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ABSTRACT 

The motion of air (i.e fluid) in which tiny particle rotates past a pointed surface of a rocket (as in space science), over a bonnet of a car and past a 

pointed surface of an aircraft is of important to experts in all these fields. Geometrically, all the domains of fluid flow in all these cases can be 

referred to as the upper horizontal surface of a paraboloid of revolution (uhspr). Meanwhile, the solution of the corresponding partial differential 

equation is an open question due to unavailability of suitable similarity variable to non-dimensionalize the angular momentum equation. This article 

unravels the nature of skin friction coefficient, heat transfer rate, velocity, temperature, concentration of homogeneous bulk fluid and heterogeneous 

catalyst which exists on a stretchable surface which is neither a perfect horizontal/vertical nor inclined/cone. Theory of similarity solution was 

adopted to obtain the similarity variable suitable to scale the proposed angular momentum equation. These equations along with the boundary 

conditions are solved numerically using Runge-Kutta technique along with shooting method. The similarity variable successfully non-

dimensionalized and parameterized the angular momentum for boundary layer flow past uhspr. Temperature dependent dynamic viscosity parameter 

increases vertical velocity near a free stream but reduces micro-rotation near uhspr. Effect of thermal radiation parameter on temperature profile and 

heat transfer rate can be greatly influenced by thickness parameter.   

Keywords: Micropolar fluid, Paraboloid of revolution, Boundary layer analysis, Temperature dependent dynamic viscosity, Temperature dependent 

vortex viscosity. 
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1. INTRODUCTION 

Due to the relevance of fluid flow in engineering, chemical and 

mechanical industries, space science and aviation; the analysis of 

different fluid flow within the thin boundary layer over various 

geometries have been investigated. Blasius (1908) and Sakiadis (1961) 

deliberated on the flow of a Newtonian fluid past a stretchable surface 

at the free stream and at the wall respectively. This area of interest in 

the field of fluid mechanics (boundary layer theory together with heat 

and mass transfer) has attracted the attention of Murphy (1953), 

Sowerby and Cooke (1953), Moore (1963), Sawchuk and Zamir (1992), 

Babu et al. (2015), Animasaun (2016), Motsa and Animasaun 

(2016a,b), Naramgari and Sulochana (2016), Sulochana et al. (2016) 

and Sandeep et al. (2016). Sandeep and Animasaun (2017) to deliberate 

on the boundary layer formed on spherical gas bubble, curved surface, 

cylinder, stagnation-point flow of a Carreau nanofluid towards a 

stretching/shrinking sheet, finite flat plate/sliding plate, wing of aircraft, 

impulsively started vertical porous surface, stagnation point flow of a 

micropolar fluid towards melting surface, 3-dimensional flow of Casson 

fluid towards a stagnation point at initial unsteady stage and final steady 

stage, nanofluid containing both nanoparticles and gyrotactic 

microorganisms due to impulsive motion flow of nanofluid, permeable 

stretching/shrinking sheet in the presence of suction/injection, inclined 

stationary/moving flat plate and over a wedge. In real life, there are 

many occurrences of either Newtonian fluid flow or non-Newtonian 

fluid flow (for instance air, nanofluid, water, Williamson fluid, 

micropolar fluid and Casson fluid etc.) past a pointed edge of a space 

shuttle, bonnet of a car and aircraft. It may not be realistic to refer to the 

surface of such object as vertical nor horizontal; likewise, neither 

inclined/wedge nor cone; hence the boundary layer formed on an upper 

horizontal surface of a paraboloid of revolution is very important. 

Considering the free convective flow of a nanofluid past an upper 

horizontal surface of a paraboloid of revolution, Animasaun (2016) 

explained the significance of the case in which gravity is sufficiently 

strong enough to make the specific weight appreciably different 

between any two layers of fluid. Recently, Makinde and Animasaun 

(2016a,b) focused on the flow of alumina-water nanofluid containing 

gyrotactic-microorganism over an upper horizontal surface of a 

paraboloid of revolution during the homogeneous-heterogeneous 

quartic autocatalytic chemical reaction in the absence and presence of 

thermophoresis together with the Brownian motion of 36nm 

nanoparticles. 

        In fluid mechanics, it is a well-known fact that there exists no 

single fluid that can be referred to as a perfect Newtonian fluid. In the 

flow of non-Newtonian fluids, there exists no linear relationship 

between stress and deformation rate. The dynamics of non-Newtonian 

fluid with microstructure has become a popular area of research. One of 

the limitations of general Navier-Stokes equation is that it cannot be 

used to describe fluid flow with microstructure(s) (i.e. animal blood, 
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body fluids, lubricating oils and liquid crystals). However, each of the 

particle in this kind of fluids can rotate without depending on the 

motion of the fluid. In order to account for these behaviors in fluid 

flow, a theory which takes into account the micro-rotation and 

deformation are needed. The concept of simple microfluidic was started 

by Turkish-American engineering scientist Ahmed Cemal Eringen. 

