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The closed Newton-Cotes differential methods of high algebraic order for small number of
function evaluations are unstable. In this work, we propose a new closed Newton-Cotes
trigonometrically fitted differential method of high algebraic order which gives much more
efficient results than the well-know ones.

1. Introduction

In the recent years, there is a great interest in the construction of numerical methods for or-
dinary differential equations that preserve qualitative properties of the analytic solution.

Symplectic integrators are necessary in the case that we wish to preserve the charac-
teristics of the Hamiltonian system in the approximate solution. Much research has been done
recently mainly on the development of one-step symplectic integrators (see [1, 2]). In their
work, Zhu et. al [3] and Chiou and Wu [4] constructed multistep symplectic integrators by
writing open Newton-Cotes differential schemes as multilayer symplectic structures.

Last decades much work has been done on trigonometrically fitting and the numerical
solution of periodic initial value problems (see [5–20] and references therein).

In this paper, we follow the steps described below.

(i) The new condition is described.

(ii) The trigonometrically fitted method is developed.
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(iii) The closed Newton-Cotes differential methods are presented as multilayer sym-
plectic integrators.

(iv) The closed Newton-Cotes methods are applied to nonlinear problems and the effi-
ciency of the new methods is presented.

We note that the aim of this paper is to generate methods that can be used for nonlinear
differential equations as well as linear ones.

The construction of the paper is given below.

(i) The theory for the symplectic schemes is presented in Section 2.

(ii) In Section 3, we present the closed Newton-Cotes differential methods and the new
condition for the development of the methods. We also develop the new trigono-
metrically-fitted methods.

(iii) In Section 4, the conversion of the closed Newton-Cotes differential methods into
multilayer symplectic structures is presented.

(iv) Numerical results are presented in Section 5.

2. Basic Theory on Symplectic Schemes and Numerical Methods

Based on Zhu et al. [3] and on the division of the interval [a, b] with N points, we have the
following discrete scheme for the n-step approximation to the solution:

(

pn+1

qn+1

)

= Mn+1

(

pn

qn

)

, Mn+1 =

(

wn+1 yn+1

zn+1 gn+1

)

. (2.1)

Based on the above we can write the n-step approximation to the solution as

(

pn

qn

)

=

(

wn yn

zn gn

)(

wn−1 yn−1

zn−1 gn−1

)

· · ·

(

w1 y1

z1 g1

)(

p0

q0

)

= MnMn−1 · · ·M1

(

p0

q0

)

.

(2.2)

Defining

S = MnMn−1 · · ·M1 =

(

Wn Yn

Zn Gn

)

, (2.3)

the discrete transformation can be written as

(

pn

qn

)

= S

(

p0

q0

)

. (2.4)
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Table 1: Closed Newton-Cotes integral rules.

k z t0 t1 t2 t3 t4 t5 t6 t7 t8

0 1 1

1 1/2 1 1

2 1/3 1 4 1

3 3/8 1 3 3 1

4 2/45 7 32 12 32 7

5 5/288 19 75 50 50 75 19

6 1/140 41 216 27 272 27 216 41

7 7/17280 751 3577 1323 2989 2989 1323 3577 751

8 4/14175 989 5888 −928 10496 −4540 10496 −928 5888 989

A discrete scheme (2.1) is a symplectic scheme if the transformation matrix S is
symplectic. A matrix A is symplectic if ATJA = J , where

J =

(

0 1

−1 0

)

. (2.5)

The product of symplectic matrices is also symplectic. Hence, if each matrix Mn is symplectic
the transformation matrix S is symplectic. Consequently, the discrete scheme (3.5) is
symplectic if each matrix Mn is symplectic.

Remark 2.1. The proposed methods can be used for nonlinear differential equations as well as
linear ones.

3. Trigonometrically Fitted Closed Newton-Cotes
Differential Methods

3.1. General Closed Newton-Cotes Formulae

The closed Newton-Cotes integral rules can be presented with the formula:

∫b

a

f(x)dx ≈ zh
k
∑

i=0

tif(xi), (3.1)

where

h =
b − a

N
, xi = a + ih, i = 0, 1, 2, . . . ,N. (3.2)

The coefficient z as well as the weights ti are given in Table 1.

