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New Space Shift Keying Modulation with
Hamming Code-Aided Constellation Design

Ronald Y. Chang, Sian-Jheng Lin, and Wei-Ho Chung, Member, IEEE

Abstract—A modulation scheme that maps the information
onto the antenna indices, such as space shift keying (SSK) and its
generalized form (namely, generalized SSK or GSSK), presents
an attractive option for the emerging large-scale MIMO system
due to the reduced algorithm and hardware cost. In this letter,
we present a new modulation scheme in this category, where
we propose use of the Hamming code construction technique to
systematically design the constellation. An illustrative example
and experimental studies demonstrate that the proposed scheme
introduces rich design flexibility and achieves better transmis-
sion rate, performance, and power tradeoffs with comparable
hardware costs as compared with existing schemes.

Index Terms—MIMO systems, spatial modulation, Hamming
code.

I. INTRODUCTION

USING antenna indices as a means of modulation has
received increasing attention recently. In this type of

modulation, the information is encoded partially or fully in
the varying indices of the activated and idle antennas in
space. First, the spatial modulation (SM) [1] was proposed
to encode information in the combination of antenna indices
and traditional phase and amplitude modulations. Later, the
SSK [2] and its generalized form GSSK [3] suggested use of
only the antenna indices to encode information. Space-time
shift keying (STSK) [4] extended SSK to both space and
time dimensions by combining SSK with space-time block
codes. Using antenna indices presents an attractive means of
modulation especially for large-scale multiple-input multiple-
output (MIMO) systems, since: 1) The hardware expense is
reduced, since by the nature of this modulation the required
number of radio frequency (RF) chains is a subset of the total
transmit antennas; 2) The detection complexity is lowered,
as the information is contained entirely in the indexing of
the antennas; 3) The transceiver requirement such as synchro-
nization is reduced due to the absence of phase and amplitude
modulations [2]. A disadvantage of this type of modulation,
however, is a relatively small-sized modulation alphabet and
therefore the reduced supportable transmission rates compared
to conventional modulations. This problem can be alleviated
by employing a large antenna array and GSSK.

In GSSK, a fixed number of activated antennas is employed
at any given time. As a natural extension to SSK, GSSK
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however presents many limitations on its design flexibility and
performance, such as the achievable transmission rates, uti-
lization of the constellation space, and selection of an optimal
constellation [3]. In this letter, we propose a new modulation
scheme employing a possibly varying number of activated
antennas. By observing the error probability expression, we
further link the constellation design of the proposed modula-
tion with the construction of Hamming codes [5]. The results
show that the proposed scheme, termed SSK with Hamming
code-aided constellation design, or HSSK for short, offers a
rich selection of design options and achieves better transmis-
sion rate, performance, and power tradeoffs than GSSK. The
hardware expenses for GSSK and the proposed scheme are
comparable, as the transmitter requirement on the RF switches
and RF chains [6] are almost identical. Furthermore, since the
design criterion is based on the Hamming code construction
technique, the proposed scheme does not suffer from the same
computational burden in choosing a good constellation in
GSSK.

This letter is organized as follows. Sec. II presents the
system description. The proposed new modulation scheme is
described in Sec. III. Performance results are demonstrated in
Sec. IV and concluding remarks are given in Sec. V.

Notations: In this letter, I𝑀 represents the 𝑀 × 𝑀 iden-
tity matrix, ∥⋅∥ the 𝑙2-norm of a vector, (⋅)𝑇 and (⋅)𝐻 the
matrix/vector transpose and conjugate matrix/vector trans-
pose, respectively. E[⋅] denotes expectation, ℜ(⋅) the real
part of its argument, and 𝑄(𝑥) the Q-function defined as
1√
2𝜋

∫∞
𝑥

𝑒−(𝛼2/2)𝑑𝛼.

II. SYSTEM DESCRIPTION

Consider an uncoded spatial multiplexing system with 𝑁𝑇

transmit antennas and 𝑁𝑅 receive antennas. The system
employs the modulation scheme that uses only the antenna
indices to carry information. The baseband signal model is
given by

y =
√
𝐸𝑏Hx̃+ v, (1)

where y ∈ ℂ𝑁𝑅×1 is the received signal, x̃ is the 𝑁𝑇×1 trans-
mitted symbol vector comprising one-elements (corresponding
to activated antennas) and zero-elements (corresponding to
idle antennas), H ∈ ℂ𝑁𝑅×𝑁𝑇 is the flat-fading channel,
v ∈ ℂ𝑁𝑅×1 is the additive white Gaussian noise (AWGN),
and 𝐸𝑏 is the power amplification factor. The channel matrix
H has independent and identically distributed (i.i.d.) com-
plex Gaussian entries with zero mean and covariance matrix
𝜎2
𝐻I𝑁𝑅 , where 𝜎2

