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New Stability Criterion for Continuous-Time Takagi–Sugeno

Fuzzy Systems With Time-Varying Delay

Likui Wang and Hak-Keung Lam, Senior Member, IEEE

Abstract—In this technical paper, a new Lyapunov–Krasovskii
functional (LKF) is designed to study the stability of continuous-
time Takagi–Sugeno fuzzy systems with time-varying delay. The
integrand of the LKF depends on integral variable and time t

which can help to reduce the number of linear matrix inequal-
ities (LMIs). Then, a new stability criterion is derived by
analyzing the sign of the time derivatives of membership func-
tions. Compared with the existing results, larger delay bounds
can be obtained by applying the new criterion. In the end, two
examples show the effectiveness of the conclusions.

Index Terms—Membership dependent Lyapunov–

Krasovskii functional, Takagi–Sugeno’s (T–S) fuzzy

model, time-varying delay.

I. INTRODUCTION

In the recent years, great effort has been made to obtain

new results for Takagi–Sugeno (T–S) fuzzy systems [19]–[22],

especially for T–S fuzzy systems with time-delay and find-

ing the maximum delay bounds has attracted considerable

attention. In [1], the technique of introducing free matrices is

applied to obtain stability criteria. Then, [1] is improved in [2]

by adding some integral inequalities and introducing more free

variables. In [3], an augmented LKF which contains triple inte-

gral term is utilized to get less conservative results. In [4],

the delay-partitioning and reciprocally convex combination are

applied to find new delay bounds which are less conservative

than [3]. In [5], an input–output approach is used to reduce the

conservativeness. Recently, a less conservative stability crite-

rion is proposed in [6] by using partial nonpositive Lyapunov

functional with triple integral terms. Note that the results in [6]

are based on Jensen inequality which leads to conservatism,

in order to overcome this shortcoming, an improved recip-

rocally convex combination technique is applied in [7] and

the obtained results are less conservative than [5] and [6].
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Almost at the same time, new delay bounds are found in [8]

where an improved augmented LKF is constructed and some

new cross terms are included. In [14], a new LKF which

involves lower and upper bound of probabilistic time delay is

designed to study the problem of reliable mixed and passivity-

based control for a class of stochastic T–S fuzzy systems.

For the first time, Zhang and Wang [16] established a novel

delay-dependent analysis framework by directly exploiting the

sources of augment Lyapunov functional. Zhang et al. [15]

proposed a distributed fuzzy optimal control law relied on

actual physical meaning which is a new idea of fuzzy multia-

gent system. For impulses systems, [17] shows that the delay

may contribute to or do harm to the stabilization of delay sys-

tems. In [18], the bound of the state-dependent delay is not

required but derives from the obtained stability result. It should

be noted that the integrand of LKF used in all of the papers

mentioned above are independent of the analysis of mem-

bership functions which is a very important factor for fuzzy

systems. Losing the information of membership functions will

lead to conservativeness [13].

In this technical paper, the problem of stability for T–S

fuzzy systems with time-varying delay is investigated. First,

the possible reason of conservativeness is analyzed. The anal-

ysis shows that if we can reduce the number of LMIs without

changing the number of variables, we will get a less conserva-

tive stability criteria. To do this, a new LKF whose integrand

depends not only on the integral variable but also on time t

is designed to reduce the LMIs. Then, according to the sign

of the time derivative of the membership function, a switch-

ing idea is applied to ensure the time derivative of the LKF

is negative. In the end, the obtained stability criteria contains

less number LMIs and can get less conservative results than

the existing ones in the literature.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the T–S fuzzy systems with time-varying delays

Plant rule i (i = 1, 2 · · · r): if θ1 is µi1, and· · · and θp is µip

THEN

ẋ(t) = Aix(t) + Adix(t − h(t))

x(t) = φ(t), t ∈
[

−h(t) 0
]