According to the report of Eringen (1964), simple micro-fluid is a kind 

of liquid in which its properties and behaviors are influenced by the 

local motion of the fluid elements. Micropolar fluid can support body 

moments, stress moments and are influenced by the spin inertia. The 

stress tensor for these fluids is non-symmetric. Due to the complexity 

involved, the theory was simplified and a subclass of these fluids 

known as micropolar fluids was presented by Eringen (1966). In 

addition, Lukazewicz (1999) stated that micropolar fluid belongs to a 

class of fluids with non-symmetric stress tensor and consists of particles 

with a spinning motion. In summary, micropolar fluids can be defined 

as fluids consisting of rigid randomly oriented micro-rotations of 

particles suspended in a viscous medium. Moreover, Navier-Stoke 

equation is built on the assumption that material particle must possess 

three translational degrees of freedom. On the other side, material 

particle in micropolar fluids possesses three translational degrees of 

freedom together with another three rotational degrees of freedom. 

Gupta (2014) further explained that the three rotational degrees of 

freedom bring into existence non-symmetrical stress tensor and couple 

stresses; micro-rotations variables that represent spin and micro-inertia 

tensors which describe the distribution of atoms and molecules inside 

the microscopic fluid particles. Mohanty et al. (2015) investigated 

unsteady heat and mass transfer characteristics of a viscous 

incompressible electrically conducting micropolar fluid. This subject 

matter attracted Ojjela and Kumar (2016) to investigate the effects of 

hall and ion slip currents on an incompressible free convective flow, 

heat and mass transfer of a micropolar fluid in a porous medium 

between expanding or contracting walls with chemical reaction. It is 

worth mentioning that the behavior of this non-Newtonian fluid 

(micropolar) flow past the upper horizontal surface of a paraboloid of 

revolution is still an open question. 

        Transfer of heat energy can be described as the movement of 

temperature (heated particles) from hot objects to cold objects. Heat 

transfer can be grouped into three broad categories which are 

conduction, convection, and radiation. Pierre Prévost first explained 

Pictets experiment and argued extensively that all bodies (either hot or 

cold) radiate heat energy. Carinthia Slove Physicist, Mathematician, 

and Poet Josef Stefan presented an experimental measurement of total 

radiant heat energy in the year 1879. Thereafter, one of his Doctoral 

students (Ludwig Boltzmann) adopted the experimental results and 

theoretically derived what is known as Stefan-Boltzmann law. A 

pioneer in the field of theoretical astrophysics (Svein Rosseland) stated 

that when a medium is optically thick, the radiation can be 

approximated as an isotropic "diffusion" process; see Rosseland (1931). 

Perdikis and Raptis (1996) used a linearized form of the Rosseland 

approximation in the analysis of steady micropolar fluid flow past an 

unmoving plate. It is also important to remark that in most published 

articles on the effect of thermal radiation; Rosseland approximation has 

always been simplified by using Taylor series expansion and truncated 

the higher order terms. Consequently, the non-dimensionalization and 

parameterization of thermal radiation model become a simple task. 

Physically and scientifically, the electromagnetic radiation which 

occurs within the boundary layer of fluid as it flows during industrial 

processes may not be accurately studied using the so-called technique. 

In addition, the Taylor series expansion may not give full details on 

thermal radiation within boundary layer flows. In view of this, 

nonlinear thermal radiation has been a newly introduced model for 

accurate explanation. A comprehensive numerical analysis on the 

influences of nonlinear thermal radiation within boundary layer was 

presented by Cortell (2013). Hayat et al. (2015) and Animasaun et al. 

(2016) studied the effects nonlinear thermal radiation on the three-

dimensional nanofluid flow and viscoelastic fluid flow in the presence 

of induced magnetic field respectively. In the study of boundary layer 

analysis of micropolar fluid and unsteady magnetohydrodynamic 

Newtonian fluid flows through a binary mixture in an optically thin 

environment; Animasaun (2015;2015) considered the radiative heat flux 

term which models the thermal radiation in the flow as the fourth power 

of temperature in the energy equation. It is pertinent to notice that the 

dimensionless equation was obtained without using Taylor series 

expansion. However, an improved theoretical analysis is guaranteed if 

radiative heat flux is not expanded using Taylor series. 

          In all the above studies no attention has been given to investigate 

boundary layer flow of micropolar fluid over a paraboloid of revolution. 

In this present study, space dependent internal heat source model is 

included in the energy equation; and its corresponding influence on 

dynamic fluid viscosity, rotational velocity, and thermal conductivity 

are explored. The similarity solution of the governing equation is 

obtained using the first principle to obtain suitable similarity variable 

for scaling angular momentum equation governing micropolar fluid 

flow past uhspr. It is worth mentioning that the results of this present 

study will provide useful information to engineers in the industry, 

scientist who are involved in the production of rocket (space shuttle) 

and most especially to chemical engineers. In this article, the 

mathematical formulation of the problem is presented in section 2 while 

the numerical solution of the dimensionless equations using shooting 

technique along with classical Runge-Kutta Scheme is presented in 

section 3. In section 4, all the results are explained, and thereafter 

presented the conclusions based on the findings in section 5. 

2. GOVERNING EQUATIONS 

In this section, the similarity solution of governing equations for 

micropolar fluid flow past uhspr, the mathematical formulation which 

model the boundary layer flow past uhspr in the presence of space 

dependent internal heat source, nonlinear thermal radiation and quartic 

autocatalytic kind of homogeneous-heterogeneous chemical reaction 

are presented. 