𝐻 = 1. The channel information is assumed
perfectly known at the receiver. The noise v has i.i.d. complex
elements with zero mean and covariance matrix (𝑁0/2)I𝑁𝑅 .
The transmitted symbol vector x̃ is drawn equally probably
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TABLE I
AN EXAMPLE OF GSSK SYMBOL MAPPING (𝑁𝑇 = 5, 𝑛𝑡 = 2)

Information bits GSSK symbol vector Activated antenna indices
x̃ ∈ 𝔸

(GSSK) ĩ ∈ 𝕀
(GSSK)

000 [1, 1, 0, 0, 0]𝑇 {1,2}
001 [1, 0, 1, 0, 0]𝑇 {1,3}
010 [1, 0, 0, 1, 0]𝑇 {1,4}
011 [1, 0, 0, 0, 1]𝑇 {1,5}
100 [0, 1, 1, 0, 0]𝑇 {2,3}
101 [0, 1, 0, 1, 0]𝑇 {2,4}
110 [0, 1, 0, 0, 1]𝑇 {2,5}
111 [0, 0, 1, 1, 0]𝑇 {3,4}

from the modulation alphabet (or the constellation set) 𝔸,
which is of size 2𝑏 for 𝑏 bits transmission. An example of 𝔸
is shown in Table I for GSSK modulation employed in a 5×5
MIMO system to transmit 3 bits. The location of the 𝑛𝑡 = 2
one-elements is varied to yield different symbol vectors (or
constellation points). Since

(
𝑁𝑇

𝑛𝑡

)
> 2𝑏 in this case, 𝔸(GSSK)

is not unique, and can be chosen lexicographically as shown
in Table I or based on some optimization criterion [3] (see
Sec. III).

A. Detection

Given the signal model in (1), the optimal maximum
likelihood (ML) detection is to solve a constrained least-square
problem, i.e.,

x̃ML = argmin
x∈𝔸

∥∥∥y −
√
𝐸𝑏Hx

∥∥∥2. (2)

The task in (2) is equivalent to searching column indices of
H that match the one-elements of x ∈ 𝔸. Let h𝑘 be the 𝑘th
column of H, then (2) can equivalently be expressed as

ĩML = argmin
i∈𝕀

∥∥∥y −
√
𝐸𝑏hi

∥∥∥2, (3)

where hi =
∑

𝑘∈i h𝑘 and 𝕀 is the set of activated antenna
indices. An example of 𝕀 is shown in Table I.

B. Pairwise Error Probability

Let x𝑖 and x𝑗 be two distinct symbol vectors in 𝔸 with
i and j being their activated antenna indices. The pairwise
error probability (PEP) of deciding on x𝑗 given that x𝑖 = x̃
is transmitted conditioned on H is given by [3]

𝑃 (x𝑖 → x𝑗 ∣H) = 𝑃
(∥∥∥y −

√
𝐸𝑏hi

∥∥∥2 >
∥∥∥y −

√
𝐸𝑏hj

∥∥∥2
)

(𝑎)
= 𝑃

(
ℜ(v𝐻(hj − hi)

)
>

√
𝐸𝑏

2
∥hi − hj∥2

)
(𝑏)
= 𝑄(

√
𝑍), (4)

where 𝑍 = (𝐸𝑏/𝑁0) ∥hi − hj∥2. (a) is derived by substituting
y =

√
𝐸𝑏hi+v and arranging the terms, and (b) is derived by

assuming hi and hj are known and using the fact that entries
of v are i.i.d. 𝒞𝒩 (0, 𝑁0/2).

