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ABSTRACT: For digital images and patterns under the nonlinear geo-

metric transformation, T: (n, h) ? (x, y), this study develops the splitting

algorithms (i.e., the pixel-division algorithms) that divide a 2D pixel into

N 3 N subpixels, where N is a positive integer chosen as N5 2k(k � 0)

in practical computations. When the true intensity values of pixels are

known, this method makes it easy to compute the true intensity errors.

As true intensity values are often unknown, the proposed approaches

can compute the sequential intensity errors based on the differences

between the two approximate intensity values at N and N/2. This article

proposes the new splitting–shooting method, new splitting integrating

method, and their combination. These methods approximate results

show that the true errors of pixel intensity are O(H), where H is the pixel

size. Note that the algorithms in this article do not produce any se-

quential errors as N � N0, where N0 (�2) is an integer independent of N

and H. This is a distinctive feature compared to our previous papers on

this subject. The other distinct feature of this article is that the true error

bound O(H) is well suited to images with all kinds of discontinuous in-

tensity, including scattered pixels. VVC 2011 Wiley Periodicals, Inc. Int J

Imaging Syst Technol, 21, 323–335, 2011; Published online in Wiley Online

Library (wileyonlinelibrary.com). DOI 10.1002/ima.20298

Key words: image geometric transformation; digital images; splitting

algorithms; splitting–shooting method; error analysis

I. INTRODUCTION

Digital images and patterns often undergo changes and distortions

due to linear or nonlinear transformations. Common examples of

such images include handwritten characters, photos, and human

faces in different orientations and different appearances. Consider

the 2D nonlinear transformation

T : ðn;hÞ ! ðx; yÞ; x ¼ xðn;hÞ; y ¼ yðn;hÞ; ð1Þ

where (x, y) and (n, h) are the coordinates of points in XOY and

nOh, respectively, and XOY and nOh are two Cartesian coordinate

systems. First, assume that the functions x(n, h) and y(n, h) are

explicit and known. A cycle conversion T21T of image transforma-

tions occurs if a transformation T distorts an image, and then

restores back to itself by the inverse transformation T21. This arti-

cle also studies the cyclic conversion T21T for digital images

because the original intensity values of pixels remain exactly the

same after this conversion. The true intensity errors of restoration

can be computed for the algorithms used. The cyclic transformation

T21T represents the restoration of distorted images, which is impor-

tant in pattern recognition.

Splitting algorithms divide a 2D pixel into N 3 N subpixels,

where N is a positive integer N 5 2k(k � 0) in practical computa-

tion. When the true intensity values of pixels are known, the true in-

tensity errors can be easily computed. As the true intensity values

are often unknown, the sequential intensity errors may be computed

using the differences between the two approximate intensity values

at N and N/2. The strict definitions of sequential intensity errors are

given in (58) and (61) later.

Previous research (Li, 1990) proposed the area method to carry

out linear transformations using exact integration. However, for non-

linear transformations, splitting a pixel into N2 subpixels produces ap-

proximate integration and results in sequential errors of O(1/Np) with

the power p � 1. The remarkable advantage of the original combina-

tion CSIM of splitting–shooting–integration methods is the omission

of nonlinear solutions, if the explicit functions of the forward transfor-

mations T are known. The sequential errors are proven to be of O(1/

N) by Li (1996) and Op(1/N
1.5) in probability of Li and Bai (1998).

As the initial sequential errors of CSIM are large, the number N is

also large for a system with multiple (e.g., 256) levels of intensity.

Therefore, CSIM is limited to binary images (Li et al., 1989) and

small number of pixels. This article develops new algorithms that are

suitable for a huge number of pixels with 256 intensity levels.

For arbitrary nonlinear transformations, it is desirable to avoid

nonlinear solutions in the algorithms due to two difficulties: (1) the

existence and uniqueness of the solutions and (2) good initial values

for the iteration methods, such as the Newton iteration method. ACorrespondence to: John Y. Chiang; e-mail: chiang@cse.nsysu.edu.tw
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recent study discusses approximate nonlinear transformations

through piecewise linear transformations. This is more significant

for complicated transformations in which the transformation func-

tions are not explicitly given, but governed by partial differential

equations (PDEs) of Li, (1996) and Li et al. (1989). The finite ele-

ment method with piecewise linear intensity functions may approxi-

mate these PDEs. A new approach of approximating T as piecewise

linear transformations makes it possible to bypass nonlinear solu-

tions. The other important aspect of the proposed approach is that it

gets rid of sequential intensity errors by NCSIM, if the pixel is split

into N3 N subpixels, where the integer N � N0 � 2, and N0 is inde-

pendent of N and H. Our previous study (Li, 1989, 1990, 1994,

1996, 1999, 1998, 2001, 2004) developed different numerical algo-

rithms that always generate sequential errors.

The first goal of this article is to develop new algorithms that

avoid sequential errors when N exceeds N0. Hence, this approach

may choose a smaller division number N � N0, thus to greatly save

the central processing unit (CPU) time and computer storage. More

importantly, the new algorithms are applicable to a huge number of

pixels with 256 intensity levels. The second goal of this article is to

explore the new error analysis in Section IV. This method is appli-

cable to the images with all kinds of discontinuous intensity, includ-

ing scattered pixels in real-life application. This is remarkably dif-

ferent from our previous analysis (Li, 1989, 1990, 1994, 1996,

1999, 1998, 2001, 2004), where the smooth intensity of images is

always assumed unrealistically.

Although interpolation can be used for large jumps of intensity

function, their true errors are, of course, large. However, the se-

quential errors will diminish for N � N0. This article also derives

the true errors as O(H), where H is the pixel size.

This article is organized as follows. Section II describes the basic

algorithms, SSM, SIM, and CSIM for T, T21, and T21T, respectively.

Section III adopts piecewise linear interpolations for nonlinear trans-

formations, and develops the new algorithms, new splitting–shooting

method (NSSM), new splitting–integrating method (NSIM), and their

combination (NCSIM) for T, T21, and T21T, respectively. Section IV

presents the new error analysis method that may be applied to discon-

tinuity of intensity of images. Section V carries out numerical experi-

ments to confirm the error analysis, and applies numerical algorithms

to the geometric transformations governed by PDEs. Finally, the last

section provides a few concluding remarks.

II. BASIC SPLITTING ALGORITHMS

This section describes the basic algorithms, SSM; SIM and CSIM.

