0T 0T

]T
and Σz =







P
( j)
t−1 0 0

0 Q 0

0 0 R






,

we calculate the sigma points {(ξℓ, ωℓ), ℓ = 0, 1, . . . , 2nz}.
Then the moments in (10) and (11) are approximated by the

following:

E
π

( j)
t−1

{Xt } ∼=
2nz
∑

ℓ=0

ωℓ f
(

ξx
ℓ

)

= x̄t ,

E
π

( j)
t−1

{Y t } ∼=
2nz
∑

ℓ=0

ωℓh
(

f
(

ξx
ℓ

)

+ ξu
ℓ

)

� ȳt ,

Var
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼=

2nz
∑

ℓ=0

ωℓ

[

f
(

ξx
ℓ

)

+ ξu
ℓ − x̄t

]

×
[

f
(

ξx
ℓ

)

+ ξu
ℓ − x̄t

]T
,

Var
π

( j)
t−1

{Yt } ∼=
2nz
∑

ℓ=0

ωℓ

[

h
(

f
(

ξx
ℓ

)

+ ξu
ℓ

)

+ ξv
ℓ − ȳt

]

·
[

h
(

f (ξ x
ℓ

)

+ ξu
ℓ

)

+ ξv
ℓ − ȳt

]T
,

Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }, Yt

} ∼=
2nz
∑

ℓ=0

ωℓ

[

f
(

ξx
ℓ

)

+ ξu
ℓ − x̄t

]

·
[

h
(

f
(

ξx
ℓ

)

+ ξu
ℓ

)

+ ξv
ℓ − ȳt

]T
.

3.3. Quadrature Kalman filter

The Gaussian quadrature methods are a family of deterministic

numerical integration techniques which approximate the inte-

gral by a weighted sum of the its functional values at certain

abscissas (Press et al. 1992). They provide the optimal weight-

ing coefficients as well as the location of the abscissas at which

the function is to be evaluated. In particular, the Gauss-Hermite

quadrature rule can be used to calculate the expected value of a

function with respect to a Gaussian density. For example, sup-

pose z ∼ N (0, 1), then

E{g(z)} =
∫

g(z)π− 1
2 exp

(

−
1

2
z2

)

dz ∼=
k

∑

ℓ=1

ωℓg(ξℓ),

where the weight wℓ and the abscissas xiℓ are given according to

the Gauss-Hermite quadrature rule (Ito and Xiong 2000, Press

et al. 1992) as follows. Let J be a symmetric tridiagonal matrix

with zero diagonals and

[J]i,i+1 =
√

i

2
, 1 ≤ i ≤ k − 1.
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Then the abscissas ξℓ �
√

2xℓ, where xℓ is the ℓ-th eigenvalue of

J; and the corresponding weight ωℓ � | (vℓ)1 |2, where (vℓ)1 is

the first element of the ℓ-th normalized eigenvector of J. Note

that �k
ℓ=1ωℓ = 1. The number k of Gauss-Hermite quadrature

points make the integration accurate hold for all polynomials of

degree up to 2k − 1.

Now suppose z ∼ N (0, Inz
), then the Gauss-Hermite quadra-

ture method can be used to approximate E{g(z)} as

E{g(Z)} =
∫

g(z)π− nz
2 exp

(

−
1

2
||z||2

)

dz ∼=
K

∑

ℓ=1

ωℓg(ξℓ),

where K � knz and the weight and the abscissas are ob-

tained by the tensor product, i.e., ωℓ = �
nz

j=1ωℓ j
, and ξℓ =

[ξℓ1
, . . . , ξℓnz

] ∈ {ξ1, . . . , ξk}nz . On the other hand, suppose

z ∼ N (z̄,Σz), then we have

E{Z} =
∫

g(z)
1

π
nz
2 det(Σ)

1
2

exp

[

−
1

2
(z − z̄)T

Σ
−1(z − z̄)

]

dz

=
∫

g(
√

Σr + z̄)π− nz
2 exp

(

−
1

2
||r ||2

)

dr

∼=
K

∑

ℓ=1

ωℓg(
√

Σξℓ + z̄).

Using the above Gauss-Hermite quadrature rule, we can approx-

imate the first-order and the second-order moments in (10) and

(11) as follows.

Discrete density case:

In this case the expectation is with respective to the joint distri-

bution of

z � xt ∼ N (z̄,Σz), with z̄ = f
(

x
( j)
t−1

)

, Σz = Q.