(1)

where x(t) ∈ R
n is the state vector, Ai ∈ R

n×n and Adi ∈

R
n×n are known matrices, θi are known premise variables,

µij, i = 1, 2, . . . , r, j = 1, 2, . . . , p are fuzzy sets; h(t) is the

time-varying delay satisfying

0 < h1 ≤ h(t) ≤ h2, d1 ≤ ḣ(t) ≤ d2. (2)

2168-2267 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Applying the center-average defuzzifier, product interfer-

ences and singleton fuzzifier, one has the following T–S

model:

ẋ(t) = Aλx(t) + Adλx(t − h(t)) (3)

where Aλ =
∑r

i=1 λi(θ)Ai, Adλ =
∑r

i=1 λi(θ)Adi, θ =

[θ1(t), θ2(t), . . . , θp(t)], and λi(θ) are membership functions

defined as

λi(θ) =
wi(t)

∑r
i=1 wi(t)

, wi(t) =

p
∏

j=1

µij

(

θj(t)
)

with wi(t) ≥ 0 and µij(θj(t)) representing the grade of mem-

bership of θj(t) in µij. For simplicity, single sum is written as

Xλ =
∑r

i=1 λiXi and Ẋλ = (dXλ/dt) is the time derivative of

membership function dependent matrix. The time t is dropped

for variables in the following analysis, for example, x(t) is

presented as x and h(t) is presented as h. For any matrix X,

He(X) = X + XT .

The aim of this paper is to establish a less conservative

stability criterion for T–S fuzzy system (3). Before presenting

the main result, let us make some discussions as follows.

A. Possible Reason of Conservativeness

For simplicity, in the following, we only analyze single

integral such as
∫ t

t−h
x(s)TQx(s)ds and the conclusion is also

applicable for double integral.

In most of the existing results, the chosen LKF candi-

date contains
∫ t

t−h
x(s)TQx(s)ds where Q is only one posi-

tive matrix. Naturally, it is improved as
∫ t

t−h
x(s)TQ(s)x(s)ds

in [10] to introduce more variables, however, since Q(s) is

dependent on the integral variable s, the number of LMIs

increases at the same time. For example, for the simplest

case (delay independent), choosing the LKF as V(x) =

xTPx+
∫ t

t−h
x(s)TQx(s)ds yields the delay-independent stability

condition [12]
[

PAi + AT
i P + Q PAdi

∗ Q

]

< 0, i = 1, 2 · · · r. (4)

If Q is replaced by Q(s) =
∑r

i=1 λi(θ(s))Qi, we have

[

PAi + AT
i P + Qj PAdi

∗ Qi

]

< 0, i, j = 1, 2 · · · r. (5)

The number of free variables increases from 2 to 1 + r, while

the number of LMIs increases from r to r2 at the same time.

Equation (5) is no better than (4) because more LMIs means

more constraints but (5) is better than (4) if Qj can be replaced

by Qi. Finding a method to reduce the number of LMIs without

changing the number of variables is important. One possible

choice is replacing Q with Q(t) =
∑r

i=1 λi(θ(t))Qi instead

of Q(s). The following lemmas are useful to deal with the

time-derivative of the LKF.

Lemma 1 (see [11]): For a function F(t) =
∫ α2

α1
f (s, t)ds, if

α1, α2 are differentiable for t and f (s, t) is continuous for s

and partially derivative for t, we have

dF(t)

dt
= α̇2f (α2, t) − α̇1f (α1, t) +

α2
∫

α1

∂f (s, t)

∂t
ds. (6)

Lemma 2: For a function F(t) =
∫ θ2

θ1

∫ s2(θ,t)

s1(θ,t)
f (θ, s, t)dsdθ

where θ1, θ2 are differentiable for t; s1(θ, t), s2(θ, t) are contin-

uous for θ and partially derivative for t; f (s, θ, t) is continuous

for s, θ and partially derivative for t, we have

dF(t)

dt
= θ̇2

s2(θ2,t)
∫

s1(θ2,t)

f (θ2, s, t)ds − θ̇1

s2(θ1,t)
∫

s1(θ1,t)

f (θ1, s, t)ds

+

θ2
∫

θ1

∂s2(θ, t)

∂t
f (θ, s2(θ, t), t)dθ

+

θ2
∫

θ1

s2(θ,t)
∫

s1(θ,t)

∂f (θ, s, t)

∂t
dsdθ

−

θ2
∫

θ1

∂s1(θ, t)

∂t
f (θ, s1(θ, t), t)dθ .