A. Basic Approach. Let Ŵ and Ẑ denote the original image and

the image distorted by geometric transformations, respectively. Ŵ

and bZ consist of pixels Ŵij and ẐIJ , denoted by Ŵ 5 {Ŵij} and

Ẑ ¼ fẐIJg, respectively. Hence, an image undergoing cyclic con-

version can be expressed as

Ŵ �!
T

Ẑ �!
T�1

; Ŵ ¼ fŴijg; Ẑ ¼ fẐIJg; ð2Þ

where the pixels Ŵij and ẐIJ are located at the points (i, j) and (I, J),

respectively,

ði; jÞ ¼ fðn;hÞjn ¼ iH;h ¼ jHg; ðI; JÞ ¼ fðx; yÞjx ¼ IH; y ¼ JHg;

ð3Þ

and H is the pixel size. Note that for the one-to-one correspondence

transformation T, the normalized image Ŵ under T21T is exactly

the same as the original image Ŵ. Therefore, the proposed approach

applies numerical methods to perform (2), as the eight steps illus-

trated in Figure 1.

Steps 1 and 8 convert image pixels to their intensity values, and

vice versa. Denote the intensity values Fij and BIJ for the pixels Ŵij

and ẐIJ , respectively, and Ŵij (or ẐIJ) for pixels at the positions (i, j)

(or (I, J)) with the kth level of a multiple level system of intensity,

where Fij (or BIJ) are their intensity values with non-negative inte-

gers or numbers [[0,1]. Consider the q(5256) level system of inten-

sity as an example. Step 1 can convert the pixel Ŵij of the original

image at the kth level to the intensity values Fij using the following

formula:

Figure 1. Schematic steps in digital image transformations by numerical approaches.
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Uij ¼
k � 1

q� 1
; 0 � k � q: ð4Þ

For binary images, the pixel Ŵij is either black, denoted by ‘‘*,’’ or

white, denoted by ‘‘.’’ These pixel values are converted to either

Fij 5 1 or Fij 5 0. The term Fij can be regarded as an entry of the

grayness matrix Û, denoted by Û ¼ fUijg. This is the traditional

matrix representation of images. Conversely, when Step 8 obtains

the intensity value ~Uij, the following formulas identify the pixel Ŵij

at the kth level of intensity,

~Wij¼

the first level; when ~Uij <
1

2ðq�1Þ ;

the kth level; when k�1
q�1

� 1
2ðq�1Þ �

~Uij <
k�1
q�1

þ 1
2ðq�1Þ ;

the qth level; when ~Uij � 1� 1
2ðq�1Þ :

8
><

>:
ð5Þ

B. Interpolation. Step 2 chooses the following piecewise con-

stant and bilinear interpolatory functions.

1. Piecewise constant interpolation (l 5 0)

/̂0ðn;hÞ ¼ Uij in �ij ð6Þ

where

�ij ¼
ðn;hÞ; ði� 1

2
ÞH � n < ðiþ 1

2
ÞH;

ðj� 1
2
ÞH � h < ðjþ 1

2
ÞH

� �
; ð7Þ

and the total domain X of the standard image Ŵ in nOh is

X ¼
S
ij

�ij. In (6) and (8), /̂lðn;hÞ denotes the interpolant of

the intensity function based on Fij, where l represents the order

of piecewise polynomials.

2. Piecewise bilinear interpolation (l 5 1)

/̂1ðn;hÞ ¼
1

H2
½Uijððiþ 1ÞH � nÞððjþ 1ÞH � hÞ

þUiþ1jðn� iHÞððjþ 1ÞH � hÞ

þUijþ1ððiþ 1ÞH � nÞðh� jHÞ

þ Uiþ1jþ1ðn� iHÞðh� jHÞ� in ��ij;

ð8Þ

where

��ij ¼
ðn;hÞ; iH � n � ðiþ 1ÞH;

jH � h � ðjþ 1ÞH

� �
; and X ¼

[

ij

��ij:

ð9Þ

The piecewise constant and linear interpolations with l 5

0,1 can also be regarded as low-order spline interpolations,

and piecewise quadratic and cubic interpolations be

regarded as spline interpolations with an order of l 5 2,3.

These settings are used to design the interpolant functions [

Cl(X), which was also studied for image geometric transfor-

mation by Li (1994, 2001). When l 5 1, the piecewise lin-

ear interpolations and those in Technique I in Section A

(subsection of Section III) obtain the continuous function

that coincides with the grayness image in terms of pixels.

These interpolation techniques can also be used for the big

grayness jumps of neighboring pixels (i.e., discontinuity

images).

C. Image Presentation by Integrals. A pixel can represent the

mean intensity over hij (Li et al., 1989), also see Jähne (1997, p.

211), given by

UM
ij ¼

1

H2

ZZ

�ij

/ðn;hÞdndh: ð10Þ

Similarly, we have

BM
IJ ¼

1

H2

ZZ

�IJ

bðx; yÞdxdy; ð11Þ

where

/ðn;hÞ ¼ bðxðn;hÞ; yðn;hÞÞ; ð12Þ

and the standard square pixel region

��IJ ¼
ðx; yÞ; ðI � 1

2
ÞH � x � ðI þ 1

2
ÞH

ðJ � 1
2
ÞH � y � ðJ þ 1

2
ÞH

� �
: ð13Þ

According to Gousseau and Morel (2002), it is natural to present

images as (continues) first, then their digital counterpart as integral

over pixels. When there exists a discontinuity of image intensity, the

weak derivatives may be adapted for study. The linkage between nat-

ural images and bounded variation is explored study by Gousseau

and Morel (2002). The images with intensity discontinuity only at

boundary and edges can also be dealt with, based on functions on the

Sobolev space H1(X), where the weak derivatives are square integra-

ble. An analysis of discontinuity images in Sobolev spaces is reported

in our other paper. Evidently, the image definitions in (10) and (11)

agree with the natural presentation of digital images of Gousseau and

Morel (2002). However, these proposed image presentations by inte-

grals easily link discrete images to calculus and numerical analysis

(Li, 1989, 1990, 1994, 1996, 1999, 1998, 2001, 2004).

D. Splitting–Shooting Method for Images under T. Assume

that the Jacobian determinant

#ðn;hÞ ¼
@x
@n

@x
@h

@y
@n

@y
@h

�����

����� ð14Þ

always satisfies

0 < #0 � #ðn;hÞ � #M; ð15Þ

where #0 and #M are two bounded constants independent of n,g,x,

and y, and the constant JM denotes the maximal value defined by JM
5 maxXJ. Denote as XIJ the transformed region from hIJ under the

inverse transformation T21. Note that the edges of XIJ are generally

curves. Reduce integral (11) to

BIJ ¼
1

H2

ZZ

XIJ

/ðn;hÞ#ðn;hÞdndh; ð16Þ

where

�IJ �!
T�1

XIJ ; i:e:; XIJ �!
T�1

�IJ : ð17Þ
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Split the pixel region hij in nOh of Ŵij into N 3 N small subre-

gionshij,k‘ [or simply called subpixels by Jähne (1997)], that is,

�ij ¼
[N

k;‘¼1
�ij;k‘; ð18Þ

where

�ij;k‘ ¼
ðn;hÞ; ði� 1

2
ÞH þ ðk � 1Þh � n < ði� 1

2
ÞH þ kh;

ðj� 1
2
ÞH þ ð‘� 1Þh � h < ðj� 1

2
ÞH þ ‘h

� �
;

ð19Þ

and h is the boundary length ofhij,k‘, given by h ¼ H
N
.