Then (10) and (11) are approximated by the following:

E
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼= f

(

x
( j)
t−1

)

,

E
π

( j)
t−1

{Yt } ∼=
K

∑

ℓ=0

ωℓh
(

f
(

x
( j)
t−1

)

+
√

Qξℓ

)

� ȳt ,

Var
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼= Q,

Var
π

( j)
t−1

{Yt } ∼=
K

∑

ℓ=1

ωℓ

[

h
(

f
(

x
( j)
t−1

)

+
√

Qξℓ

)

− ȳt

]

·
[

h
(

f
(

x
( j)
t−1

)

+
√

Qξℓ

)

− ȳt

]T + R,

Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }, Yt

} ∼=
K

∑

ℓ=1

ωℓ(
√

Qξℓ)
[

h
(

f
(

x
( j)
t−1

)

+
√

Qξℓ

)

− ȳt

]T
.

Gaussian kernel density case:

In this case we first set

Z � Zt−1 ∼ N (z̄,Σz), with z̄ = x
( j)
t−1, Σz = P

( j)
t−1;

and calculate the following:

E
π

( j)
t−1

{Xt } ∼=
K

∑

ℓ=1

ωℓ f
(

√

P
( j)
t−1ξℓ + x

( j)
t−1

)

,

Var
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }
} ∼=

K
∑

ℓ=1

ωℓ

[

f
(

√

P
( j)
t−1ξℓ + x

( j)
t−1

)

− x̄t

]

·
[

f
(

√

P
( j)
t−1ξℓ + x

( j)
t−1

)

− x̄t

]T +Q �Ψt .

Then we set

Z � Xt ∼ N (z̄,Σz), with z̄ = xt , Σz = Ψt ;

and calculate the following

E
π

( j)
t−1

{Yt } ∼=
K

∑

ℓ=1

ωℓh(
√

Ψtξℓ + x̄t ) � ȳt ,

Var
π

( j)
t−1

{Yt } ∼=
K

∑

ℓ=1

ωℓ[h(
√

Ψtξℓ + x̄t ) − ȳt ]

× [h(
√

Ψtξℓ + x̄t ) − ȳt ]
T + R,

Cov
π

( j)
t−1

{

E
π

( j)
t−1

{Xt }, Yt

} ∼=
K

∑

ℓ=1

ωℓ(
√

Ψtξℓ)[h(
√

Ψtξℓ + x̄t )

− ȳt ]
T .

3.4. Summary of the new SMC algorithms

Based on the different approaches of calculating the moments

discussed in the previous subsections, we obtain a family of

new SMC algorithms for the nonlinear dynamic system given

by (1) and (2). These algorithms fit into the following general

framework.

A0. Initialization: For j = 1, 2, . . . , m, draw the initial state x
( j)
0

from the prior distribution p(x0) ∼N (x0|0,Σ0|0), where

x0|0 and �0|0 are dependent upon different application. All

importance weights are initialized as w
( j)
0 = 1, j = 1,

. . . , m.

The following steps are implemented at the t-th recursion

(t = 1, 2, . . .).

For j = 1, . . . , m:

A1. Compute the proposal density q(x
( j)
t | x

( j)
1:t−1, y1:t ) =

N (x
( j)
t |t , h2

qΣ
( j)
t |t ), where x

( j)
t |t and Σ

( j)
t |t are given by (7) and

(8), where the moments are calculated based on either

EKF, UKF, or QKF, as described in the previous subsec-

tions, under either the discrete density approximation or

the Gaussian kernel density approximation (hence a total



142 Guo, Wang and Chen

of six SMC algorithms). And for the kernel density case,

update P
( j)
t = h2

kΣ
( j)
t |t .

A2. Draw a sample x
( j)
t from N (x

( j)
t |t , h2

qΣ
( j)
t |t ), and append x

( j)
t

to x
( j)
1:t−1 to from x

( j)
1:t = [x

( j)
1:t−1, x

( j)
t ].

A3. Compute the importance weight w
( j)
t as follows:

w
( j)
t = w

( j)
t−1

p
(

yt | x
( j)
t

)

p
(

x
( j)
t | x

( j)
t−1

)

q
(

x
( j)
t | x

( j)
1:t−1, y1:t

)

= w
( j)
t−1

φ
(

yt ; h
(

x
( j)
t

)

, R
)

φ
(

x
( j)
t ; f

(

x
( j)
t−1

)

, Q
)

φ
(

x
( j)
t ; x

( j)
t |t , h2

qΣ
( j)
t |t

)
,

where φ(·; µ,Σ) denotes the Gaussian N (µ,Σ) density

function.