Proof: Let

F(t) =

θ2
∫

θ1

F1(θ, t)dθ , F1(θ, t) =

s2(θ,t)
∫

s1(θ,t)

f (θ, s, t)ds

then applying Lemma 1 we have

dF(t)

dt
= θ̇2F1(θ2, t) − θ̇1F1(θ1, t) +

θ2
∫

θ1

∂F1(θ, t)

∂t
dθ . (7)

Since

∂F1(θ, t)

∂t
=

∂s2(θ, t)

∂t
f (θ, s2(θ, t), t)

−
∂s1(θ, t)

∂t
f (θ, s1(θ, t), t) +

s2(θ,t)
∫

s1(θ,t)

∂f (θ, s, t)

∂t
ds

(8)

substituting (8) into (7), we get the conclusion.

B. Discussion of the Time Derivative of

Membership Function

In the following, we will discuss how to ensure Ẋλ ≤ 0,

Ẏλ ≤ 0, Żλ ≤ 0, U̇λ ≤ 0 where Xi > 0, Yi > 0, Zi > 0, and

Ui > 0. Note

Ẋλ =

r
∑

i=1

λ̇iXi =

r−1
∑

k=1

λ̇k(Xk − Xr) (9)

Ẏλ =

r
∑

i=1

λ̇iYi =

r−1
∑

k=1

λ̇k(Yk − Yr) (10)

Żλ =

r
∑

i=1

λ̇iZi =

r−1
∑

k=1

λ̇k(Zk − Zr) (11)

U̇λ =

r
∑

i=1

λ̇iUi =

r−1
∑

k=1

λ̇k(Uk − Ur) (12)
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where λ̇k are the time-derivative of membership functions and

are negative or positive as time goes by. Since Xi, Yi, Zi, and

Ui are variables to be designed, we can use a switching idea

to ensure Ẋλ ≤ 0, Ẏλ ≤ 0, Żλ ≤ 0, and U̇λ ≤ 0 as follows:

if Hl, then Cl (13)

where Hl, l = 1, 2, . . . , 2r−1 is the set that contains the pos-

sible permutations of λ̇k and Cl is the set that contains the

constraints of Xi, Yi, Zi, and Ui. For example, if r = 3, we

have

Ẋλ = λ̇1(X1 − X3) + λ̇2(X2 − X3)

Ẏλ = λ̇1(Y1 − Y3) + λ̇2(Y2 − Y3)

Żλ = λ̇1(Z1 − Z3) + λ̇2(Z2 − Z3)

U̇λ = λ̇1(U1 − U3) + λ̇2(U2 − U3).

There are four constraints Cl, l = 1, 2, 3, 4 to ensure Ẋλ ≤ 0,

Ẏλ ≤ 0, Żλ ≤ 0, U̇λ ≤ 0 and (13) is expressed as follows:

If H1, then C1; If H2, then C2

If H3, then C3; If H4, then C4

where

H1 : λ̇1 ≤ 0, λ̇2 ≤ 0; H2:λ̇1 ≤ 0, λ̇2 > 0

H3 : λ̇1 > 0, λ̇2 ≤ 0; H4:λ̇1 > 0, λ̇2 > 0

C1 :

⎧

⎨

⎩

X1 ≥ X3, X2 ≥ X3, Y1 ≥ Y3,

Y2 ≥ Y3, Z1 ≥ Z3, Z2 ≥ Z3,

U1 ≥ U3, U2 ≥ U3.