Remark 3.1. It is easy for one to see that the coefficients ti in the Table 1 are symmetric, that is,
one has the following relation:

ti = tk−i, i = 0, 1, . . . ,
k

2
. (3.3)
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The closed Newton-Cotes differential methods are produced from the integral rules.
From Table 1 we have the following differential methods:

k = 1 yn+1 − yn =
h

2

(

fn+1 + fn
)

,

k = 2 yn+1 − yn−1 =
h

3

(

fn−1 + 4fn + fn+1

)

,

k = 3 yn+1 − yn−2 =
3h

8

(

fn−2 + 3fn−1 + 3fn + fn+1

)

,

k = 4 yn+2 − yn−2 =
2h

45

(

7fn−2 + 32fn−1 + 12fn + 32fn+1 + 7fn+1

)

,

k = 5 yn+2 − yn−3 =
5h

288

(

19fn−3 + 75fn−2 + 50fn−1 + 50fn

+75fn+1 + 19fn+2

)

,

k = 6 yn+3 − yn−3 =
h

140

(

41fn−3 + 216fn−2 + 27fn−1 + 272fn

+27fn+1 + 216fn+2 + 41fn+3

)

,

k = 7 yn+3 − yn−4 =
7h

17280

(

751fn−4 + 3577fn−3 + 1323fn−2 + 2989fn−1

+2989fn + 1323fn+1 + 3577fn+2 + 751fn+3

)

,

k = 8 yn+4 − yn−4 =
4h

14175

(

989fn−4 + 5888fn−3 − 928fn−2 + 10496fn−1

−4540fn + 10496fn+1 − 928fn+2 + 5888fn+3 + 989fn+4

)

.

(3.4)

In the present paper, we will investigate the case k = 8 and we will produce trigono-
metrically fitted differential methods of order 1.

3.2. Development of Closed Newton-Cotes Differential Schemes

For the development of a Newton-Cotes differential method of the above form, two proce-
dures can be applied.

(i) The procedure which is based on the minimization of the local truncation error.
Based on this procedure and for the case k = 8, we can produce the well known
coefficients: a4 = 3956/14175, a3 = 23552/14175, a2 = −3712/14175, a1 =

41984/14175, and a0 = −3632/2835 (see the closed Newton-Cotes differential
scheme for k = 8 presented above).

(ii) The procedure which is based on

(1) the minimization of the local truncation error;
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(2) the satisfaction of the condition: 2(
∑n

i=1 |ai| + |a0|)/2n = 1. This condition is
produced by application of least squares method to the production of the
differential method (see more details in [21] (about stable quadrature rules)
and [22]).

The above procedure leads to the following coefficients for the case: n = 4: a0 =

−19672/945 + 70a4, a1 = 1952/105 − 56a4, a2 = −848/105 + 28a4, a3 = 736/189 − 8a4 and
to the condition 9836/33075 ≤ a4 ≤ 244/735. We choose the value: a4 = 3/10, which satisfies
the above condition.

3.3. Exponentially Fitted Closed Newton-Cotes Differential Method

Requiring the differential scheme:

yn+4 − yn−4 = h
(

a4fn−4 + a3fn−3 + a2fn−2 + a1fn−1 + a0fn

+a1fn+1 + a2fn+2 + a3fn+3 + a4fn+4

)

(3.5)

to be accurate for the following set of functions (we note that fi = y′
i, i = n − 1, n, n + 1):

{

1, x, x2, x3, x4, x5, x6, cos(vx), sin(vx)
}

, (3.6)

the following set of equations is obtained:

8 cos(w) sin(w)
(

2(cos(w))2 − 1
)

= w
[

2a4 − 2a2 + a0 − 6a3 cos(w) + 4a2(cos(w))2

+2a1 cos(w) + 8a3(cos(w))3 + 16a4(cos(w))4 − 16a4(cos(w))2
]

2a4 + 2a3 + 2a2 + 2a1 + a0 = 8

96a4 + 54a3 + 24a2 + 6a1 = 128

2560a4 + 810a3 + 160a2 + 10a1 = 2048.