The splitting–shooting method (SSM) sums the contribution of

the subpixels hij,k‘, whose centroid transformed by T falls into the

identifying pixel region hIJ. As a result, we have

BIJ ¼
1

H2

X

ij;k‘

ZZ

�ij;k‘\XIJ

/ðn;hÞ#ðn;hÞdndy: ð20Þ

The following provides the computational algorithms for (20).

Denote

�ij;k‘ �!
T
�

�
ij;k‘
; Gij;k‘

:

�!
T

G�
ij;k‘

:

; ð21Þ

where Gij;kl

:

is the centroid ofhij,k‘. Thus

�ij;k‘ \ XIJ �!
T
�ij;k‘

� \ �IJ : ð22Þ

This leads to the following approximate integration

BIJ � ~B
ðNÞ
IJ ¼

h

H

� �2 X

8ij;k‘
satisfyingð25Þ

/̂lðGij;k‘

:

Þ#ðGij;k‘

:

Þ; l ¼ 0; 1; ð23Þ

where /̂0 are /̂1 given in (6) and (8), and /ðG
:
Þ ¼ /ðnðG

:
Þ;hðG

:
ÞÞ.

In (23), the notation Vij,k‘ satisfying (25) means that the summation

is performed for all hij,k‘ whose centroid falls into hIJ, denoted by

(25). Further, ~B
ðNÞ
IJ denotes the approximate intensity values of BIJ

with the N 3 N pixel divisions. The coordinates of centroid

G
:
¼ _Gij;k‘ are given by

nðG
:
Þ ¼ i�

1

2

� �
H þ k �

1

2

� �
h; hðG

:
Þ ¼ j�

1

2

� �
H þ ‘�

1

2

� �
h: ð24Þ

When the transformed centroid G
:
¼ _Gij;k‘ falls into the standard

square pixel region hIJ defined in (13), the integers (I; J) can be

computed by

I ¼ xðG�
:

Þ=H þ
1

2

� �
; J¼ yðG�

:

Þ=H þ
1

2

� �
; ð25Þ

where xb c is the floor function, and

xðG�
:

Þ ¼ xðnðG�
:

Þ;hðG�
:

ÞÞ; yðG�
:

Þ ¼ yðnðG�
:

Þ;hðG�
:

ÞÞ: ð26Þ

This is Step 3 in Figure 1. Equation (23) implies that the intensity

values ~B
ðNÞ
IJ originate from the collective contribution of all subpix-

els with small subregionshij,k‘ whose centroids fall into the control

region hIJ of BIJ in XOY. More motivation and visualization for

SSM can be found in Li et al. (1989, 2004).

E. Splitting–Integrating Method for Images under T21. On

the basis of intensity BIJ obtained, Step 5 constructs the constant

and bilinear functions b̂lðx; yÞ based on an analogy of (6) and (8),

where Fij is replaced by BIJ, hij, by hII and ��ij by ��II , defined as

follows:

��IJ ¼
ðx; yÞ; IH � x < ðI þ 1ÞH

JH � y < ðJ þ 1ÞH

� �
: ð27Þ

Then the centroid rule can easily evaluate the restored intensity (10)

Uij � UM
ij ¼

1

H2

XN

k;‘¼1

ZZ

�ij;k‘

/̂ðn;hÞdndh

� UN
ij ¼

h

H

� �2XN

k;‘¼1

/̂ðnðG
:
Þ;hðG

:
ÞÞ;

ð28Þ

where /̂ðn;hÞ ¼ b̂lðx; yÞ, l 5 0, 1. This is Step 7 in Figure 1.

F. Combination of Algorithms for Images under T21
T.

Equations (23) and (28) for pixel intensity are called the splitting–

shooting method (SSM) and the splitting–integrating method (SIM),

respectively. The combination of SSM and SIM is referred to CSIM,

as the following two cases (see Fig. 1). Case II includes Steps 1–8;

Case I includes Steps 1–4 and 6–8. In Case I, the intensity BIJ after

Step 3 is used directly for T21 without any change. Step 4 may obtain

the distorted image fẐg from fB̂IJg, but the cycle conversion does

not require feedback (i.e., from ZIJ to BIJ, as in Step 5).

As cyclic conversion T21T of images does not involve nonlinear

solutions, CSIM is remarkably advantageous compared to other

methods in image transformations of Dougherty and Glardina

(1987), Gonzalez and Wintz (1987), Foley et al. (1990), Rogers and

Adams (1990), and Pratt (1991).

III. NEW TECHNIQUES FOR PIXEL-DIVISION

ALGORITHMS

A. Linear Approximation and Partition Techniques. This

section describes several new approximation techniques. Split the

pixel region ��ij ¼ ðn;hÞ; iH � n < ðiþ 1ÞH; jH � h < ðjþ 1ÞHf g
by their diagonal lines into two triangles (Fig. 2): ��ij ¼ �Dij;1 [ �Dij;2

and X ¼ [ijð�Dij;1 [ �Dij;2Þ. Equation (1) uses piecewise interpolation

for /(n, h), x(n, h) and y(n, h).

Figure 2. Triangulation on image grids.
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A.1. Technique I. Intensity Interpolation Functions. Choose

piecewise constant (l 5 0)

/̂0ðn;hÞ ¼ /ij if ðn;hÞ 2 �ij; ð29Þ

where hij is defined in (7), and piecewise linear interpolant (l 5 1)

/̂1ðn;hÞ ¼ aij;knþ bij;khþ cij;k in �Dij;k; k ¼ 1; 2;

where /̂1ðiH; jHÞ ¼ /ij, and aij;k, bij;k, and cij;k are constants. For

the partition of the right-hand side of Figure 2, we have

/̂1ðn;hÞ ¼ /i;j þ
ð/iþ1;j � /i;jÞ

H
ðn� iHÞ

þ
ð/i;jþ1 � /i;jÞ

H
ðh� jHÞ; ðn;hÞ 2 �Dij;1;

/̂1ðn;hÞ ¼ /iþ1;jþ1 �
ð/iþ1;j � /iþ1;jþ1Þ

H
ðh� ðjþ 1ÞHÞ

�
ð/i;jþ1 � /iþ1;jþ1Þ

H
ðn� ðiþ 1ÞHÞ; with ðn;hÞ 2 �Dij;2:

A.2. Technique II. Piecewise Linear Approximation of T.

x n;hð Þ � bx1 n;hð Þ; y n;hð Þ � by1 n;hð Þ;

where the linear interpolations are exactly the same as in Technique

I. Denote

T � bT ¼ n;hð Þ ! x; yð Þ; x ¼ bx n;hð Þ; y ¼ by n;hð Þ; n;hð Þ 2 Dij;k:

ð30Þ

bT denotes the piecewise linear transformation of T using the piece-

wise linear interpolant functions bx1 n;hð Þ and by1 n;hð Þ of intensity

(see Fig. 3).