2.1 Similarity variables for angular momentum 

 Similarity solutions to Partial Differential Equations (PDEs) are 

solutions which depend on certain groupings of some variables. The 

computational constraints involved in solving PDEs is usually 

cumbersome, which makes it appropriate to seek for its advantageous 

and convenience in seeking a common solution in terms of 

dimensionless variables. In fluid dynamics, a similarity solution is a 

form of a solution which describes a flow that “looks the same” either 

at all times or at all length scales. It is then necessary to construct a 

length scale or time scale using space or time and other dimensional 

quantities which are present in the governing equation - such as 

characteristic length, kinematics viscosity and stretching velocity at the 

wall or velocity of the flow of the free stream. These constructs are not 

“guessed” but are derived from the scaling of the governing equations 

using the order of magnitude. Firstly, we assume that the velocity 

distribution within the boundary layer is similar to that of the 

dimensionless velocity known as 
ou U . Following the idea of Blasius 

(1908), the dimensionless distance from the wall " " is the ratio of 

distance in y  direction to the thickness of boundary layer  

y



   and  

1

2Rex
x

 

                                                                            (1) 
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It is also assumed that within the boundary layer the usual balance 

between viscosity and convective inertia is struck, resulting in the 

scaling argument 
2

2

o oU U

L



                                                                                             (2) 

Here,   is known as kinematic viscosity. And L is known as 

characteristic length of the horizontal wall on upper horizontal surface 

of paraboloid of revolution; herein defined as 

12
( )

1

mL x b
m

  


                                                                                 (3) 

 

Substituting Eq. (3) into Eq. (2), we shall obtain 

2
1

1

2
( )

1

o

m

U

x b
m


 






 

From this scaling argument, it is apparent that the boundary layer grows 

with the downstream coordinate 

 
1

2 1

1
m

om Ux b







 
                                                                     (4) 

Substituting the boundary layer thickness Eq. (4) into the first term of 

Eq. (1) 

1

2 1

1 ( )m

o

y

m x b U








 

 

Hence, this suggests adopting the similarity variable 

 
1

2
1

2

m
oUm

y x b



                                                                       (5) 

together with 

 
m

o

u df
x b

U d
                                                                                      (6) 

By using Eq. (5) we can easily obtain Eq. (6) from the stream function 

which we herein defined as 

   
1/2 1

1/2
2

2
( , ) ( )

1

m

ox y U x b f
m

  
 

  
 

                                               (7) 

In addition, similarity variables for angular momentum is of the form 

   
1 3 1

2 2
1

, ( )
2

m m
o

o

Um
P x A x b U x b r 



  
   

 
                                    (8) 

 

2.2 Formulation of Governing Equation 

 
Fig. 1 The coordinate system of micropolar fluid flow past uhspr. 

 

Steady two-dimensional micropolar (non-Newtonian) fluid flow past an 

upper horizontal surface of a paraboloid of revolution in the presence of 

homogeneous-heterogeneous chemical reaction is considered. In the 

micropolar fluid, it is assumed that quartic autocatalytic chemical 

reaction occurs between homogeneous bulk fluid (species A) and 

heterogeneous catalyst on uhspr (species B) as it flows. The chemical 

reaction can be described as a kind in which the homogeneous (bulk 

fluid) reaction is assumed to be by isothermal quartic autocatalytic 

kinetics and the heterogeneous (catalyst at the surface) reaction is 

assumed to be by first order kinetics. The concentration of 

homogeneous bulk fluid (micropolar) A  is " "a . The concentration of 

catalyst at the surface is " " . The micropolar fluid flow under 

consideration is assumed to occupy the domain  
1

2

m

A x b y


     as 

shown in Fig. 1. The immediate fluid layers on uhspr are stretched 

parallel with velocity ( )m

w oU U x b  . The paraboloid of revolution is 

assumed to be non-porous and non-melting. In this case, x  axis is 

taken along the direction of the horizontal surface and y  axis is 

normal to it. The origin of x  axis and y  axis are not the starting 

point of the fluid flow but is a function of the form  
1

2

m

y A x b


   where 

the parameter m  is known as velocity power index and b  is known as 

a parameter related to the stretching sheet. Consequently, the velocity 

along x  direction, velocity along y  direction, temperature, micro-

rotation, concentration of species A  and concentration of species B  at 

the surface are ( , )u x y , ( , )v x y , ( , )T x y , P( , )x y , ( , )a x y  and 

( , )x y respectively. Following the formulation of Chaudhary and 

Merkin (1995;1996) the governing boundary-layer equation can be 

expressed as 

0,
u v

x y

 
 

 
                                                                                           (9) 

 
2

2

1
.

2

u u u P m
u v g T T

x y y y

  


 


      
     

    
                              (10) 

The temperature at the free stream ( T
) is a constant function at all 

points in x  direction. Considering the influences of wall temperature 

wT and space dependent internal heat source, it is assumed that the 

dynamic viscosity of the micropolar fluid vary linearly with 

temperature while vortex viscosity of the micropolar fluid varies 

exponentially with temperature. These assumptions are based on the 

correlation and nature of rotation of microconstituent in form of vortex. 

Modified momentum equation for non-Newtonian micropolar fluid  

 
2

2

( ) ( ) 1
( ) .