⎫

⎬

⎭

C2 :

⎧

⎨

⎩

X1 ≥ X3, X2 < X3, Y1 ≥ Y3,

Y2 < Y3, Z1 ≥ Z3, Z2 < Z3,

U1 ≥ U3, U2 < U3.

⎫

⎬

⎭

C3 :

⎧

⎨

⎩

X1 < X3, X2 ≥ X3, Y1 < Y3,

Y2 ≥ Y3, Z1 < Z3, Z2 ≥ Z3,

U1 < U3, U2 ≥ U3.

⎫

⎬

⎭

C4 :

⎧

⎨

⎩

X1 < X3, X2 < X3, Y1 < Y3,

Y2 < Y3, Z1 < Z3, Z2 < Z3,

U1 < U3, U2 < U3.

⎫

⎬

⎭

.

Based on the above discussion, we get the following lemma.

Lemma 3: For some membership function dependent matri-

ces Xλ, Yλ, Zλ, and Uλ where Xi > 0, Yi > 0, Zi > 0,

and Ui > 0 are free variables, we have Ẋλ ≤ 0, Ẏλ ≤ 0,

Żλ ≤ 0, and Uλ ≤ 0, if the switching rules (13) are satisfied

for l = 1, 2, . . . , 2r−1.

III. MAIN RESULT

Theorem 1: For some given dq, hv, v, q = 1, 2, if there exist

matrices Pi > 0, Ri > 0, Qi > 0, Si > 0, X1i, X2i, X3i, X4i such

that the inequalities (14)–(17) hold for i, j, k = 1, 2, . . . , r, the

fuzzy system (3) is asymptotically stable

Ṗλ ≤ 0, Ṙλ ≤ 0, Q̇λ ≤ 0, Ṡλ ≤ 0 (14)

�iikvq < 0 (15)

�ijkvq + �jikvq ≤ 0 (16)
⎡

⎢

⎢

⎣

Ri 0 X1i X2i

∗ 3Ri X3i X4i

∗ ∗ Ri 0

∗ ∗ ∗ 3Ri

⎤

⎥

⎥

⎦

≥ 0 (17)

where

Pi =

⎡

⎣

P1i P2i P3i

∗ P4i P5i

∗ ∗ P6i

⎤

⎦

�ijklq =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̄11 �̄12 �̄13 �̄14 �̄15

∗ �̄22 �̄23 �̄24 �̄25

∗ ∗ �̄33 �̄34 �̄35

∗ ∗ ∗ − 12Ri

h2
− 4X4i

h2

∗ ∗ ∗ ∗ − 12Ri

h2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

�̄11 = He
(

P1iAj + P2i

)

+ Si + Qi + h2AT
i RkAj −

4

h2
Ri

�̄12 = −
(

1 − dq

)

P2i +
(

1 − dq

)

P3i + h2AT
i RkAdj

+ P1iAdj −
1

h2
(2Ri + X1i + X2i + X3i + X4i)

�̄13 = −P3i −
1

h2
(X2i + X4i − X1i − X3i)

�̄14 = hvAT
j P2i + hvP4i +

1

h2
6Ri

�̄15 = (h2 − hv)A
T
j P3i + (h2 − hv)P5i +

2

h2
(X2i + X4i)

�̄22 = −
(

1 − dq

)

Qi + h2AT
diRkAdj

−
1

h2
(8Ri + He(X3i + X4i − X1i − X2i))

�̄23 = −
1

h2
(2Ri + X1i − X2i − X3i + X4i)

�̄24 = hvAT
djP2i − hv

(

1 − dq

)

P4i + hv

(

1 − dq

)

PT
5i

+
2

h2

(

3Ri + XT
3i + XT

4i

)

�̄25 = (h2 − hv)A
T
djP3i − (h2 − hv)

(

1 − dq

)

(P5i − P6i)

+
2

h2
(−X2i + X4i + 3Ri)

�̄33 = −Si −
4

h2
Ri, �̄34 = −hvPT

5i +
2

h2

(

−XT
3i + XT

4i

)

�̄35 = −(h2 − hv)P6i +
6

h2
Ri.