(3.7)

Requesting that a4 = 3/10 and solving the above system of equations, we obtain

a0 =
1735w cos(w) + 1353w cos(3w) + 242w cos(2w) + 270w cos(4w) − 900 sin(4w)

675w cos(w) + 45w cos(3w) − 450w − 270w cos(2w)
,

a1 =
−1856w cos(3w) − 1735w − 1404w cos(2w) − 405w cos(4w) + 1350 sin(4w)

1350w cos(w) + 90w cos(3w) − 900w − 540w cos(2w)
,
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a2 =
702w cos(w) + 418w cos(3w) − 121w + 81w cos(4w) − 270 sin(4w)

675w cos(w) + 45w cos(3w) − 450w − 270w cos(2w)
,

a3 =
−27w cos(4w) − 836w cos(2w) − 1353w + 1856w cos(w) + 90 sin(4w)

1350w cos(w) + 90w cos(3w) − 900w − 540w cos(2w)
,

(3.8)

where w = vh.
For small values of v, the above formulae are subject to heavy cancellations. In this

case the following Taylor series expansions must be used:

a0 =
4661

3780
−

4073

5670
w2 +

40193

249480
w4 −

6980443

681080400
w6 +

9455989

49037788800
w8

−
19551709

8336424096000
w10 +

69457813

1900704693888000
w12

+
3310479379

4390627842881280000
w14 +

58254816773

1615751046180311040000
w16

+
97232951747

75617148961238556672000
w18 + · · · ,

a1 =
499

525
+

4073

7560
w2 −

40193

332640
w4 +

6980443

908107200
w6 −

9455989

65383718400
w8

+
19551709

11115232128000
w10 −

69457813

2534272925184000
w12

−
3310479379

5854170457175040000
w14 −

58254816773

2154334728240414720000
w16

−
97232951747

100822865281651408896000
w18 + · · · ,

a2 =
781

1050
−

4073

18900
w2 +

40193

831600
w4 −

6980443

2270268000
w6 +

9455989

163459296000
w8

−
19551709

27788080320000
w10 +

69457813

6335682312960000
w12

+
3310479379

14635426142937600000
w14 +

58254816773

5385836820601036800000
w16

+
97232951747

252057163204128522240000
w18 + · · · ,

a3 =
6493

4725
+

4073

113400
w2 −

40193

4989600
w4 +

6980443

13621608000
w6 −

9455989

980755776000
w8

+
19551709

166728481920000
w10 −

69457813

38014093877760000
w12
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−
3310479379

87812556857625600000
w14 −

58254816773

32315020923606220800000
w16

−
97232951747

1512342979224771133440000
w18 + · · · .

(3.9)

The behaviour of the coefficients is given in the following Figure 1.
The local truncation error for the above differential method is given by

L.T.E(h) = −
593h9

28350

(

y
(9)
n + v2y

(7)
n

)

. (3.10)

The L.T.E is obtained expanding the terms yn±j and fn±j , j = 1(1)4 in (3.5) into Taylor series
expansions and substituting the Taylor series expansions of the coefficients of the method.

In Figure 2, we present the behaviour of the quantity ST = (2
∑n

i=1 |ai| + |a0|)/2n for
several values of v.

So, we have the following theorem.

Theorem 3.2. The method (3.5) with coefficients ai, i = 0(1)4, obtained by the solution of the system
(3.7) is accurate for the set of functions (3.6) and is of eighth algebraic order.

4. Closed Newton-Cotes Can Be Expressed as Symplectic Integrators

Let consider Hamilton’s equations of motion:

u̇ = my,

ẏ = −mu,

(4.1)

where m is a constant scalar or matrix. It is well known that (4.1) is important in the fields of
physics, chemistry, material sciences, and so forth.

Theorem 4.1. A discrete scheme of the form:

(

w −z

z w

)(

un+1

yn+1

)

=

(

w z

−z w

)(

un

yn

)

(4.2)

is symplectic.

Proof. We rewrite (4.2) as

(

un+1

yn+1

)

=

(

w −z

z w

)−1(
w z

−z w

)(

un

yn

)

. (4.3)
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Figure 1: Behavior of the coefficients of the new proposed method given by (3.8) for several values of w.