A4. Resampling is done if the effective sample size m̄ t is less

than a specified threshold.

4. Applications

In this section, we illustrate the performance of the proposed

SMC algorithms via one illustrated example and two applica-

tions, namely, target tracking and multiuser parameter tracking

in code-division multiple-access (CDMA) communication sys-

tems. We will compare the performance of these new SMC al-

gorithms with three conventional filtering methods—EKF, UKF

and QKF.

4.1. Target tracking

Target tracking is of interest to many engineers and computer

scientists and has received significant recent attention. Many

methods have been proposed, among which the SMC has become

one of the very promising solutions (Doucet et al. 2001, Gordon

et al. 1995, Liu and Chen 1998).

Consider the nonlinear dynamic system given by (1) and (2)

in which the state vector xt = [xt , ẋt , yt , ẏt ]
T consists of the

position (xt , yt ) and the velocity (ẋt , ẏt ) of a target at time t .

The target dynamics evolve linearly from time t to time (t + 1),

with a sampling time interval . The measurement vector yt

consists of the measured range and bearing angle. In particular,

we have

xt = Fxt−1 + ut =











1  0 0

0 1 0 0

0 0 1 

0 0 0 1





















xt−1

ẋt−1

yt−1

ẏt−1











+ ut , (19)

yt = h(xt ) + v t =

[
√

x2
t + y2

t

tan−1 yt

xt

]

+ v t , (20)

where ut and v t are independent zero-mean Gaussian noise with

covariance matrices Q and R respectively.

In our simulations, we set  = 1, Q = diag(0.05, 5, 0.05, 5),

R = diag(1,1). The initial state are x0|0 = [5, −20, 5, −20]T

and Σ
x
0|0 = diag(0.5, 50, 0.5, 50). We have implemented both

the conventional nonlinear filtering algorithms (including the

EKF, the UKF and the QKF) and the new SMC algorithms de-

veloped in Section 3 (i.e., the SMC-EKF, the SMC-UKF, and

the SMC-QKF, under either the discrete density approximation

or the Gaussian kernel density approximation). Moreover, we

have also implemented the SIR particle filter where the proposal

distribution is based only on the state equation and given by (5).

In the SIR particle filter, the number of the sample streams is set

as m = 300 and the exact initial state x0 is used. In all the pro-

posed SMC algorithms, the number of sample streams is set as

m = 50, and the initial state is set as p(x0 | y0) ∼ N (X0|0,Σ0|0).

In the EKF and the SMC-EKF algorithms, the nonlinear mea-

surement equation (20) is linearized as

yt = Ht (xt − xt |t−1) + h(xt |t−1) + v t ,

with Ht =
∂

∂x
h|x=xt |t−1

=





x√
x2+y2

0 y√
x2+y2

0

−y√
x2+y2

0 x√
x2+y2

0





∣

∣

∣

∣

∣

∣

x=xt |t−1,y=yt |t−1

.

In the UKF and the SMC-UKF algorithms, we set the parameters

κ = 2 and α = 1.5. In the QKF and SMC-QKF algorithms, the

number of the abscissas is set to be K = 45, i.e., five abscissas

in one dimension.

We run each algorithm over a simulated target trajectory of

200 time instants and calculate the corresponding root mean-

square error for each component of the state vector xt . The

results are listed in Table 1. The running time is in terms of

seconds running in a Dell computer with a Pentium
©R

4 at 2.66

GHz. In this table, the algorithms considered are divided into

three groups. The first group consists of the existing methods,

including the extended Kalman filter, the unscented Kalman fil-

ter (UKF), the quadrature Kalman filter (QKF), and the SIR

particle filter (PF). It is seen that in this group, the PF has the

worst performance. This is because the initial variance Σ0|0 is

so large that it takes long time to converge. With the increase

number of Monte Carlo sample, the performance of the PF can

Table 1. The root mean-square error (RMSE) performance of various

nonlinear filtering algorithms for target tracking

Algorithms xt ẋt yt ẏt Time (s)