Proof: Based on [9], we design the LKF as

V(x) = V1(x) + V2(x) + V3(x) + V4(x)

where

V1(x) = x̃TPλx̃, V2(x) =

t
∫

t−h2

t
∫

θ

ẋ(s)TRλẋ(s)dsdθ

V3(x) =

t
∫

t−h

x(s)TQλx(s)ds

V4(x) =

t
∫

t−h2

x(s)TSλx(s)ds

x̃ =

⎡

⎣ xT

t
∫

t−h

xT(s)ds

t−h
∫

t−h2

xT(s)ds

⎤

⎦

T
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Pλ =

⎡

⎣

P1λ P2λ P3λ

PT
2λ P4λ P5λ

PT
3λ PT

5λ P6λ

⎤

⎦.

It follows that:

V̇1(x) = 2 ˙̃xTPλx̃ + x̃T Ṗλx̃.

Applying Lemmas 1 and 2, we have

V̇2(x) = h2ẋTRλẋ −

t
∫

t−h2

ẋ(s)TRλẋ(s)ds

+

t
∫

t−h2

t
∫

θ

ẋ(s)T Ṙλẋ(s)dsdθ

V̇3(x) = xTQλx −
(

1 − ḣ
)

x(t − h)TQλx(t − h)

+

t
∫

t−h

x(s)T Q̇λx(s)ds

V̇4(x) = xTSλx − x(t − h2)
TSλx(t − h2) +

t
∫

t−h2

x(s)T Ṡλx(s)ds.

Thus, the time derivative of V(xt) along the trajectories

of (3) is

V̇(x) = ζ T�ζ −

t
∫

t−h2

ẋ(s)TRλẋ(s)ds + 	

where

ζ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x

x(t − h)

x(t − h2)

1
h

t
∫

t−h

x(s)ds

1
h2−h

t−h
∫

t−h2

x(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T

� =

⎡

⎢

⎢

⎢

⎢

⎣

�11 �12 −P3λ �14 �15

∗ �22 0 �24 �25

∗ ∗ −Sλ −hPT
5λ �35

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎦

�11 = He(P1λAλ + P2λ) + Sλ + Qλ + h2AT
λRλAλ

�12 = P1λAdλ −
(

1 − ḣ
)

P2λ +
(

1 − ḣ
)

P3λ + h2AT
λRλAdλ

�14 = hAT
λP2λ + hP4λ

�15 = (h2 − h)AT
λP3λ + (h2 − h)P5λ

�22 = −
(

1 − ḣ
)

Qλ + h2AT
dλRλAdλ

�24 = hAT
dλP2λ − h

(

1 − ḣ
)

P4λ + h
(

1 − ḣ
)

PT
5λ

�25 = (h2 − h)AT
dλP3λ − (h2 − h)

(

1 − ḣ
)

(P5λ − P6λ)

�35 = −(h2 − h)P6λ

	 = x̃T Ṗλx̃ +

t
∫

t−h

x(s)T Q̇λx(s)ds

+

t
∫

t−h

x(s)T Ṡλx(s)ds +

t
∫

t−h2

t
∫

θ

ẋ(s)T Ṙλẋ(s)dsdθ .

Because of the constraint (14), we have

V̇(x) ≤ ζ T�ζ −

t
∫

t−h2

ẋ(s)TRλẋ(s)ds.

Then, applying the method in [9] to deal with the term

−
∫ t

t−h2
ẋ(s)TRλẋ(s)ds, we get the conclusion.

Since the constraints (14) in Theorem 1 are not LMIs, we

design the following algorithm to find the maximum delay

bound.