A.3. Technique III. Further Partition. Choose an even division

number N(� N0 � 2) to partition Dij;k again into 1
2
N2 uniform

smaller triangles (see Figs. 3 and 4): Dij;k ¼
S1

2
N2

‘¼1 Dij;k;‘ and

Dij;k;‘ �!
bT

D
�

ij;k;‘ such that each D
�

ij;k;‘ falls, at most, within the fol-

lowing four pixel regions:

D
�

ij;k;‘ � �IJ [�Iþ1;J [�I;Jþ1 [�Iþ1;Jþ1

� 	
: ð31Þ

Moreover, the partition of D
�

ij;k;‘ ¼
S

m D
�

ij;k;‘;m makes each of

D
�

ij;k;‘;m fall into only onehIJ completely. As for D
�

ij;k;‘ only one hor-

izontal line y 5 (j 1 1/2)H may pass through its center, the triangle

D
�

ij;k;‘ can be partitioned into at most three subtriangles in Figure 5

using the techniques of Li (1999).

D
�

ij;k;‘ ¼
[

m

D
�

ij;k;‘;m;D
�

ij;k;‘;m ��IJ ; ð32Þ

where Dij;k;‘;m �!
bT

D
�

ij;k;‘;m. Then, we have �ij ¼
S

‘;m

ðDij;1;‘;m [ Dij;2;‘;mÞ.

B. Algorithm NSSM for T with l 5 0, 1. First, let us give a

lemma.

Lemma 3.1. Let Dabc be a triangle, and f(n, h) be linear func-

tions. Then, the centroid rule has no errors (see Fig. 6):

bZZ

Dabc

f ðn;hÞdndh ¼ AreaðDabcÞf ðne;heÞ; ð33Þ

where e is the centroid of Dabc.

Proof. Denote a reference triangle D ¼ x; yð Þj0 �f
x � 1; 0 � y � 1� xg, and choose the linear function

f ¼ aþ bxþ cy on D with constants a, b, and c. Determine the

exact values of integration by calculus,

ZZ

D

f ¼

Z 1

0

dx

Z 1�x

0

ðaþ bxþ cyÞdy

¼a

Z 1

0

ð1� xÞdxþ b

Z 1

0

ð1� xÞdxþ
c

2

Z 1

0

ð1� xÞ2dx ¼
a

2
þ
bþ c

6
:

ð34Þ

As AreaðDÞ ¼ 1
2
, and the centroid coordinates of D are

ðxe; yeÞ ¼
1
3
; 1
3

� 	
, the centroid rule gives

bZZ

D

f ¼ AreaðDÞf ðxe; yeÞ ¼
1

2
� aþ

1

3
ðbþ cÞ

� �
¼

a

2
þ
bþ c

6
:

ð35Þ

From Eqs. (34) and (35),

ZZ

D

�f ¼
bZZ

D

f ð36Þ

From Li et al. (1989), under a linear transformation, the linear func-

tion is still linear, the triangle is also a triangle, and its centroid

remains the same. As the transformation from Dabc to D is a linear

transformation (Li et al., 1989), the centroid rule in (33) on a trian-

gle is exactly the same as that for linear functions. This completes

the proof of Lemma 3.1. &

Figure 4. N5 4 in triangulation of Dij,1 and Dij;1 in Figure 2.

Figure 3. The piecewise linear transformation.
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The techniques in Section A (subsection of Section III) can then

obtain the approximate integrals for the transformation bT,

BIJ ¼
1

H2

ZZ

XIJ

/ðn;hÞ#ðn;hÞdndh �

bBIJ ¼
1

H2

ZZ

XIJ

b/ðn;hÞb#ðn;hÞdndh;

where �IJ �!
T

XIJ , and �IJ �!
bT bXIJ . The Jacobian determinants are

defined by

# ¼
@x
@n

@x
@h

@y
@n

@y
@h

�����

�����;
b# ¼

@bx
@n

@bx
@h

@by
@n

@by
@h

������

������
;

and b# is constant in Dij;k due to linear transformations. For l5 0,1,

XIJ � bXIJ ¼
[

8ij;k;‘;m
satisfyingð38Þ

Dij;k;‘;m

� 	
: ð37Þ

and

Dij;k;‘;m �!
bT

D
�

ij;k;‘;m; D
�

ij;k;‘;m � �IJ : ð38Þ

Denote the center of gravity of Dij;k;‘;m by x _g; y _g

� 	
, where

x _g ¼ x _gij;k;‘;m and y _g ¼ y _gij;k;‘;m . Then, for the inverse transformation

under bT�1
: ðx _g; y _gÞ �!

bT�1

ðbn _g; bh _gÞ, their coordinates
bn _g and bh _g can be

obtained by the area coordinates directly. Hence, we obtain from

Lemma 3.1

bBIJ ¼
1

H2

ZZ

bXIJ

b/lðn;hÞb#ðn;hÞdndh

¼
1

H2

X

8ij;k;‘;m
satisfyingð38Þ

ZZ

D
�

ij;k;‘;m

b/lðn;hÞdxdy

¼
1

H2

X

8ij;k;‘;m
satisfyingð38Þ

b/lð
bn _g; bh _gÞAreaðD

�

ij;k;‘;mÞ:

ð39Þ

As the inverse functions in linear transformations are still linear,

functions b/l n;hð Þ on D
�

ij;k;‘;m are also linear. On the basis of

Lemma 3.1, the center rule of integration offers no error at all, and

the integration evaluation in (39) is exact!

C. Algorithm NSIM for T21 with l 5 0. This section considers

the inverse transformation T21 by NSIM with l 5 0. Similarly,

/ij ¼
1

H2

ZZ

ij

b n;hð Þdndh � b/ij ¼
1

H2

ZZ

ij

bb0 n;hð Þ; by n;hð Þdndh:

ð40Þ

As N(�2) is even and �ij ¼ [k;‘;mDij;k;‘;m; 9ij such that

Dij;k;‘;m 2 Dij;‘, where Dij;‘ with i ¼ i and j ¼ j, as Figure 2. We

have from Lemma 3.1

b/ij ¼
1

H2

ZZ

�ij

bb0ðbxðn;hÞ; byðn;hÞÞdndh

¼
1

H2

X

k;‘;m

ZZ
bb0ðbn _g; bh _gÞAreaðDij;k;‘;mÞ;

ð41Þ

where ðbn _g; bh _gÞ are the coordinates of the centroid of Dij,k,‘,m. When

N � N0, the evaluation of b/ij by (41) is also exact.