Defining

M =

(

w −z

z w

)−1(
w z

−z w

)

=
1

w2 + z2

(

w2 − z2 2wz

−2wz w2 −w2

)

, (4.4)

it can easily be proved that

MTJM = J. (4.5)

Thus, the matrix M is symplectic.
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Figure 2: Behaviour of the quantity ST for several values of v.

In [3], Zhu et al. have studied the well-known second-order differential scheme (SOD).
They have proved that the scheme:

qn+i − qn−i = 2ihfn, i = 1(1)4 (4.6)

has a symplectic structure.
The above methods have been produced by the simplest Open Newton-Cotes integral

formula.
Based on [4, 7], the Closed Newton-Cotes differential schemes will be written as

multilayer symplectic structures.
Application of the Newton-Cotes differential formula for n = 4 to the linear

Hamiltonian system (4.1) gives

un+4 − un−4 = s
(

a0yn−4 + a1yn−3 + a2yn−2 + a3yn−1 + a4yn

+a5yn+1 + a6yn+2 + a7yn+3 + a8yn+4

)

,

yn+4 − yn−4 = −s(a0un−4 + a1un−3 + a2un−2 + a3un−1 + a4un

+a5un+1 + a6un+2 + a7un+3 + a8un+4),

(4.7)

where s = mh, where m is defined in (4.1).
From (4.6), we have that

un+i − un−i = 2isyn,

yn+i − yn−i = −2isun, i = 1(1)4 or i =
1

2
(1)

5

2
.

(4.8)
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We now consider the approximation based on the first formula of (4.8) for (n + 1)-step
gives (taking into account the second formula of (4.8))

un+i + un−i =
(

un + syn+i−1/2

)

+
(

un − syn−i+1/2

)

= un+i−1 + un−i+1 + s
(

yn+i−1/2 − yn−i+1/2

)

=
(

2 − i2s2
)

un, i = 1(1)3.

(4.9)

Substituting (4.9) into (4.7) and considering that a0 = a8, a1 = a7, a2 = a6, and a3 = a5,
we have:

un+4 − un−4 = s
[

a0

(

yn−4 + yn+4

)

+
(

a1

(

2 − 9s2
)

+2a2

(

1 − 2s2
)

+ a3

(

2 − s2
)

+ a4

)

yn

]

yn+4 − yn−4 = s
[

a0(un−4 + un+4) +
(

a1

(

2 − 9s2
)

+2a2

(

1 − 2s2
)

+ a3

(

2 − s2
)

+ a4

)

un

]

,

(4.10)

and with (4.8) we have

un+4 − un−4 = s

[

a0

(

yn−4 + yn+4

)

+
(

a1

(

2 − 9s2
)

+ 2a2

(

1 − 2s2
)

+a3

(

2 − s2
)

+ a4

)un+4 − un−4

8 s

]

,

yn+4 − yn−4 = s

[

a0 (un−4 + un+4) +
(

a1

(

2 − 9s2
)

+ 2a2

(

1 − 2s2
)

+a3

(

2 − s2
)

+ a4

)

[

−
yn+4 − yn−4

8 s

]]

,

(4.11)

which gives:

(un+4 − un−4)

[

1 −
a1

(

2 − 9s2
)

+ 2a2

(

1 − 2s2
)

+ a3

(

2 − s2
)

+ a4

8

]

= sa0

(

yn+4 + yn−4

)

(

yn+4 − yn−4

)

[

1 −
a1

(

2 − 9s2
)

+ 2a2

(

1 − 2s2
)

+ a3

(

2 − s2
)

+ a4

8

]

= −sa0(un+4 + un−4).

(4.12)
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The above formula in matrix form can be written as

(

Q(s) −sa0

sa0 Q(s)

)(

un+4

yn+4

)

=

(

Q(s) sa0

−sa0 Q(s)

)(

un−4

yn−4

)

, (4.13)

where

Q(s) = 1 −
a1

(

2 − 9s2
)

+ 2a2

(

1 − 2s2
)

+ a3

(

2 − s2
)

+ a4

8
, (4.14)

which is a discrete scheme of the form (4.2) and hence it is symplectic.

5. Numerical Example

5.1. A Nonlinear Orbital Problem

Consider the nonlinear system of equations:

u′′ +ω2u =
2uv − sin(2ωx)

(u2 + v2)
3/2

, u(0) = 1, u′(0) = 0,

v′′ +ω2v =
u2 − v2 − cos(2ωx)

(u2 + v2)
3/2

, v(0) = 0, v′(0) = ω.