2

u u u T u T P m
u v T g T T

x y y y y y

 
 

 


       
      

      
 

            (11) 

In the micropolar fluid, radiative transport equation (RTE) for the case 

of optically thick media is adopted to account for the radiative heat flux 

as  
* 4

*

4

3
r

T
q

k y

 
 


                                                                                  (12) 

where 
* and 

*k are the Stefan-Boltzman constant and the mean 

absorption coefficient respectively. It is assumed that the temperature 

difference between the layers of micropolar fluid flow is not 

sufficiently small. In view of this, it may not be realistic to simplify the 

radiative heat flux by expanding 4T in a Taylor series expansion about 

T
then neglecting higher order terms. Using implicit differentiation to 

evaluate the partial rate of change of 4T with y  in Eq. (9) and then 

substitute into energy equation leads to The energy equation in which 

thermal radiation is accounted for is of the form 
* 2 * 3

3

* 2 *

1 16 16
( )

3 3p p p

T T T T T T
u v T T

x y c y y k c y k c y y

 


  

       
     

       
 

   
1

2
1

2e

m
om U

ny x b
o w

p

Q T T

c





 


                                                                 (13) 
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Substituting temperature ratio parameter 
w wT T  into the similarity 

variable for temperature w

w

T T

T T








due to the fact that it cannot be used 

to successfully parameterize and non-dimensionalize the terms 3T  and 
3T

y




 in Eq. (13). Leads to 

[1 ]wT T                                                                                      (14) 

Adopting the model for homogeneous-heterogeneous reactions by 

Chaudhary and Merkin (1995) together with Lynch (1992), within the 

boundary layer we propose isothermal Nth autocatalytic reaction of the 

form 

(N 1)BA NB                                                                                   (15) 

the rate of chemical reaction 1

Nk a  and on the upper horizontal 

surface of a paraboloid of revolution in the presence of a catalyst, there 

exists single isothermal first order reaction of the form 

BA                                                                                                  (16) 

rate of chemical reaction 
sk a  where ” a ” and ” ” are the 

concentrations of reactant A and reactant B. Here, 
1k and 

sk are known 

as the reaction rate coefficient which may not be actually referred to as 

a constant because it includes all the likely parameters that may affect 

reaction rate except concentration which has been explicitly accounted 

for in Eq. (15) and Eq. (16). However, setting N 3,  the schemes (i.e. 

Eq. (15) and Eq. (16)) corresponds with that of quartic autocatalytic 

kind of chemical reaction. In order to accurately study the behavior of 

the micropolar fluid flow past the upper surface of a horizontal 

paraboloid of revolution, the addition of gyration vector and fluid shear 

(angular velocity) is proposed as a multiple of the ratio of stretching 

acceleration to stretching rate. Angular momentum equation suitable to 

model micropolar fluid flow along an upper horizontal surface of a 

paraboloid of revolution is 
* 2

2
2 .w

o

P P P U u
u v P

x y j y jU x y

 

 

     
    

     
                               (17) 

Homogeneous-heterogeneous reaction model for the concentrations of 

chemical species A  and B , as stated in the reaction scheme Eq. (17) 

and Eq. (16) 
2

12

N

A

a a a
u v D K a

x y y

  
  

  
                                                            (18) 

2

12

N

Bu v D K a
x y y

  
  

  
                                                             (19) 

Considering the fact that reactant A and reactant B undergo chemical 

changes at the interface, the heterogeneous catalytic reaction is properly 

accounted for. In this study, the boundary condition of micropolar fluid 

at most minimum level (immediate fluid layer on an upper horizontal 

surface of a paraboloid of revolution) is ( , )P x y . In the absence of 

suction/injection, Eq. (9), Eq. (11), Eq. (14), Eq. (17), Eq. (18) and 

Eq. (19) are subject to the following boundary conditions 

  ,
m

ou U x b        0,v          ,wT T     ,o

u
P m

y


 


       ,s

A

a k a

y D





 

  s

B

k a

y D


 


  at   

1

2

m

y A x b


                            (20) 

0,u      ,T T      0,P       ,oa a      0    as   y    (21) 

Considering the experimental data presented by Batchelor (1987) which 

describes the variation of dynamic viscosity with temperature and this 

leads to temperature dependent viscosity model adopted by 

Mukhopadhyay (2009) as in Eq. (22a). Following Charraudeau (1975), 

the mathematical model for temperature dependent thermal 

conductivity is of the form Eq. (22b). Considering the flow of 

micropolar fluid over a heated upper horizontal catalytic surface of a 

paraboloid of revolution, it is assumed that the vortex viscosity varies 

exponentially with temperature. Reynold’s model as in Equation (22c) 

is adopted. 
*

1( ) [1 ( )],wT j T T              
b ( )*( ) e ,s T TT      

*

2( ) [1 ( )],T j T T                                                                       (22) 

All the models stated in Eq. (22) are valid since 
wT T . The quantities 

of interest are the skin friction coefficient Cf  and Nusselt number 
xNu  

which are defined as 

 
2 1

2

w

w

Cf
m

U








    
 

 
1

( )
2

w

x

w

x b q
Nu

m
T x T 







                               (23) 

where 
w  is known as Shear stress or skin friction along the stretching 

sheet along the upper surface of a horizontal paraboloid of revolution 

and 
wq is known as heat flux from the upper surface of a horizontal 

paraboloid of revolution 

 
1

2

,
m

w

y A x b

u

y
 



 





  

 
1

2

m
w

y A x b

T
q

y




 


 


                                               (24) 

 

2.3 Parameterization and Non-dimensionalization 
The transformation and non-dimensionalization of governing 

equations can be easily achieved by using the similarity variables and 

stream function defined in subsection 2.1 together with 
1

2( ) ( ) ,
m

wT x A x b


      ,
( )w

T T

T x T
  







   ,cb

B

S
D


    ( )

o

h
a

   