Note that for l 5 1, different but more complicated partitions

on Dij,k,‘ into more subtriangles are required for T21 to avoid

sequential errors. For the new algorithms without sequential errors

when N(� N0 � 2), denote the new splitting–shooting method by

NSSM for T with l 5 0, 1, the new splitting–integrating method by

NSIM for T21 with l 5 0, and the new combination of splitting–

shooting and splitting–integrating methods by NCSIM for T21T.

Let N 5 2p and N0 5 2p, p0 � 1. As each of D
�

ij;k;‘;m falls into one

hIJ completely, different divisions N(�N0) do not change the inten-

sity values of bBIJ in (39) and b/ij in (41). This is a significant

improvement over the results presented in Li (1989, 1990, 1994,

1996, 1999, 1998, 2001, 2004).

Remark 3.1. Figure 7 illustrates the linkage among the Area

Method (Li, 1990), CSIM in Li (1990), ACSIM in Li, (1999), and

Figure 5. Three cases of dividing DABC by the horizontal line y ¼ J þ 1
2

� 	
H.

Figure 6. Triangle Dabc under bT.
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NCSIM in this article. In NCSIM, a preliminary partition with N(�
N0 � 2) on �ij is still required to locate D

�

ij;k;‘;m � �IJ . Interestingly,

the splitting algorithms in this article mimic the Area Method in

Li (1990) for nonlinear transformations T, but use a smaller pixel

division N � N0.

IV. ERROR ANALYSIS FOR IMAGES WITH

DISCONTINUOUS INTENSITY

The brief error analysis in this section indicates that true errors of

image intensity under transformations by the new splitting

algorithms in Section III have the order O(H). This significance

of order O(H) is valid for images with all kinds of discontinuous

intensity. The transformation T is regular, if the following condi-

tions are satisfied (see Li and Bai, 1998): x(n, h), y(n, h) [ C2(X)

and

0 < #0 � # n;hð Þ ¼
@x
@n

@x
@h

@y
@n

@y
@h

�����

����� � #M:

A. For Intensity Values of Images by NSSM for T. This sec-

tion provides the following lemmas, but omits the proof for the

sake of brevity.

Lemma 4.1. Let T be regular, and let bx n;hð Þ be the piecewise

linear interpolants of x(n, h). Then, there exist the error bounds,

xðn;hÞ � bxðn;hÞj j � CM2H
2;

@x

@n
�

@bx
@bn

�����

����� � CM2H;

where C is a positive constant independent of H, and

Mk ¼ xj jk;1;X þ yj jk;1;X; vj jk;1;X ¼ max
aj j¼k
in X

Davj j;

where the function v(n, h) [ X.

The arguments in Li (1999) lead to the following lemma.

Lemma 4.2. Let T be regular, and let T̂ be its piecewise linear

approximation on Dij,k. For �ij !
T
Sij and �ij !

T̂
Ŝij (see Fig. 8), the

area differences between Sij and Ŝij have the bound

jSij 	 Ŝijj � CH3#
1=2
M M2:

For �IJ !
T�1

XIJ and �IJ !
T̂�1

X̂IJ ,

jXIJ 	 X̂IJ j � CH3 M�
2

#
1=2
0

;

where p 	 q denotes the exclusive OR of p and q. Hence, Sij 	 Ŝij
denotes the difference in area between Sij and Ŝij, C is a positive

constant independent of H, and

M�
k ¼ jnjk;1;S þ jhjk;1;S; jvjk;1;S ¼ max

jaj¼k
in s

jDavj

Now let us prove the main theorem, to show the error bounds O(H)

of intensity values.

Theorem 4.1. Let T be regular. Then, the intensity B̂IJ under T

by NSSM in (39) has the error bounds for l5 0 or 1

jBþ
IJ � B̂IJ j � CH

M�
2#M

#
1
2

0

þ
M1M2

#0

" #
; ð42Þ

where

Bþ
IJ ¼

1

H2

Z Z

XIJ

/̂lðn;hÞ#ðn;hÞdndh: ð43Þ

Proof. We have

jBþ
IJ � B̂IJ j �

1

H2

ZZ

XIJ	X̂IJ

/̂lðn;hÞ#ðn;hÞdndh

8
><

>:

þ

ZZ

XIJ

/̂lðn;hÞj#ðn;hÞ � #̂ðn;hÞjdndh

9
>=

>;

ð44Þ

Figure 7. The relationship among the Area Method, CSIM, ACSIM,

and NCSIM in this article.

Figure 8. The pixel region hij and the distorted regions Sij and Sij,

wherehij ? Sij by Tand�ij ! cSij by
bT .
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From Lemma 4.2, j/̂lðn;hÞj � 1 and j#ðn;hÞj � #M, it follows that

1

H2

ZZ

XIJ	bXIJ

b/lðn;hÞ#ðn;hÞdndh � CHM�
2

#M

#
1=2
0

ð45Þ

Also, we have from Lemma 4.1,

#ðn;hÞ � b#ðn;hÞ
���

��� ¼
@x
@n

@x
@h

@y
@n

@y
@h

�����

������
@bx
@n

@bx
@h

@by
@n

@by
@h

������

������

������

������
ð46Þ

�
@x

@n

@y

@h
�

@by
@h

� �����
����þ

@by
@h

@x

@n
�

@bx
@n

� �����
����þ

@x

@h

@y

@n
�

@by
@n

� �����
����

þ
@by
@n

@x

@h
�

@bx
@h

� �����
���� � CHM1M2:

Hence, we obtain

1

H2

ZZ

bX
IJ

b/lðn;hÞ #ðn;hÞ � b#ðn;hÞ
���

���dndh

� CHM1M2

1

H2

ZZ

bX
IJ

dndh

( )
� C

H

#0

M1M2;

ð47Þ

where we have used the bound for �IJ �!
bT�1 bXIJ �!

T b�IJ � �IJ ;

1

H2

ZZ

bXIJ

dndh �
1

#0H2

ZZ

bXIJ

#dndh ¼
1

#0H2

ZZ

b�IJ

dxdy �
C

#0

: ð48Þ

Combining (44), (45), and (47) yields (42). This completes the

proof. &

B. For Intensity Values of Images by NSIM for T21. Next,

consider the inverse transformation, for which we have the follow-

ing theorem.