Since entries of hi or hj are i.i.d. 𝒞𝒩 (0, 1/𝑁𝑇 ), entries of
hi−hj are i.i.d. 𝒞𝒩 (0, 𝑑(x𝑖,x𝑗)/𝑁𝑇 ), where 𝑑(x𝑖,x𝑗) is the
number of distinct elements between {h𝑘∣𝑘 ∈ i} and {h𝑘∣𝑘 ∈
j}, or equivalently, the Hamming distance between x𝑖 and
x𝑗 . As a result, 𝑍 is chi-square distributed with 2𝑁𝑅 degrees
of freedom that can be expressed as 𝑍 =

∑2𝑁𝑅

𝑘=1 𝑧2𝑘, where

𝑧𝑘’s are i.i.d. 𝒩 (0, 𝜎2
𝑧) with 𝜎2

𝑧 = 𝐸𝑏𝑑(x𝑖,x𝑗)/(2𝑁𝑇𝑁0).
The PEP is then given by

𝑃 (x𝑖 → x𝑗) = E𝑍

[
𝑃 (x𝑖 → x𝑗 ∣H)

]

=

∫ ∞

0

𝑄(
√
𝑥)𝑓𝑍(𝑥)𝑑𝑥, (5)

where 𝑓𝑍 is the probability density function (pdf) of 𝑍 . Using
Chernoff bound 𝑄(

√
𝑥) ≤ (1/2)𝑒−𝑥/2 and substituting the

known expression of 𝑓𝑍 in (5) we obtain

𝑃 (x𝑖 → x𝑗) ≤ 1

2(𝜎2
𝑧 + 1)𝑁𝑅

≤ 𝑎 ⋅
(𝐸𝑏

𝑁0

)−𝑁𝑅 ⋅ 𝑑(x𝑖,x𝑗)
−𝑁𝑅 , (6)

where 𝑎 = (2𝑁𝑇 )
𝑁𝑅/2. As suggested by (6), the performance

of a modulation scheme that uses antenna indices to carry
information depends on the Hamming distance between two
possible symbol vectors.

C. System Error Probability

The system error probability can be derived by averaging
the result in (6) over all pairwise combinations, i.e.,

𝑃𝑠 ≤ 1

2𝑏−1(2𝑏 − 1)

∑
x𝑖 ∕=x𝑗∈𝔸

𝑎 ⋅
(𝐸𝑏

𝑁0

)−𝑁𝑅 ⋅ 𝑑(x𝑖,x𝑗)
−𝑁𝑅 . (7)

Note that the dominant terms in (7) correspond to pairs of
symbol vectors with a small 𝑑(x𝑖,x𝑗). In other words, the
minimum Hamming distance between arbitrary two distinct
symbol vectors, 𝑑min = minx𝑖 ∕=x𝑗∈𝔸 𝑑(x𝑖,x𝑗), determines the
system performance, as will be verified in Sec. IV.

III. PROPOSED NEW MODULATION

In GSSK, given a target transmission rate of 𝑏 bits, the
number of activated antennas 𝑛𝑡 is chosen such that

(
𝑁𝑇

𝑛𝑡

) ≥
2𝑏. This scheme presents several limitations:
1) A fixed 𝑛𝑡 limits the amount of information that can be

transmitted. For instance, a 4× 4 system with GSSK can
transmit at most two bits, with 𝑛𝑡 = 1 or 𝑛𝑡 = 2.

2) There is no simple and systematic method to design
the constellation for GSSK that minimizes the error
probability. The design method proposed in [3] chooses
the specific 𝔸 that maximizes

∑
x𝑖 ∕=x𝑗∈𝔸

𝑑(x𝑖,x𝑗) as
𝔸(GSSK), which is a computationally intense search over

the
((𝑁𝑇

𝑛𝑡
)

2𝑏

)
possibilities of 𝔸.

3) Any constellation design, lexicographic as in Table I or
optimal based on the above criterion, leads to 𝑑min = 2.
This limits the system performance as suggested by (7).

The above limitations can be mitigated by relaxing the fixed 𝑛𝑡

constraint and leveraging the design techniques for Hamming
codes, as described as follows.

A. HSSK

The first key to the enhanced modulation design is to
allow the number of activated antennas to be varied. Consider
adopting a new modulation alphabet for a 4× 4 system:

𝔸 =
{
[0, 0, 0, 1]𝑇 , [0, 0, 1, 0]𝑇 , [0, 1, 0, 0]𝑇 , [1, 0, 0, 0]𝑇 ,

[0, 1, 1, 1]𝑇 , [1, 0, 1, 1]𝑇 , [1, 1, 0, 1]𝑇 , [1, 1, 1, 0]𝑇
}
.
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As compared to GSSK with 𝑛𝑡 = 1 (whose alphabet contains
the first four constellation points above), this scheme can
transmit three bits instead of two. The higher transmission
rate is achieved at the cost of higher average power and more
RF chains needed. This scheme and GSSK with 𝑛𝑡 = 1 both
have 𝑑min = 2. The elements of this alphabet are, in fact,
identical to the eight codewords of the (4, 3) Hamming code
with the last bit of each codeword complemented.1 Given
the same length of codewords, a larger 𝑑min can also be
achieved at the compromise of the transmission rate, e.g.,
𝔸 = {[0, 0, 0, 1]𝑇 , [1, 1, 1, 0]𝑇} with 𝑑min = 4. This motivates
a systematic modulation design strategy based on Hamming
codes, where the transmission rate, minimum Hamming dis-
tance, and power consumption can be customized.