*

,



  

2 2 1

1

,
( )

m m

o

g
Gr

jU x b







   
2[ ( ) ],wj T x T      

( )
,w

w

T x

T




 (25) 

( ) ,
o

a
g

a
 

*
,

p

r

c
P




   

* *

* 3

3
,

16
a

k
R

T



 

   ,ca

A

S
D


  [ ( ) ],s wb T x T    

 
1

,o

m

p o

Q

c U x b






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1

1
,

N

o

m

o

K a
K

U x b





 
1

2
1

2

s

m
o

A

K

Um
D x b




 




 

where   is known as micro-rotation parameter, 
mGr  is known as 

buoyancy parameter,  is known as temperature-dependent thermal 

conductivity, 
w is known as temperature ratio parameter,   is known 

as space dependent parameter, 
rP  is known as Prandtl number, 

aR Ra is 

known as radiation parameter,   is known as temperature-dependent 

vortex viscosity parameter, 
caS  is the ratio of viscous diffusion rate 

(  ) to molecular (mass) diffusion rate (
AD ), 

cbS  is the ratio of 

viscous diffusion rate (  ) to molecular (mass) diffusion rate 

(
BD ), K denotes strength of the homogeneous reaction,   denotes 

thickness parameter and Λ denotes strength of heterogeneous parameter 

we obtain dimensionless governing equation of the form 

 
3 2 2

3 2 2

2
1

1

d f d d f d f m df df
e f

d d d d m d d

 
  

     

      


 

0,m

dr
e Gr

d

  


                                          (26) 

 
3 2

2

1 1
1

1

w

r r

a

d d d d m df
P f P

R d d d d m d

     
  

    

   
      
  
 

 

 
2

3 12
( 1) 0,

1

wnr
w

a

P d d
e

m R d d

    


 


 

  


                  (27)
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2

2

3 1
1

2 1

e d r m df
r

d m d



 
 

  
     

 
 

 

2

2

2
2 0

1 1

dr e m d f
f r

d m d



   

  
   

    
               (28) 

2

2

2
0

1

N

ca ca

d g dg
S f S K gh

d d m 
  


                                                 (29) 

2

2

2
0

1

N

cb cb

d h dh
S f S K gh

d d m


 
  


                                               (30) 

It is pertinent to note that the minimum value of y  is not the starting 

point of the slot. This implies that all the conditions in Eq. (20) are not 

imposed at 0y   but at  
1

2

m

y A x b


  . As shown in Fig. 1 and Fig. 

2, it is obvious that it may not be realistic to say that 0y   at all points 

on the upper horizontal surface of a paraboloid of revolution. Hence, 

not valid to set 0y   in similarity variable . Upon using 

 
1

2

m

y A x b


   (i.e. the starting point of the flow at the slot), 

minimum value of  y  which accurately corresponds to minimum value 

of similarity variable   as 

1/2
1

2

om U
A 



 
  

 
 

This implies that at the wall the boundary condition suitable to scale the 

boundary layer flow is  . The boundary condition becomes 

1,
df

d
    

1
( ) ,

1

m
f

m
 





   ( ) 1,      

2

2
,o

d f
r m

d
    ( ),

dg
g

d



   

( )
dh

g
d

 

     at                                (31) 

1,
df

d
  ( ) 0,   ( ) 0,r     ( ) 1,g   ( ) 0,h    as    (32) 

 

 
Fig. 2 Graphical illustration of fluid domain and conversion of domain 

from [ , )    to [0, )    

 

Moreover, dimensionless governing Eq. (26) to Eq. (30) are depending 

on   while the boundary conditions Eq. (31) and Eq. (32) are functions 

and/or derivatives depending on χ. In order to transform the domain 

from [ , )    to [0, )    it is valid to adopt  

 

( ) ( ) ( ),F F f      ( ) ( ) ( ),         ( ) ( )R R   

( ),r  ( ) ( ) ( ),G G g       and  ( ) ( ) ( ).H H h       

 

For more details see Fig. 2. The final dimensionless governing equation 

(coupled system of nonlinear ordinary differential equation) of the form 

 

 
3 2 2

3 2 2

2
1

1

d F d d F d F m dF dF
e F

d d d d m d d

  
     

 
       


 

0,m

dR
e Gr

d

 


                                         (33) 

 
3 2

2

1 1
1

1

w

r r

a

d d d d m dF
P F P

R d d d d m d


 

    

        
       
  
 

 

 
2

3 12
( 1) 0,

1

wnr
w

a

P d d
e

m R d d

 


 


   

  


                 (34) 

2

2

3 1
1

2 1

e d R m dR
R

d m d



 
 

  
     

 
 

 

2

2

2
2 0

1 1

dR e m d F
f R

d m d



   

  
   

     
           (35) 

2

2

2
0

1

N

ca ca

d G dG
S F S K GH

d d m 
  


                                              (36) 

2

2

2
0

1

N

cb cb

d H dH
S F S K GH

d d m


 
  


                                          (37) 

Subject to 

1,
dF

d
    

1
( ) ,

1

m
F

m
 





   ( ) 1,     

2

2
,o

d F
R m

d
    ( ),

dG
G

d



   

( )
dH

G
d

 

     at   0                             (38) 

1,
dF

d
 ( ) 0,  ( ) 0,R   ( ) 1,G   ( ) 0,H    as     (39) 

Upon substituting the similarity variables Eq. (25) into Eq. (23) and Eq. 