EKF 0.325 0.025 0.239 0.043 0.20

UKF 0.145 0.019 0.157 0.015 0.65

QKF 0.130 0.015 0.126 0.013 1.39

PF 0.611 0.051 0.701 0.017 51.96

D-SMC-EKF 0.104 0.016 0.110 0.015 89.17

D-SMC-UKF 0.084 0.018 0.070 0.012 192.39

D-SMC-QKF 0.073 0.055 0.081 0.054 334.86

K-SMC-EKF 0.092 0.018 0.121 0.014 91.17

K-SMC-UKF 0.008 0.011 0.005 0.012 192.39

K-SMC-QKF 0.003 0.015 0.006 0.014 337.86
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Fig. 3. The mean-square error performance of various nonlinear tracking algorithm for the state variable xt .

be improved. Although the UKF and QKF can improve the per-

formance over the EKF, the improvement is not very signifi-

cant. The reason for this is that the state equation (19) is linear.

Note that the complexity of the QKF is much higher than that

of the UKF—the QKF needs 45 abscissas whereas the UKF

only needs 24 deterministic sampling points. Hence for high-

dimensional problem, we suggest to use the UKF instead of

the QKF.

The second group in Table 1 consists of the three new SMC

algorithms under the discrete density approximation (D-SMC-

EKF, D-SMC-UKF, and D-SMC-QKF). It is clearly seen that

these new SMC algorithms offer performance improvement of

the existing nonlinear filtering algorithms in the first group. The

third group consists of the three new SMC algorithms under

the kernel density approximation (K-SMC-EKF, K-SMC-UKF,

and K-SMC-QKF). It is seen that by replacing the discrete den-

sity approximation with the Gaussian kernel density approx-

imation, the tracking accuracy can be significantly improved

for the SMC-UKF and the SMC-QKF algorithms; whereas

the effect on the SMC-EKF is quite small. The tracking per-

formance of some of the above algorithms is also illustrated

in Fig. 3.

4.2. Multiuser parameter tracking in CDMA

communications

The area of direct-sequence code-division multiple-access (DS-

CDMA) communications has attracted significant recent atten-

tion as it has become the major air interface technique for the

next-generation cellular wireless communication systems. One

of the main challenges in CDMA receiver design involves the

estimation of some key system parameters, such as the received

signal powers, the carrier phase offsets, and the propagation de-

lays for all users of interest. Recently, several recent works have

addressed the problem of joint estimation of the channel and

the time delays (Iltis 2001, Caffery and Stuber 2000). In what

follows, we treat the problem of multiuser parameter tracking

under the nonlinear dynamic system framework.

In a CDMA system, the k-th user transmits the bandpass signal

xk(t) =
M−1
∑

m=0

√

2Pkdk(m)sk(t − mTb) cos (ωct + θk(t)) ,

where Pk is the transmitted signal power of the k-th user; ωc is

the carrier frequency; θk(t) is the phase offset for the k-th user’s

carrier; dk(m) is the m-th data symbol of the k-th user; and sk(t)

is the k-th user’s spreading signature waveform of duration Tb,

given by

sk(t) =
N−1
∑

n=0

ak,nψTc
(t − nTc), 0 ≤ t ≤ Tb,

where ak,n ∈ {−1, 1} is the n-th chip of the signature sequence

of the k-th user, N = Tb

Tc
is called the spreading gain. The chip

waveform ψTc
(·) is a rectangular pulse given by

ψTc
(t) =

{

1, 0 ≤ t ≤ Tc,

0, otherwise.



144 Guo, Wang and Chen

The received bandpass signal is the superposition of the delayed

version of the multiuser signals plus the ambient noise,

r (t) =
κ

∑

k=1

xk (t − τk(t)) + n(t)

=
κ

∑

k=1

M−1
∑

m=0

√

2Pkdk(m) fk(t)sk (t − mTb − τk(t))

× cos (ωct + φk(t)) + n(t),

where φk(t) = θk(t) − ωcτk(t) is the received phase of the k-th

user’s carrier, τk(t) is the delay of the k-th user’s signal; fk(·) is

channel attenuation experienced by the k-th user’s signal; and

n(t) is additive white Gaussian noise.