(5.1)

The analytical solution of the problem is the following:

u(x) = cos(ωx), v(x) = sin(ωx). (5.2)

The system of (5.1) has been solved for 0 ≤ x ≤ 1000 and ω = 10 using the methods

(i) The eighth-order multistep method developed by Quinlan and Tremaine [23]
(which is indicated as Method I).

(ii) The tenth-order multistep method developed by Quinlan and Tremaine [23] (which
is indicated as Method II).

(iii) The twelfth-order multistep method developed by Quinlan and Tremaine [23]
(which is indicated as Method III).

(iv) The Newton-Cotes classical tenth-algebraic-order differential method (which is
indicated as Method IV), (with the term classical we mean the closed Newton-Cotes
differential method with constant coefficients).

(v) The Newton-Cotes eight-algebraic-order differential method with constant coeffi-
cient which corresponds to the New Developed Method VII (which is indicated as
Method V).

(vi) The Newton-Cotes tenth-algebraic-order differential method developed in [8]
(which is indicated as Method VI).



12 Abstract and Applied Analysis
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Figure 3: Errmax for several values of the number of function evaluations (NFE) for the Methods I–VII for
the nonlinear orbital problem. The nonexistrnce of a value of Errmax indicates that for these values Errmax

is negative.

(vii) The stable Newton-Cotes eight-algebraic-order trigonometrically fitted differential
method (which is indicated as Method VII).

For this problem, we have w = 10. The numerical results obtained for the seven meth-
ods mentioned above were compared with the analytical solution. Figure 3 shows the abso-
lute errors Errmax defined by

Errmax =
∣

∣log10[max(‖u(x)calculated − u(x)theoretical‖, ‖v(x)calculated − v(x)theoretical‖)]
∣

∣,

x ∈ [0, 1000],
(5.3)

for several values of the number of function evaluations (NFEs).

5.2. Duffing’s Equation

Consider the nonlinear initial value problem:

y′′ = −y − y3 + 0.002 cos(1.01t), y(0) = 0.20042672806, u′(0) = 0. (5.4)

The analytical solution of the problem is the following:

y(t) = 0.200179477536 cos(1.01t) + 2.4694614310−4 cos(3.03t)

+3.0401410−7 cos(5.05t) + 3.74 10−10 cos(7.07t).
(5.5)
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Figure 4: Errmax for several values of the number of function evaluations (NFEs) for the Methods I–IV for
Duffing’s. The nonexistence of a value of Errmax indicates that for these values Errmax is negative.

The above equation (5.4) has been solved for 0 ≤ x ≤ 1000 using the methods
mentioned above.

For this problem, we have w = 1. The numerical results obtained for the seven methods
mentioned above were compared with the analytical solution. Figure 4 shows the absolute
errors Errmax defined by

Errmax=
∣

∣log10

[

max
(∥

∥y(x)calculated − y(x)theoretical

∥

∥

)]∣

∣, x ∈ [0, 1000], (5.6)

for several values of the number of function evaluations (NFEs).
We note here that analogous results for both problems are obtained for interval of

integration [0, 10000] or [0, 1000000].

6. Conclusions

In this paper, we have introduced a new procedure for the development of Newton-Cotes
differential schemes. The new procedure consists from the following steps:

(i) requirement the Newton-Cotes differential scheme to be accurate for the following
set of functions:

{

1, x, x2, x3, . . . , xm, cos(wx), sin(wx)
}

; (6.1)
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(ii) Satisfaction of the condition 2(
∑n

i=1 |ai| + |a0|)/2n = 1, where ai, i = 0(1)n are the
coefficients of the Newton-Cotes differential scheme;

(iii) Expression of the Newton-Cotes differential scheme as multilayer symplectic inte-
grators.

We applied the new developed methods to several problems. We presented in this
paper the application to a nonlinear orbital problem and to Duffing’s equation and we com-
pared them with well-known integrators from the literature. Based on these illustrations, we
conclude that the new procedure produces much more efficient methods than well-known
methods of the literature.
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