(24) we obtain 
1/2 / /Re (0),x Cf F     1/2 /Nu Re (0)x x                                             (40) 

3. NUMERICAL SOLUTION 

Numerical solution of corresponding boundary value problem Eqs. (33) 

- (37) subject to boundary condition (38) and (39) are obtained using 

classical Runge-Kutta method along with shooting techniques and 

MATLAB package (bvp5c). The boundary value problem cannot be 

solved on an infinite interval and it would be impractical to solve it for 

even a very large finite interval. However, infinite boundary condition 

at a finite point is considered as ς = 4. The set of coupled nonlinear 

ordinary differential equations along with boundary conditions have 

been reduced to a system of seven simultaneous equations of the first 

order for seven unknowns following the method of superposition in Na 

(1979). 

3.1 Classical Runge-Kutta method along with shooting 

techniques 

In order to integrate the corresponding initial value problem, the values 

of / / (0),F / (0),  / (0),R / (0),G  and / (0)H  are required. However, 

such values do not exist after the non-dimensionalization of the 

boundary conditions Eq. 20 - Eq. 21. Although, at a specific value of   

and  correct estimates for / (0),G  and / (0)H  can be easily obtained 

once (0),G  is known. The suitable guess values for / / (0),F / (0),  
/ (0),R / (0),G  and / (0)H are chosen and then numerical integration 

was carried out. The calculated values of / ( ),F  ( ),  ( ),R  ( ),G   
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and ( ),H   at infinity ( 4  ) are compared with the given boundary 

conditions in Eq. (39) and the estimated values / / (0),F / (0),  
/ (0),R / (0),G  and / (0)H  are adjusted to give a better approximation 

for the solution. Series of values for / / (0),F / (0),  / (0),R / (0),G  and 
/ (0)H  are considered and applied with fourth-order classical Runge-

Kutta method using step size 0.01  . The above procedure is 

repeated until asymptotically converged results are obtained within a 

tolerance level of 510 . It is very important to remark that using 4  , 

all profiles are compatible with the boundary layer theory and 

asymptotically satisfies the conditions at free stream as suggested by 

Pantokratoras (2009). It is noteworthy that there exist no related 

published articles that could be used to validate the accuracy of the 

present numerical results. Meanwhile, Eq. (33) - Eq. (37) subject to 

boundary conditions Eq. 38 – Eq. 39 can easily be solved using ODE 

solvers such as MATLAB's bvp5c. Meanwhile, this boundary value 

problem can easily be solved using ODE solvers such as MATLAB's 

bvp5c; see Gökhan (2011) and Kierzenka and Shampine (2001). 

4. DISCUSSION OF RESULTS 

Dimensionless non-linear coupled differential equations together with 

Neumann boundary conditions are solved numerically using the method 

discussed in subsection 3.1. All the graphical results are presented using 

[Azimuth +90, Elevation -90]. The main purpose is to achieve better 

graphical profiles of 29nm CuO-water nanofluid as it flows from left to 

right over the upper horizontal surface of a paraboloid of revolution. In 

addition, to achieve unequal diffusivities following the explanation of 

Chaudhary and Merkin (1995), 1.2,   0.62,caS   and 1.3,cbS   

(i.e.
ca cbS S ). The numerical computations have been carried out for 

various values of all parameters in order to study its effects on the 

motion of micropolar fluid within the boundary layer.  
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Fig. 3 Effect of ξ on ( )F   

The effects of all the parameters on the vertical velocity profiles 

( ),F   horizontal velocity profiles / ( ),F  temperature 

profiles ( ), temperature gradient profiles / ( ), microrotation 

profiles ( ),R  micro-rotation gradient profiles / ( ),R   concentration of 

reactant A (homogeneous - bulk fluid) ( ),G  , concentration gradient of 

reactant A / ( ),G  concentration of reactant B (heterogeneous - catalyst 

at the surface) ( ),H  and concentration gradient of reactant B / ( ),H   

within boundary layer flow of micropolar fluid are illustrated. 

4.1 Effects of temperature dependent dynamic viscosity 

parameter (  ) and temperature dependent vortex 

viscosity parameter (  ) on the flow of micropolar fluid 

within boundary layer formed on uhspr 

Graphical illustrations of some profiles when 0.4 , 0.3,m   

0.2,  Pr 0.7,  0.62,caS   1.3,cbS   0.1,R  0.2,w  0.5,om   

1,rmG  0.05,K  0.2,  n 0.3, 0.1,  0.05,  0.05, 

1.2   and 3N   at various values of   are illustrated in Fig. 3 - Fig. 