Suppose that the received continuous-time signal r (t) is

first down-converted to baseband and then sampled at q times

the chip rate, giving a time interval between samples of

Ts = Tc/q . Then the received baseband signal sampled at

t = lTs is

r (l) =
κ

∑

k=1

βk(l)dk (mk(l)) sk(lTs − mk(l)Ts

− τk(lTs)) + n(lTs), (21)

with βk(l) �
√

Pk fk(lTs) exp ( jφk(lTs)) ,

mk(l) =
⌊

lTs − τk(lTs)

Tb

⌋

.

Now assume that the complex-valued channel amplitudes

and the real-valued propagation delays of the κ users obey a

Gaussian-Markov dynamic model, i.e.,

β(l) = Φββ(l − 1) + uβ(l),

τ (l) = Φττ (l − 1) + uτ (l),

where Φβ and Φτ are the K × K state transition matrices for

the amplitudes and delays, respectively. The noise uβ and uτ

are assumed to be independent with zero-mean and covariance

matrices given respectively by Qβ � σ 2
β Iκ and Qτ � σ 2

τ Iκ . Note

that since the measurement equation (21) is not continuous in

the delay variables, the EKF can not be directly applied to this

problem.

We have implemented the conventional as well as the SMC-

based UKF and QKF for parameter tracking in a two-user sys-

tem. The user’s spreading sequence are chosen from the set of

Gold codes of length N = 31 generated by the polynomials

x5 + x2 +1 and x5 + x4 + x3 + x2 +1. The signal-to-noise ratio

(SNR) at the receiver for each user is 10 dB. The state transition

matrices are chosen to be Φβ = 0.999 Iκ and Φτ = 0.999 Iκ .

The state noise variances are set as σ 2
β = σ 2

τ = 0.001. The signal

is sampled at the chip rate, i.e., q = 1. It is assumed that dur-

ing the parameter tracking stage, the data symbols {dk(m)} are

known to the receiver. The parameters in various algorithms are

similarly set as in the previous subsection. The RMSE perfor-

mance of various algorithms are shown in Table 2. The running is

Table 2. The RMSE performance of various nonlinear filtering algo-

rithms for channel parameter tracking in a two-user CDMA system

Algorithms Amplitude Amplitude Delay Delay Time

User 1 User 2 User 1 User 2 (s)

UKF 0.15 0.19 0.13 0.11 227.58

QKF 0.14 0.18 0.16 0.16 972.32

PF 0.26 0.24 0.12 0.11 1213.2

D-SMC-UKF 0.11 0.12 0.09 0.11 4517.6

D-SMC-QKF 0.12 0.13 0.11 0.13 19041.2

K-SMC-UKF 0.05 0.06 0.09 0.08 4608.6

K-SMC-QKF 0.04 0.03 0.06 0.06 19051.1

in terms of seconds running in a Dell computer with a Pentium
©R

4 at 2.66 GHz.

As in the previous example, it is seen that the K-SMC-UKF

and the K-SMC-QKF algorithms exhibit better performance

than the other methods in tracking the multiuser amplitudes and

delays, especially compared with the existing nonlinear filtering

schemes such as the UKF, the QKF, and the PF. Note that the

simulations revealed that the performance of the conventional

UKF and the QKF is very sensitive to the initial conditions,

whereas the SMC-based methods is robust to the uncertainties

in the initial conditions. This is due to the fact that the SMC

starts with many streams of samples each with different starting

point and tries to find the optimum streams using the importance

weights. Figure 3 illustrates the amplitude tracking performance

by various algorithms.

4.3. An illustrated high-dimensional example

Consider a nonlinear dynamic system given by (1) and (2)

in which the state vectors xt and the observations yt are 10-

dimensional vectors. In particular, we have

xt = xt−1 + ut (22)

yt = Fx2
t + v t (23)

where ut and v t are independent zero-mean Gaussian noise with

covariance matrices Q and R respectively.

In our simulations, we set Q = 0.05 I10,10, R = 0.01 I10,10,

where I is the identity matrix. The initial states are x0|0 = I10,1

and Σ
x
0|0 = Q. Here, we have implemented both the conven-

tional nonlinear filtering algorithms (including the EKF and the

UKF) and the new SMC algorithms developed in Section 3 (i.e.,

the SMC-EKF and the SMC-UKF, under either the discrete den-

sity approximation or the Gaussian kernel density approxima-

tion). In this case QKF needs 410 abscissas and is impractical

for this problem. We have also implemented the SIR particle

filter where the proposal distribution is based only on the state

equation and given by (5). In the SIR particle filter, the number

of the sample streams is set as m = 300 and the exact initial

state xo is used. In all the proposed SMC algorithms, the number
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Fig. 4. The mean square error performance of various nonlinear filtering algorithms for the tracking of User 1’s amplitude

Fig. 5. The mean-square error performance of various nonlinear tracking for the state variable xt

of sample streams is set as m = 50, and the initial state is set as

p(x0 | y0) ∼ N (x0|0,Σ0|0).