Theorem 4.2. Let T be regular. Then, the intensity /̂ij under

T�1 by NSIM for l5 0 in (41) has the error bound,

/þ
ij �

b/ij

���
��� � C

HM2

#0

ð#
1=2
M þM1Þ; ð49Þ

where

/þ
ij ¼

1

H2

ZZ

ij

bb0ðxðn;hÞ; yðn;hÞÞdndh: ð50Þ

Proof. For �ij !
T
Sij and �ij !

bT bSij shown in Figure 8, we have

j/þ
ij �

b/ijj ¼ j
1

H2

ZZ

Sij

bb0ðxðn;hÞ; yðn;hÞÞ#�1dxdy

�
1

H2

ZZ

bSij
bb0ðbxðn;hÞ; byðn;hÞÞb#�1dxdyj

�
1

H2
j

ZZ

Sij	bSij
bb0ðxðn;hÞ; yðn;hÞÞ#�1dxdyj

þ
1

H2
j

ZZ

bSij
ðbb0ðxðn;hÞ; yðn;hÞÞ � bb0ðbxðn;hÞ; byðn;hÞÞÞ#�1dxdyj

þ
1

H2
j

ZZ

bSij
bb0ðbxðn;hÞ; byðn;hÞÞð#�1 � b#�1Þdxdyj: ð51Þ

Later, we estimate three terms on the most right-hand side of

(51). As 0 � bb0 � 1, we have from Lemma 4.2

1

H2

ZZ

Sij	bSij
bb0ðxðn;hÞ; yðn;hÞÞ#�1dxdy

�
1

H2

ZZ

Sij	Ŝij

#�1dxdy

�
1

#0H2
jSij 	 Ŝijj �

CH

#0

#
1=2
M M2:

ð52Þ

Second, we have

1

H2
j

ZZ

Ŝij

jb̂0ðxðn;hÞ; yðn;hÞÞ � b̂0ðx̂ðn;hÞ; ŷðn;hÞÞ#
�1dxdyj

�
1

#0H2
j

ZZ

Ŝij

jb̂0ðxðn;hÞ; yðn;hÞÞ � b̂0ðx̂ðn;hÞ; ŷðn;hÞÞjdxdy:

ð53Þ

Note that bb0 is piecewise constant on
S

IJ �IJ based on the pixel in-

tensity BIJ of the distorted image. Figure 8 shows that the differen-

ces between bb0ðxðn;hÞ; yðn;hÞÞ and bb0ðbxðn;hÞ; byðn;hÞÞ occur only
on Sij 	 bSij, which overlaps the boundary of �IJ and whose neigh-

boring pixel intensities in BIJ are different. Hence, we have from

Lemma 4.2

ZZ

Ŝij

jb̂0ðxðn;hÞ; yðn;hÞÞ � b̂0ðx̂ðn;hÞ; ŷðn;hÞÞjdxdy

� CjSij 	 Ŝijj � CH3#
1=2
M þM2:

ð54Þ

From (53) and (54), the second term on the most right-hand side of

(51) leads to

1

H2
j

ZZ

Ŝij

ðb̂0ðxðn;hÞ; yðn;hÞÞ � b̂0ðx̂ðn;hÞ; ŷðn;hÞÞÞ#
�1dxdyj

�
CH

#0

#
1=2
M M2: ð55Þ

Third, we have from (46)

1

H2
j

ZZ

Ŝij

b̂0ðx̂ðn;hÞ; ŷðn;hÞÞð#
�1 � b#�1Þdxdyj

�
1

H2
j

ZZ

bSij

b#� #

b#
#�1dxdyj

� C
max jb#� #j

#0

1

H2

ZZ

bSij
#�1dxdy

� �

� C
max jb#� #j

#0

1

H2

ZZ

b�ij

dndh

� �
� C

HM1M2

#0

;

ð56Þ

where �ij !
T bSij !

bT�1 b�ij � �ij:

Finally, combining (51), (52), (55), and (56) yields

/þ
ij � /�

ij

���
��� � C

H

#0

#
1=2
M M2 þ

H

#0

M1M2

� �

¼ C
HM2

#0

ð#
1=2
M þM1Þ:

This completes the proof. &
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C. For Intensity Values of Images by NCSIM for T21T. On

the basis of Theorems 4.1 and 4.2, it is relatively easy to obtain the

true error bounds E 5 O(H) of intensity of the entire image under

geometric transformations. Error analysis can also be applied to

images with discontinuous intensity.

This subsection first defines some error norms to measure the degree

of approximation of intensity solutions. Choose the division number

N ¼ Np ¼ 2pþk; where p ¼ 0; 1; . . . ; and integer k > 0 ð57Þ

Now, consider the images under the cyclic transformation T�1T.

Define the sequential errors of image intensity under T�1 or T�1T

with the two division numbers Np and Np�1:

DEðNpÞð~UÞ ¼
X

ij

~U
ðNpÞ
ij � ~U

ðNp�1Þ
ij

���
���

Imaxð ~WÞ
;

DE
ðNpÞ
2 ð~UÞ ¼

X

ij

~U
ðNpÞ
ij � ~U

ðNp�1Þ
ij


 �2

Imaxð ~WÞ

8
><

>:

9
>=

>;

1=2

;

ð58Þ

where Imaxð ~WÞ is the total number of image pixels, defined by

Imaxð ~WÞ ¼
X

ij

Nf ð ~W
ðNpÞ
ij Þ; Nf ðWijÞ ¼

1 if Wij 6¼
0 0;

0 if Wij ¼
0 0:

�
ð59Þ

In fact, the errors in (58) are defined for the mean and the standard

deviation of intensity errors. Moreover, as the original values Fij

are known in the cyclic transformation T21T, we can also compute

the true errors and the standard deviations by

EðNpÞð~UÞ ¼
X

ij

~U
ðNpÞ
ij � Uij

���
���

Imaxð ~WÞ
; E

ðNpÞ

2 ð~UÞ ¼
X

ij

ð~U
ðNpÞ
ij � ~UijÞ

2

Imaxð ~WÞ

( )1=2

:

ð60Þ

Similarly, define the sequential errors of image intensity under T

DEðNpÞð ~BÞ ¼
X

IJ

~B
ðNpÞ
IJ � B

ðNp�1Þ
IJ

���
���

Imaxð ~ZÞ
;

DE
ðNpÞ
2 ð ~BÞ ¼

X

ij

ð ~B
ðNpÞ
ij � B

ðNp�1Þ
ij Þ2

Imaxð ~ZÞ

( )1=2

;

ð61Þ

EðNpÞð ~BÞ ¼
X

IJ

~B
ðNpÞ
IJ � BIJ

���
���

Imaxð ~ZÞ
; E

ðNpÞ

2 ð ~BÞ ¼
X

ij

ð ~B
ðNpÞ
ij � BijÞ

2

Imaxð ~ZÞ

( )1=2

;

ð62Þ

where Imaxð ~ZÞ ¼
P

IJ Nf ð ~Z
ðNpÞ
IJ Þ:

Theorem 4.3. Let /(n, h) [ C2(X), (57), and all conditions in Theo-

rems 4.1 and 4.2 hold. There exists a small division number N0 � 2

such that for p � 0, the error norms in (58)–(61) satisfy the follow-

ing relations:

DEðNpÞð~UÞ ¼ 0; ð63Þ

EðNpÞð~UÞ ¼ OðHÞ; ð64Þ

DEðNpÞð ~BÞ ¼ 0; ð65Þ

EðNpÞð ~BÞ ¼ OðHÞ: ð66Þ

Proof. This article only proves (65) and (66), as the proofs for (63)

and (64) are similar. On the basis of Theorem 4.1, when Np21 � N0

for p � 1, the values of ~B
Np�1

IJ and ~B
Np

IJ remain the same, that is,

~B
Np�1

IJ ¼ ~B
Np

IJ ; p � 1:

This is (65) by noting the definition in (61).