7. It is observed that vertical and horizontal velocity increases with  . 

The graph of shear stress profile reveals that there exist dual effects of 

  on all the layers of fluids within the interval 0 4  . Meanwhile, it 

is certain that / / (0)F  increases with  . Also, a negligible decrease in 

shear stress at free stream is observed. It is noticed that increasing effect 

of   on temperature and temperature gradient is negligible, hence not 

presented for brevity. Micro-rotation profiles ( )R   are found to be a 

decreasing function of fluid layers near the upper horizontal surface of a 

paraboloid of revolution. The effect of temperature dependent viscosity 

parameter (  ) on micro-rotation gradient is illustrated in Fig. 7. It is 

seen that the micro-rotation gradient function / ( )R   increases with   

near an uhspr with no effect on fluid layers near a free stream. At the 

quartic autocatalytic level of chemical reaction ( 3N  ), it is observed 

that concentration of homogeneous bulk fluid increases while the 

concentration of heterogeneous catalyst at the surface decreases with 

 . For brevity, the graphical illustrations of ( )G   and ( )H   at 

various values of   are not displayed. Variation in local skin friction 

coefficient 1/2Rex Cf  at various values of buoyancy parameter 
rmG  and 

temperature dependent dynamic viscosity parameter  is presented in 

Fig. 8. It is noticed that 1/2Rex Cf  decreases negligible with   in the 

absence of buoyancy (i.e. 0rmG  ). A significant increase in 
1/2Rex Cf with   is observed when 1rmG  . However, maximum local 

skin friction coefficient is guaranty when magnitudes of  
rmG  and    

are large; see Fig. 8 more details. Using the set of all parameters above 

and 0.35  , 4  and 1rmG  , effects of   are illustrated in Fig. 9 

- Fig. 16. It is observed that vertical velocity profiles decrease near a 

free stream while horizontal velocity decreases significantly within the 

fluid domain. Also, the microrotation profiles ( )R   increase near the 

wall with a negligible decrease thereafter till free stream. It is further 

observed that micro-rotation gradient / ( )R   decreases near the wall 

and increases near a free stream. Vorticity is a word which describes the 

local spinning motion of tiny particles at a point and traveling along in 

the fluid flow. Physically, as the magnitude of  increases, the rate at 

which tiny particle rotates is increased due to the fact that vortex of the 

micropolar fluid is assumed to vary exponentially with temperature. 

This explains the decrease we observed in vertical and horizontal 

velocity with  .  Meanwhile, Fig. 11 confirms that the tiny particles 

actually rotate significantly near the wall. It is observed in Fig. 13 and 

Fig. 14 that concentration of the homogeneous bulk fluid decreases and 

heterogeneous catalyst at the wall increases with  . When 2 , 

0.3,m   0.2,  Pr 0.7,  0.62,caS   1.3,cbS   0.1,R   0.2,w   

0.5,om   1,rmG   0.05,K   n 0.3,  0.05,   0.05,   1.2   

and 3N   variations in / / (0),F  and (0),R  with both  and   in the 

absence of space dependent heat source and in the presence of 

substantial internal heat source are presented in Table cc. It is observed 

that at fixed value of  , local skin friction coefficients 1/2Rex Cf  

increases more significant with   when 0   to compare to the case 

when 1  . This fact is established by estimating linear regression line 

through data points pSl  in 1/2Rex Cf  and   when 0   and 1   
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respectively. pSl when 0   is estimated as 3.14 and 1   is 

estimated as 1.61. 
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Fig. 4 Effect of ξ on / ( )F   
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Fig. 5 Effect of ξ on / / ( )F   
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Fig. 6 Effect of ξ on ( )R   
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Fig. 7 Effect of ξ on / ( )R   
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Table 1 Variation in / /F (0)  and (0)R at various values of  , ξ and ζ . 

 / /F (0)   0   (0)R   0   

0.00, 1.5    −0.6977510522 0.3488755261 

0.1, 1.5    −0.6656860156 0.3328430078 

0.2, 1.5    -0.6340845293 0.3170422646 

0.1, 0    -0.5845149322 0.2922574661 

0.1, 1    -0.6406878025 0.3203439012 

0.1, 2    -0.6873842024 0.3436921012 

 / /F (0)   3   (0)R   3   

0.00, 1.5    -0.7306111337 0.3653055668 

0.1, 1.5    -0.6672116810 0.3336058405 

0.2, 1.5    -0.6065322441 0.3032661220 

0.1, 0    -0.5673573988 0.2836786994 

0.1, 1    -0.6387261927 0.3193630963 

0.1, 2    -0.6896078297 0.3448039148 
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Fig. 10 Effect of  on / ( )F   
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Fig. 11 Effect of  on ( )R   
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Fig. 12 Effect of  on / ( )R   
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Fig. 13 Effect of  on ( )G   
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4.2 Effects of micro-rotation parameter ( ) on the flow of 

micropolar fluid within boundary layer 

Using 0.2,   0.4, 0.3,m   0.2,  Pr 0.7,  0.62,caS   

1.3,cbS  0.1,R  0.2,w  0.5,om  1,rmG  0.05,K  0.2, 

n 0.3, 0.1,  0.05,  0.05,  1.2   and 3N  effects of   

are illustrated in Fig. 17 - Fig. 23. In this investigation, the magnitude 

of   within the interval of 0 and 4 is considered. The vertical velocity 

and horizontal velocity profiles increase with an increase in the 

magnitude of , see Fig. 17 and Fig. 18. Also, it is confirmed that shear 

stress profiles near an uhspr increases and decreases near the free 

stream as shown in Fig. 19. Also, a negligible effect of   is observed 

on temperature and temperature gradient profiles. These figures are not 

presented here for brevity. Near the upper horizontal surface of a 

paraboloid of revolution, it is observed that micro-rotation of particles 

( )R   in the fluid decreases while micro-rotation gradient / ( )R   

increase within the same interval near an uhspr; see Fig. 20 and Fig. 21. 