In HSSK, given a target transmission rate of 𝑏 bits, the
constellation design procedure is summarized as follows:
1) Select 𝑑min for which 𝑛(𝑁𝑇 , 𝑑min) ≥ 2𝑏, where

𝑛(𝑁𝑇 , 𝑑min) is the number of codewords having fixed
length 𝑁𝑇 and satisfying 𝑑min between any pair of
codewords. Generate the codeword set ℂ through readily
available sources, e.g., [7].

2) Complement the last bit of all codewords in ℂ, i.e.,
𝑐𝑁𝑇 = 𝑐𝑁𝑇 ⊕ 1, ∀c = [𝑐1, 𝑐2, . . . , 𝑐𝑁𝑇 ] ∈ ℂ.

3) Select the 2𝑏 minimum Hamming-weight codewords from
ℂ (break ties arbitrarily), and transpose each of them to
form 𝔸(HSSK).

B. An Example: 7× 7 System

The capacity of flexible configuration in the proposed mod-
ulation scheme can be best seen by an example. In Fig. 1 we
plot the interplay of transmission rate 𝑏, minimum Hamming
distance 𝑑min, and average (constellation) power consumption
E[x̃𝐻 x̃] for different configurations. Each triangle represents
a feasible modulation scheme. For GSSK in Fig. 1(a), only
three configurations are possible, with a transmission rate of
3–5 bits, an average power equal to 𝑛𝑡, and a fixed 𝑑min = 2. In
comparison, a rich array of configurations can be produced in
HSSK, as shown in Fig. 1(b). Specifically, HSSK can transmit
3–6 bits, where 6 bits transmission is realized by using all 64
codewords in the (7, 6) Hamming code with 𝑑min = 2, and 4
bits transmission is realized by either selecting 16 minimum
Hamming-weight codewords from the (7, 6) Hamming code
or using all 16 codewords in the (7, 4) Hamming code with
𝑑min = 3, etc. In addition, given a certain target transmission
rate, HSSK allows several design choices that strike favorable
tradeoffs between performance (related to 𝑑min) and power.
Making specific comparisons side-by-side, we observe

∙ Power consumption: At the transmission rate 𝑏 =
3, 4, or 5 and fixed minimum Hamming distance 𝑑min =
2, HSSK consumes less power for 𝑏 = 3 (1.25 vs. 2) and
𝑏 = 5 (2.5625 vs. 3), and slightly more power for 𝑏 = 4
(2.125 vs. 2).

∙ Performance: At a fixed transmission rate, e.g., 𝑏 = 3,
HSSK can be configured with 𝑑min = 3 (besides 𝑑min =

1Typically, Hamming codes are generated with an all-zero codeword.
Complementing the last bit of all codewords guarantees no all-zero element
in the modulation alphabet while retaining the minimum Hamming distance.
Hereafter in this letter, a Hamming code refers to a set of codewords with
the last bit complemented.
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Fig. 1. The relation between transmission rate, minimum Hamming distance,
and average power consumption for feasible configurations of (a) GSSK, (b)
HSSK, for a 7× 7 MIMO system with a target transmission rate of 3 bits or
more.

2) at a slight cost of power (2.375), and with 𝑑min = 4 at
a higher cost of power (3.5). As will be seen in Sec. IV,
the performance gain yielded by HSSK with 𝑑min = 3
cannot be duplicated by increasing the same amount of
power for GSSK.

∙ Number of RF chains: The number of required RF
chains at the transmitter, which concerns the hardware
expense of the modulation scheme, can be interpreted
as the maximum power consumption over all constel-
lation points. For GSSK, this is equal to the average
power consumption 𝑛𝑡. For HSSK, it is determined by
the largest Hamming-weight codeword(s) among the 2𝑏

selected codewords. The comparison is shown in Table
II for different system settings. As can be seen, for the
common configurations, HSSK may require an equal,
greater, or smaller number of RF chains than GSSK
depending on the scenario.