Next, we have

~B
Np

IJ � BIJ

���
��� � ~B

Np

IJ � Bþ
IJ

���
���þ BIJ � Bþ

IJ

�� ��; ð67Þ

where BIJ and BIJ
1 are defined in (16) and (43), respectively. Letting

~B
Np

IJ 5 B̂IJ in (39), we have from Theorem 4.1

~B
Np

IJ � Bþ
IJ

���
��� � CH

M�
2#M

#
1
2
0

þ
M1M2

#0

2
64

3
75; p � 1: ð68Þ

Moreover, it follows from (16) and (43) that

B
Np

IJ � Bþ
IJ

���
��� ¼

1

H2

ZZ

XIJ

ð/lðn;hÞ � /̂lðn;hÞ#ðn;hÞdndhÞ

����

����

� max
ðn;h2XÞ

/lðn;hÞ � /̂lðn;hÞ
���

���3
1

H2

ZZ

XIJ

#ðn;hÞdndh

����
����

� �
:

ð69Þ

As / [ C2(X), there exists the bound,

max
ðn;h2XÞ

/lðn;hÞ � /̂lðn;hÞ
���

��� � CHlþ1Mlþ1; l ¼ 0:1; ð70Þ

where C is a constant independent of H. We have

1

H2

ZZ

XIJ

#ðn;hÞdndh

����
���� ¼

1

H2

ZZ

�IJ

dxdy

����
���� ¼ 1: ð71Þ

Combining (69)–(71) gives

~B
Np

IJ � Bþ
IJ

���
��� � CHuþ1Muþ1; l ¼ 0; 1: ð72Þ

Finally, we obtain from (67), (68), and (71)

~B
Np

IJ � BIJ

���
��� � CH

M�
2#M

#
1
2

0

þ
M1M2

#0

þ HlMlþ1

" #
¼ OðHÞ; l¼ 0; 1:

ð73Þ
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Hence we have

EðNpÞð ~BÞ ¼
X

IJ

~B
ðNpÞ
IJ � BIJ

���
���

Imaxð ~ZÞ
¼ OðHÞ: ð74Þ

This is (66) and completes the proof. &

The errors DE2 and E2 of the standard deviation as in (58)–(62)

produce the same conclusions as those in Theorem 4.3.

V. NUMERICAL EXPERIMENTS

This section first validates the algorithms in Section III, where the

intensity evaluation on T̂ is unchangeable when N, N0, 2, to illus-

trate the effectiveness of the proposed algorithms, and to verify the

error analysis in Section IV.

A. The Perspective Model. From the application viewpoint, we

choose the perspective images to validate the new algorithms. Sup-

pose that the original figures are embedded in the square

X �n; �h
� 	

; 1 � �n � 256; 1 � �h � 256
� 


on nOh. We construct X

upright and rotate it along axis h with angle p
9
. The coordinates of

the original plane are then given by

n ¼ �n cos p
9
;

h ¼ �h sin p
9
;

n ¼ �h:

8
<

:

We choose the perspective plane as y 5 400, and the coordinates of

the origin of xyz at (50, 512, 200), and obtain from Li et al. (1989) a

transformation from the original 2D point to another 2D point.

�T : ð�n; �hÞ ! ðx; yÞ;

where

x ¼ 400
�n cos p

9
þ 50

�n sin p
9
þ 512

; y ¼ 400
�hþ 200

�n sin p
9
þ 512

: ð75Þ

The above transformation �T is called the perspective

transformation.

B. Computational Experiments. Choose the standard test

images of 256 3 256 pixels with 256 intensity levels in Figure 9.

For the perspective transformation, use the NSSM for T for l 5 0

or 1, and then use NSIM for T21 for l 5 0. When N 5 2p, Tables I

and II list the numerical errors, where DP�E and P�E denote the se-

quential pixel errors and the true pixel errors, respectively. Note

that the DP�E in T for l 5 0 or 1 remains unchanged as (N � N0)

increases, based on the analysis in Section IV. These tables show

that the DP�E in T21T do not change. Finally, Figures 10 and 11

show the images using NSSM for T for l 5 0 or 1 and NSIM for

T21 for l 5 0. According to Tables I and II, the maximal pixel

errors for the restored images are less than 12 intensity levels.

These errors are so small in a system of 256 intensity levels that the

naked eye can hardly perceive the differences between the original

and restored images in Figures 9–11.

C. Harmonic Transformations. The following presents some

applications of the algorithms for the transformations of harmonic

Figure 9. Standard images of public data, such as Lena, Baboon,

Boots, and Pepper, each with 2563 256 pixels and 256 intensity levels.

Table 1. The numerical errors of images by NSSM with l 5 0 for T, and then by NSIM with l5 0 for T21 under the perspective transformation

Items N

T T21T True

DP.E. DE DP.E. DE P.E. E

Lena 2 2 2 2 2 5.181 2.013 E-2

4 1.448 E-4 1.974 E-15 3.052 E-5 1.745 E-7 5.181 2.013 E-2

8 1.158 E-4 3.863 E-15 0 4.380 E-8 5.181 2.013 E-2

Baboon 2 2 2 2 2 11.372 4.452 E-2

4 0 2.513 E-15 7.629 E-5 3.457 E-7 11.372 4.452 E-2

8 0 4.888 E-15 3.052 E-5 8.665 E-8 11.372 4.452 E-2

Boots 2 2 2 2 2 8.918 3.490 E-2

4 4.054 E-4 2.147 E-15 2.136 E-4 3.615 E-7 8.918 3.490 E-2

8 3.330 E-4 4.179 E-15 1.678 E-4 9.079 E-8 8.918 3.490 E-2

Pepper 2 2 2 2 5.738 2.233 E-2

4 4.344 E-5 2.205 E-15 6.104 E-5 2.287 E-7 5.738 2.233 E-2

8 7.240 E-5 4.328 E-15 1.529 E-5 5.731 E-8 5.738 2.233 E-2
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and blending models. First, consider the arbitrary geometric shape

transformation T by the given boundaries in both original and dis-

torted images. Assume x(n, h), y(n, h) [ C2(X), we may define the

functions x(n, h) and y(n, h) by the harmonic equations (see Li

et al., 1989; Li, 1996):