At the quartic autocatalytic level of chemical reaction ( 3N  ), it is 

observed that concentration of homogeneous bulk fluid increases while 

the concentration of heterogeneous catalyst at the surface decreases 

with  ; see Fig. 22 and Fig. 23. 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5

D
im

e
n
s
io

n
le

s
s
 d

is
ta

n
c
e
 a

lo
n
g
 a

n
 u

p
p
e
r 

h
o
ri
z
o
n
ta

l

s
u
rf

a
c
e
 o

f 
a
 p

a
ra

b
o
lo

id
 o

f 
re

v
o
lu

ti
o
n
 (

  
)

Vertical velocity profiles F (  )

 

 

 = 0

 = 1

 = 2

 = 3

 = 4

at the

surface

at the free stream

Boundary layer analysis of 

micropolar fluid flow

along an upper horizontal surface 

of a paraboloid of revolution

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Fig. 16 Effect of  on / ( )F   
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Fig. 17 Effect of  on / / ( )F   
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Fig. 18 Effect of  on ( )R   
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Fig. 20 Effect of  on ( )G   
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Fig. 21 Effect of  on ( )H   
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4.3 Effects of nonlinear thermal radiation parameter (
aR ) 

and thickness parameter   on the flow of micropolar 

fluid within boundary layer formed on uhspr 

When 0.1,   0.8,  2, , 0.3,m   0.2,  Pr 0.7,  
0.62,caS  1.3,cbS  0.1,R  1.2,w  0.5,om  1,rmG  0.05,K 

0.2,  n 0.3, 0.1,  0.05,  0.05,  1.2   and 3N  at 

various values of thermal radiation parameter 
aR  when the magnitude 

of thickness parameter   is small and large are illustrated in Fig. 25 - 

Fig. 28.  It is worth noteworthy that the temperature function ( )  

depicts a decrement with the increasing
aR . Furthermore, the rate of 

decrease is more enhanced when the magnitude of thickness parameter 

is large. Physically, as the magnitude of   increases, this corresponds 

to different objects of a paraboloid of revolution with higher thickness. 

In view of this, more heat is lost during when the thickness is large; see 

Fig. 25 and Fig. 26. The influence of nonlinear thermal radiation 

parameter 
aR  on temperature gradient is shown in Fig. 27 and Fig. 28 

at two different values of thickness parameter. It is noticed that Nusselt 

number 1/2Nu Rex x  which is proportional to local heat transfer rate 

decreases with 
aR . However, it is seen that the nature of local heat 

transfer rate within the fluid layer near a free stream can be controlled 

by using  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 23 Effect of 
aR on ( ) when 0.05   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24 Effect of 
aR on ( ) when 3.5   
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Fig. 25 Effect of 
aR on / ( ) when 0.05   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26 Effect of 
aR on / ( ) when 3.5   

 

5. CONCLUSION 

This paper presents the nature of skin friction coefficient, heat transfer 

rate, velocity, temperature, the concentration of homogeneous bulk 

fluid (i.e. air in which tiny particle rotates) and heterogeneous catalyst 

on a stretchable surface next to the object called paraboloid of 

revolution. In this report, the dynamic viscosity and thermal 

conductivity are assumed to vary linearly with temperature while vortex 

viscosity varies exponentially with temperature. Suitable similarity 

transformation for scaling angular momentum is introduced. The results 

show that 

i. The proposed similarity variable successfully non-

dimensionalized and parameterized the angular 

momentum for boundary layer flow past uhspr. 

ii. Temperature dependent dynamic viscosity parameter 

increases vertical velocity near a free stream but reduces 

micro-rotation near uhspr. 

iii. Minimum 1/2Rex Cf  is guaranty at any values of buoyancy 

parameter when dynamic viscosity of the micropolar fluid 

is treated as a constant function of temperature. 

iv. Micro-rotation of tiny particle which rotates in air as it flow 

past a pointed surface of a rocket (as in space science), 

over a bonnet of a car (as in automobile) and past a 

pointed surface of aircraft is a decreasing function of 

vertical velocity near free stream with an increase in the 

magnitude of temperature dependent vortex viscosity. 

Opposite effect of micro-rotation parameter on vertical 

velocity is certain. 

v. Effects of thermal radiation parameter on temperature profile 

and heat transfer rate can be greatly influenced by 

thickness parameter. 

NOMENCLATURE 

x  dimensional coordinate on uhspr (m) 

y  vertical coordinate (m) 

u  velocity component along the x-direction 2( )ms  

v  velocity component along the y-direction 2( )ms  
P  dimensional angular velocity 

j  micro-inertia density 

( )wT x  wall temperature 

T
 free stream temperature 

g  acceleration due to gravity 

w  shear stress 

pc   specific heat at constant pressure 

Greek Symbols  

  temperature dependent dynamic viscosity parameter 

  temperature dependent vortex viscosity parameter 

  dimensionless distance on uhspr 

ρ density of the micropolar fluid (kg/m3) 

σ Stefan-Boltzmann constant (W/m2 ·K4) 

  dynamic viscosity of the micropolar fluid 
*  dynamic viscosity at free stream 

  volumetric thermal-expansion coefficient 

  boundary layer thickness 

( , )x y  stream function 
*  spin gradient viscosity of the micropolar fluid 

  vortex viscosity of the micropolar fluid 
*  vortex viscosity at free stream 

κ  thermal conductivity of the micropolar fluid 
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