We run each algorithm over a simulated target trajectory of

200 time instants and calculate the corresponding root mean-

square error for each component of the state vector xt . The re-

sults are listed in Table 3. Here we only list the estimated first

component of the state vector since all components in the vector

have nearly the same performance. The running time is also in

terms of seconds. It is seen that, the UKF, the EKF and the PF

have the similar performance. The second group in Table 3 con-

sists of the two new SMC algorithms under the discrete density

approximation (D-SMC-EKF and D-SMC-UKF). It is seen that
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Table 3. The root mean-square error (RMSE) performance of various

nonlinear filtering algorithms for the high dimensional problem

Algorithms x1 Time (s)

EKF 6.799 0.198

UKF 6.692 0.552

PF 6.694 43.92

D-SMC-EKF 6.472 73.841

D-SMC-UKF 6.561 141.19

K-SMC-EKF 5.694 74.02

K-SMC-UKF 5.419 145.49

these new SMC algorithms offer slight performance improve-

ment over the existing nonlinear filtering algorithms in the first

group. The third group consists of the two new SMC algorithms

under the kernel density approximation (K-SMC-EKF and K-

SMC-UKF). It is seen that by replacing the discrete density

approximation with the Gaussian kernel density approximation,

the estimating accuracy can be significantly improved.

5. Discussions and conclusions

In this paper, we proposed several efficient sequential Monte

Carlo methods for nonlinear dynamic systems. Although the

sequential Monte Carlo methods have the nice property that,

in the limit of an infinite number of Markov streams, the ap-

proximate representation of the belief state approaches the ex-

act belief state, the efficiency of the SMC methods are closely

related to the proposal distribution. Hence, the proposal distri-

butions in this paper are calculated using three efficient non-

linear Kalman filters, namely the extended Kalman filter, un-

scented Kalman filter and quadrature Kalman filter. The effi-

ciency of these proposed algorithms is shown in the simulations

on real time target tracking and multiuser parameter tracking

problems.

Furthermore, we discussed a more complex and challeng-

ing problem—the representation of the posterior distribution

p(Xt | Yt ) based on the properly weighted samples. In standard

SMC algorithms, the properly weighted samples are viewed as

a discrete approximation to the target distribution; each individ-

ual samples are propagated based on the Markov chain. On the

other hand, we can also construct Kernel representation of the

target distribution by using these samples. In particular, these

Kernels have adaptive bandwidths, which are inherited from the

nonlinear Kalman filters; thus a more efficient and accurate rep-

resentation of the target distribution is obtained. In other words,

the efficiency of the SMC is improved with Kernel representa-

tions with adaptive bandwidths.

However, in kernel-based SMC methods, the parameters hq

and hk in Section 3 are still needed to be further investigated. The

first parameter hq determines how much variation we put in the

proposal distribution; whereas the parameter hk plays the role of

adjusting the influence range of the kernel. Therefore, these two

parameters are substantial to improve the performance of the

SMC methods. As shown in our simulations, certain shrinkage

on first parameter (hq < 1) and certain spreading on the second

parameter (hk > 1) have been found to be helpful in improving

the performance of SMC methods. However, how to adaptively

choose these two parameters is still an open problem.

As shown in Section 3.2, the QKF suffered from the curse

of dimension; consequently, the SMC employing the QKF is

not suitable to solve high dimensional problems although the

spare girds built on the Smolyak algorithm (Gerstner and Griebel

1998; Petras 2001) can be employed to mitigate the dimension

curse. However, in low dimensional problem, it is often found

more accurate than the unscented Kalman filter. Therefore, dif-

ferent algorithms can be applied in different application scenar-

ios. On the other hand, the SMC methods based on the QKF and

UKF provide excellent performance and are insensitive to the

initial starting points, while the sensitive to the initial points is a

critical problem for the EKF and SIR Particle filter. However, the

drawback of the proposed novel algorithms is that it is compu-

tationally intensive, yet it can be straightforwardly implemented

on parallel computation.
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