Algorithm 1: Based on Lemma 3, applying (15)–(17) with

each constraint Cl, we get a corresponding delay bound

denoted as h2l, l = 1, 2 · · · 2r−1 and the final maximum delay

bound is h̄2 = min1≤l≤2r−1(h2l).

Remark 1: At any time t, there exists a corresponding con-

straint Cl such that the time derivative of LKF is negative.

Since h̄2 is the minimum of all the h2l, l = 1, 2 · · · 2r−1,

the fuzzy system (3) is asymptotically stable for any delay

belonging to the interval [h1, h̄2].

Remark 2: Different from the existing results [4]–[8], the

integrand of the LKF designed in this paper depends not only

on the integral variable but also on time t. This design can help

to reduce the number of LMIs without changing the number

of free variables. In addition, a switching method is applied

to deal with the time derivative of the membership functions,

although some matrix constraints have to be added, the sim-

ulations show that larger delay bound can be obtained by the

criterion in this paper than existing results.

Remark 3: Note that the number of decision variables in

Theorem 1 is (10n2+3n)r, while, the number of decision vari-

ables in [8, Th. 1] is 137n2+6n+r(36n2+n) and in [7, Th. 1]

is 42.5n2 + 8.5n. The method in this paper is simple but

effective and can be combined with other techniques such as

the improved reciprocally convex combination in [7] or the

improved augmented LKF in [8].

For some two-rule fuzzy systems, especially the premise

variable is independent of the system states and the

time derivative of the membership function is monotone

increasing or monotone decreasing (for example, λ1 =

(1/[1 + exp(−t)]), λ2 = ([exp(−t)]/[1 + exp(−t)])), we have

the following corollary.

Corollary 1: For some given hv > 0, dq, v, q = 1, 2, if

λ̇1 > 0 and there exist matrices Pi > 0, Ri > 0, Qi > 0, Si >

0, X1i, X2i, X3i, X4i such that

P2 > P1, R2 > R1, Q2 > Q1, S2 > S1 (18)

and the inequalities (15)–(17) hold for i, j, k = 1, 2, the two-

rule fuzzy system (3) is asymptotically stable for any delay

h(t) belonging to [h1, h2].

Proof: If r = 2, we have

Ṗλ = λ̇1(P1 − P2), Ṙλ = λ̇1(R1 − R2)

Q̇λ = λ̇1(Q1 − Q2), Ṡλ = λ̇1(S1 − S2).

Since λ̇1 > 0, (14) is ensured by (18), and thus the proof is

completed.
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TABLE I
MAXIMUM DELAY BOUND OBTAINED BY

DIFFERENT METHODS WITH d2 = 0.1

IV. SIMULATION EXAMPLE

Example 1: Consider the following nonlinear system with

time-varying delay:

ẋ1 = 0.5
(

1 − sin2(θ)

)

x2 − x1(t − h) −
(

1 + sin2(θ)

)

x1

ẋ2 = sgn
(

|θ | −
π

2

)(

0.9 cos2(θ) − 1
)

x1(t − h)

− x2(t − h) −
(

0.9 + 0.1 cos2(θ)

)

x2.

This nonlinear system can be modeled as a two-rule T–S

fuzzy system with time-varying delay as in [4]–[8] with the

membership functions

λ1 =
1

1 + exp(−2θ)
, λ2 =

exp(−2θ)

1 + exp(−2θ)

and

A1 =

[

−2 0

0 −0.9

]

, A2 =

[

−1 0.5

0 −1

]

Ad1 =

[

−1 0

−1 −1

]

, Ad2 =

[

−1 0

0.1 −1

]

.

According to whether the memberships are dependent on the

system states, we have the following two cases.