Dx ¼ 0; Dy ¼ 0; ðn;hÞ 2 X; ð76Þ

where D ¼ @2

@x2 þ
@2

@y2 ; and the Dirichlet boundary conditions are

given by:

xj@X¼ g1ðn;hÞ; yj@X¼ g2ðn;hÞ: ð77Þ

Model is called harmonic if T: (n, h) ? (x, y), where x and y satisfy

(76) and (77). The harmonic model was analyzed in Li (1996) for

combination CSIM of splitting–shooting-integrating methods. This

study uses the NCSIM as the harmonic model, and defines the

boundary as a ‘‘heart curve:’’

r ¼ að1� cos uÞða > 0Þ; ð78Þ

Table 2. The numerical errors of images by NSSM with l 51 for T, and then by NSIM with l 5 0 for T21 under perspective transformation

Items N

T T21T True

DP.E. DE DP.E. DE P.E. E

Lena 2 2 2 2 2 5.480 2.129 E-2

4 2.317 E-4 1.442 E-6 5.035 E-4 1.869 E-6 5.479 2.129 E-2

8 1.014 E-4 1.939 E-7 1.831 E-4 4.615 E-7 5.479 2.129 E-2

Baboon 2 2 2 2 2 11.823 4.628 E-2

4 9.267 E-4 4.058 E-6 2.258 E-3 9.025 E-6 11.823 4.628 E-2

8 2.317 E-4 9.780 E-7 6.561 E-4 2.201 E-6 11.823 4.628 E-2

Boots 2 2 2 2 9.200 3.600 E-2

4 9.701 E-4 5.269 E-6 2.060 E-3 7.765 E-6 9.200 3.599 E-2

8 2.751 E-4 7.931 E-7 5.493 E-4 1.893 E-6 9.200 3.599 E-2

Pepper 2 2 2 2 2 5.995 2.334 E-2

4 3.330 E-4 1.382 E-6 8.850 E-4 3.384 E-6 5.995 2.334 E-2

8 5.792 E-5 3.351 E-7 3.204 E-4 8.273 E-7 5.995 2.334 E-2

Figure 10. Baboon by NSSM with l 5 0 for T and then by NSIM

with l5 0 for T21 under the perspective transformation.

Figure 11. Pepper by NSSM with l 5 0 for T and then by NSIM

with l 5 0 for T21 under the perspective transformation.
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where a is a constant, and r is the distance from the origin to the

boundary. First choose the center point as the origin of the image

and then compute the angle y in (78). Use the standard finite differ-

ence methods on the uniform grids, and choose the optimal over-

relaxation iterations method to obtain the approximation solutions

~xðn;hÞ and ~yðn;hÞ of the harmonic transformation. As the differ-

ence solutions ~x and ~y can be regarded as the piecewise linear inter-

polation in Technique II in Section A (subsection of section III), it

is easy to use the algorithms NSSM, NSIM, and NCSIM. Figure 12

shows the images tested. As the image errors are similar in magni-

tude to those in Tables I and II, they are omitted here. Note that the

exterior edges of images in Figures 12 and 13 are quite curly. The

effects of the edge curvature also produce some intensity errors,

and their sequential errors may depend on N as well. Furthermore,

more intensity errors come from the finite difference method for the

harmonic and the biharmonic equations. In fact, Figures 12 and 13

are provided to illustrate wide applications of the algorithms of this

article. To avoid confusion in verifying the error analysis made in

Section IV, for Figures 12 and 13, we omit details of numerical data

for the transformations.

D. Blending Transformation. Next, consider the blending

model T: (n, h)? (x, y), where x and y satisfy

D2x ¼ 0; D2y ¼ 0; ðn;hÞ 2 X;

where the biharmonic operation: D2 ¼ @4

@x4 þ 2 @4

@x2@y2 þ
@4

@y4. The

simply supported boundary conditions are given by

xðn;hÞ ¼ g1ðn;hÞ; yðn;hÞ ¼ g2ðn;hÞ; on @X; ð79Þ

Figure 12. Lena by NSSM for Tand then by NSIM for T21 under the

harmonic transformation.

Dx ¼ 0; Dy ¼ 0; on @X: ð80Þ

Alternately, the clamped supported boundary conditions are given

by

xðn;hÞ ¼ g1ðn;hÞ; yðn;hÞ ¼ g2ðn;hÞ; on @X:

@x

@n
¼ 0;

@y

@n
¼ 0; on @X;

where n is the outward normal of @X. Split the blending model of

the simply supported boundary conditions (79) and (80) into two

Poisson’s equations with Dirichlet conditions.

Using the numerical algorithms in this article, Figure 13 shows

images under the blending model.

Remark 5.1. To close this section, let us address the numerical

performance of the new algorithms NCAIM in this article. The exact

integration can be achieved for the nonlinear transformation T when

N � N0, to give no sequential errors. Using the new splitting algo-

rithms in Section III, Figures 10–13 provide images under compli-

cated transformations. In each image, there are 256 3 256

(5 65536) pixels with 256 intensity levels. The results of numerical

and graphical experiments in Tables I and II show that by choosing

small N 5 2, there are no sequential errors numerically, and the

graphical images are satisfactory for applications. Therefore, as the

small N needed in the computation requires less CPU time, the pro-

posed algorithms may also be suitable for a huge number of image

transformations. Hence, the first goal of this article has been fulfilled.

In contrast, many more division numbers are needed by CSIM, and

Figure 13. Boots by NSSM for T and then by NSIM for T21 under

the blending model of the simply supported boundary conditions.
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the sequential errors always exist in ACSIM. Hence, the performance

of this article is superior. Note that the splitting algorithms in this ar-

ticle are also applicable to the sampling process of image or picture

processing in Rosenfeld and Kak (1976), Hall (1979), Russ (1992),

Jähne (1997), and Ritter and Wilson (1996). Details are omitted.

VI. CONCLUDING REMARKS

To close this article, let us make a few concluding remarks.

1. This study proposes new splitting algorithms, denoted by

NSSM and NSIM for images under T and T21, respectively.

When the original intensity functions are chosen to be piece-

wise constant or piecewise linear functions, the pixel regions

can be split into small triangles. The new algorithms NSSM

and NSIM also avoid nonlinear solutions, and they can be

applied to images with discontinuous intensity.

2. The new error analysis in Theorems 4.1, 4.2, and 4.3 yields

the true errors as O(H) under nonlinear transformations,

where H is the pixel size. The true errors O(H) are valid for

both continuous and discontinuity images, even for scattered

pixels. Evidently, the error analysis of image transformations

in this article is much closer to the real images under trans-

formations than our previous study of Li (1989, 1990, 1994,

1996, 1999, 1998, 2001, 2004), thus fulfilling the second goal

of this article.

3. This study includes computational experiments to validate

the error analysis in Section IV, and to apply the new algo-

rithms to images under different transformations, such as per-

spective, harmonic, and blending transformations. Remark

5.1 shows a better performance than CSIM and ASCIM.
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