IV. SIMULATION RESULTS

Here we present the symbol error rate (SER) performance
of the considered modulation schemes. In Fig. 2, we target
3 bits transmission in a 7 × 7 MIMO system. This requires
𝑛𝑡 = 2 for GSSK and permits three different 𝑑min for
HSSK. Both the lexicographic and optimal [3] constellation
designs are considered for GSSK. As can be seen, GSSK
with optimal constellation design is about 0.6 dB better than
the lexicographic design, which is comparable with HSSK
(𝑑min = 2). With the same 𝑑min = 2, GSSK with optimal
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TABLE II
THE REQUIRED NUMBER OF RF CHAINS AT THE TRANSMITTER FOR DIFFERENT SYSTEM SETTINGS (★ DENOTES UNACHIEVABLE CONFIGURATIONS)

MIMO System 7 × 7 10 × 10 12 × 12
Transmission rate (bits) 3 4 5 6 5 6 7 8 9 7 8 9 10 11
Min. Hamming distance 2 3 4 2 3 2 2 2 3 4 2 3 2 2 2 2 3 4 2 3 2 2 2

# RF chains (GSSK) 2 ★ ★ 2 ★ 3 ★ 2 ★ ★ 3 ★ 4 ★ ★ 3 ★ ★ 4 ★ 5 ★ ★
# RF chains (HSSK) 3 3 5 3 6 3 7 3 5 9 3 9 3 5 9 3 6 11 5 10 5 5 11
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Fig. 2. SER performance for a 7× 7 MIMO system.
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Fig. 3. SER performance for a 12 × 12 MIMO system.

constellation slightly outperforms HSSK, since GSSK finds
constellation points with pairwise Hamming distances as large
as possible whereas HSSK does not pursue an optimal com-
bination (and spend such computational efforts) but rather
selects constellation points with Hamming weights as small
as possible.2 HSSK however requires 37.5% less power than
GSSK (1.25 vs. 2), as discussed in Sec. III-B. Note that there is
a limit to what optimal constellation design can do for GSSK,
since the same 𝑑min = 2 is yielded. By increasing 𝑑min as
enabled by HSSK, the performance can be further improved
as predicted by (7); specifically, a 1.5 dB and 2.5 dB gain over
optimal GSSK for HSSK (𝑑min = 3) and HSSK (𝑑min = 4).
The analytical performance upper bound in (7) is plotted
for HSSK, which is loose for low 𝐸𝑏/𝑁0 and tighter for

2In accordance with the design rule of HSSK, HSSK constellation can also
be optimized by breaking the ties of minimum Hamming-weight codewords in
a more sophisticated way. That is, we can choose the combination that yields
maximum pairwise Hamming distances. This usually entails a computationally
feasible search, even for large systems. For example, in optimizing HSSK
(𝑑min = 3) for 5 bits transmission in a 12×12 system, the 25 = 32 codewords
would consist of 30 codewords with Hamming weight of 4 or less, and two
codewords chosen from the 52 codewords with Hamming weight of 5.

high 𝐸𝑏/𝑁0.3 It should be emphasized that the performance
advantage of HSSK is yielded by a more efficient constellation
design and not just power. In fact, increasing the power of
GSSK to what is required for HSSK to achieve 𝑑min = 3,
which amounts to an increase of 10 log(2.375/2) = 0.75 dB,
will not compensate the gap between HSSK (𝑑min = 3) and
GSSK which is at least 1.5 dB.

In Fig. 3, we target 5 bits transmission in a 12× 12 MIMO
system. In this scenario, HSSK (𝑑min = 2) overlaps with GSSK
while HSSK (𝑑min = 3) and HSSK (𝑑min = 4) outperform
GSSK by about 2.3 dB and 3 dB, respectively. The error
rate decays more quickly due to a larger 𝑁𝑅, as indicated
by (7). Optimal constellation design for GSSK becomes com-
putationally infeasible in this case (entailing a search over((122 )

32

)
= 7×1018 combinations), which shows a disadvantage

of GSSK if optimal constellation is pursued in large systems.
Since HSSK does not pursue such an optimization but adopts
a systematic Hamming code design technique, it presents an
inexpensive way for designing spatial modulation schemes.

V. CONCLUSION

A novel spatial modulation scheme has been proposed. In
the proposed modulation scheme, the constellation is designed
via the Hamming code construction technique, offering a rich
selection of design options and carrying the potential of better
transmission rate, performance, and power tradeoffs unachiev-
able by previous schemes. The demonstrated performance as
well as design simplicity and flexibility make the proposed
scheme attractive for use in next-generation MIMO systems.
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