A. θ = x1

For this case, the membership functions are dependent on

the system states. Let d2 = 0.1, the maximum delay bound

h2 = 1.7659, h2 = 1.5253, h2 = 1.7718 can be found

in [4]–[6], respectively. Recently, the maximum delay bound

h2 = 1.8276 is obtained by using the improved recipro-

cally convex combination technique in [7] as d2 = 0.1,

almost at the same time, h2 = 2.3268 is obtained by apply-

ing the augmented LKF in [8]. As d1 = 0, d2 = 0.1,

h1 = 1, applying the inequalities (15)–(17) with the con-

straint C1 : {P1 ≥ P2, Q1 ≥ Q2, R1 ≥ R2, S1 ≥ S2} and

C2 : {P1 < P2, Q1 < Q2, R1 < R2, S1 < S2}, respectively,

we get h22 = 2.7269, h21 = 2.7725, so the final maximum

delay bound is h̄2 = min1≤v≤2(h2v) = 2.7269. Table I shows

the maximum delay obtained by different methods. Obviously,

the method in this paper is less conservative than the existing

ones.

We also consider two special cases of the new LKF.

(I) Pλ, Qλ, Rλ, Sλ are replaced by P, Q, R, S.

(II) Pλ, Qλ, Rλ, Sλ are replaced by P, Qλ(s) =
∑r

i=1 λi(θ(s))Qi, R, Sλ(s) =
∑r

i=1 λi(θ(s))Si.

Case I means the used LKF is independent of the membership

functions. Case II means P, R are independent of the member-

ship functions and Qλ(s), Sλ(s) are dependent on the integrand

Fig. 1. State responses of the system for different delays.

variable s instead of time t. Applying Theorem 1 with (I), we

only get h2 = 1.8146 for d2 = 0.1 which is even more conser-

vative than [7]. Applying Theorem 1 with (II), we get the same

result as case (I). This simulation shows that the LKF used in

Theorem 1 is very effective. The trajectories of the system with

φ(t) = [ 1.5 1 ]T , h = 0.9 + 0.1 sin(t), h = 1.4 + 0.1 sin(t),

h = 1.9 + 0.1 sin(t), and h = 2.6269 + 0.1 sin(t) are shown

in Fig. 1 which shows that the considered system is asymp-

totically stable for any delays satisfying h2 ≤ 2.7269 but the

needed time is different (larger delay need more time to be

stable).

B. θ = t

For this case, the membership functions are

independent of the system states. Since λ̇1 =

([2 exp(−2t)]/[(1 + exp(−2t))2] > 0, applying Corollary 1

we get the maximum delay bound h2 = 2.7269 which is the

same as case in Section IV-A.

Example 2: Consider the two-rule fuzzy system with the

following system matrices:

A1 =

[

−3.2 0.6

0 −2.1

]

, A2 =

[

−1 0

1 −3

]

Ad1 =

[

1 0.9

0 2

]

, Ad2 =

[

0.9 0

1 1.6

]

.

For this example, as d1 = 0, d2 = 0.1, h1 = 0, applying the

inequalities (15)–(17) with the constraint C1 : {P1 ≥ P2, Q1 ≥

Q2, R1 ≥ R2, S1 ≥ S2} and C2 : {P1 < P2, Q1 < Q2, R1 <

R2, S1 < S2}, respectively, we get h21 = 1.0362, h22 = 1.031,

so the final maximum delay bound is h̄2 = min1≤v≤2(h2v) =

1.031 which is less conservative than the existing results, for

example, applying the method in [10] with ρ = 0.1 we only

get the maximum delay bound h2 = 0.4809.

V. CONCLUSION

In this paper, we designed a new LKF to study the

continuous-time T–S fuzzy system with time-varying delay.
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A switching method is applied to deal with the time deriva-

tive of the membership functions. The simulation shows that

the method in this paper is effective and can get less conser-

vative results than the existing ones. Because of the feedback

gains, this method cannot be extended directly to stabiliza-

tion or observer design, but after some changes, for example,

changing V1 as a simple one and using the zero equation we

can get the stabilization condition, then using the one-step

method we can design the observer, however, for the case

that the premise variables depend on the states estimated by

the fuzzy observer, the results are complicated and should be

considered in the near future.
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