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Abstract

Dynamic treatment regimes (DTRs) are sequential decision rules for individual patients that can 

adapt over time to an evolving illness. The goal is to accommodate heterogeneity among patients 

and find the DTR which will produce the best long term outcome if implemented. We introduce 

two new statistical learning methods for estimating the optimal DTR, termed backward outcome 

weighted learning (BOWL), and simultaneous outcome weighted learning (SOWL). These 

approaches convert individualized treatment selection into an either sequential or simultaneous 

classification problem, and can thus be applied by modifying existing machine learning 

techniques. The proposed methods are based on directly maximizing over all DTRs a 

nonparametric estimator of the expected long-term outcome; this is fundamentally different than 

regression-based methods, for example Q-learning, which indirectly attempt such maximization 

and rely heavily on the correctness of postulated regression models. We prove that the resulting 

rules are consistent, and provide finite sample bounds for the errors using the estimated rules. 

Simulation results suggest the proposed methods produce superior DTRs compared with Q-

learning especially in small samples. We illustrate the methods using data from a clinical trial for 

smoking cessation.
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1 Introduction

It is widely-recognized that the best clinical regimes are adaptive to patients over time, 

observing that there exists significant heterogeneity among patients, and moreover, that 

often the disease is evolving and as diversified as the patients themselves (Wagner et al., 

2001). Treatment individualization and adaptation over time is especially important in the 

management of chronic diseases and conditions. For example, treatment for major 

depressive disorder is usually driven by factors emerging over time, such as side-effect 

severity, treatment adherence and so on (Murphy et al., 2007); the treatment regimen for 

non-small cell lung cancer involves multiple lines of treatment (Socinski and Stinchcombe, 

2007); and clinicians routinely update therapy according to the risk of toxicity and 

antibiotics resistance in treating cystic fibrosis (Flume et al., 2007). As these examples make 

clear, in many cases a “once and for all” treatment strategy is not only suboptimal due to its 

inflexibility but unrealistic (or even unethical). In practice, treatment decisions must adapt 

with time-dependent outcomes, including patient response to previous treatments and side 

effects. Moreover, instead of focusing on short-term benefit of a treatment, an effective 

treatment strategy should aim for long-term benefits by accounting for delayed treatment 

effects.

Dynamic treatment regimes (DTRs), also called adaptive treatment strategies (Murphy, 

2003, 2005a), are sequential decision rules that adapt over time to the changing status of 

each patient. At each decision point, the covariate and treatment histories of a patient are 

used as input for the decision rule, which outputs an individualized treatment 

recommendation. In this way, both heterogeneity across patients and heterogeneity over time 

within each patient are taken into consideration. Thus, various aspects of treatment regimes, 

including treatment types, dosage levels, timing of delivery, etc., can evolve over time 

according to subject-specific needs. Treatments resulting in the best immediate effect may 

not necessarily lead to the most favorable long-term outcomes. Consequently, with the 

flexibility of managing the long-term clinical outcomes, DTRs have become increasingly 

popular in clinical practice. In general, the goal is to identify an optimal DTR, defined as the 

rule that will maximize expected long-term benefit.

A convenient way to formalize the problem in finding optimal DTRs is through potential 

outcomes (Rubin, 1974, 1978; Robins, 1986; Splawa-Neyman et al., 1990), the value of the 

response variable that would be achieved, if perhaps contrary to fact, the patient had been 

assigned to different treatments. Potential outcomes can be compared to find the regime that 

leads to the highest expected outcome if followed by the population. However, potential 

outcomes are not directly observable, since we can never observe all the results that could 

occur under different treatment regimes on the same patient. A practical design that 

facilitates the connection of potential outcomes with observed data is the sequential multiple 

assignment randomized trial (SMART) (Lavori and Dawson, 2000, 2004; Dawson and 

Lavori, 2004; Murphy, 2005a; Murphy et al., 2007). In this design, patients are randomized 

at every decision point. SMART designs guarantee that treatment assignments are 

independent of potential future outcomes, conditional on the history up to the current time, 

resulting in the validity of the so-called ‘no unmeasured confounders’ or ‘sequential 
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ignorability’ assumption. The latter condition guarantees that the optimal DTRs can be 

inferred from observed data in the study (Murphy et al., 2001).

A number of methods have been proposed to estimate the optimal DTRs. Lavori and 

Dawson (2000) used multiple imputation to estimate all potential outcomes, so that the 

adaptive regimes can be compared using the imputed outcomes. Murphy et al. (2001) 

employed a structural model to estimate the mean response that would have been observed if 

the whole population followed a particular DTR. Likelihood-based approaches were 

proposed by Thall et al. (2000, 2002, 2007), where both frequentist and Bayesian methods 

are applied to estimate parameters and thus the optimal regimes. All these approaches first 

estimate the data generation process via a series of parametric or semiparametric conditional 

models, then estimate the optimal DTRs based on the inferred data distributions. These 

approaches easily suffer from model misspecification due to the inherent difficulty of 

modeling accumulative time-dependent and high-dimensional information in the models.

Machine learning methods are an alternative approach to estimating DTRs that have gained 

popularity due in part to their avoidance of having to completely model the underlying 

generative distribution. Two common learning approaches are Q-learning (Watkins, 1989; 

Sutton and Barto, 1998) and A-learning (Murphy, 2003; Blatt et al., 2004), where ‘Q’ 

denotes ‘quality’ and ‘A’ denotes ‘advantage’. The Q-learning algorithm, originally 

proposed in the computer science literature, has become a powerful tool to discover optimal 

DTRs in the clinical research arena (Murphy et al., 2007; Pineau et al., 2007; Zhao et al., 

2009; Nahum-Shani et al., 2012). Q-learning is an approximate dynamic programming 

procedure that estimates the optimal DTR by first estimating the conditional expectation of 

the sum of current and future rewards given the current patient history and assuming that 

optimal decisions are made at all future decision points. The foregoing conditional 

expectations are known as Q-functions. In Q-learning and related methods, the Q-function 

can be modeled parametrically, semiparametrically and even nonparametrically (Zhao et al., 

2009). In A-learning, proposed by Murphy (2003), one models regret functions which 

measure the loss incurred by not following the optimal treatment regime at each stage. 

Minimizing the regret functions leads to the optimal decision rule at each stage. It has been 

shown that A-learning is a special case of a structural nested mean model (Robins, 2004; 

Moodie et al., 2007). For more discussion on the relationship between Q- and A-learning see 

Schulte et al. (2014). One limitation of Q- and A-learning is that the optimal DTRs are 

estimated in a two-step procedure: one estimates either the Q-functions or the regret 

functions using the data; then these functions are either maximized or minimized to infer the 

optimal DTRs. In the presence of high-dimensional information, it is possible that either the 

Q-functions or the regret functions are poorly fitted, and thus the derived DTR may be far 

from optimal. Moreover, estimation based on minimizing the prediction errors in fitting the 

Q-functions or the regret functions may not necessarily result in maximal long-term clinical 

benefit. This was demonstrated by Zhao et al. (2012) in the case of a single treatment 

decision who subsequently proposed an alternative method that maximizes an estimator of 

the expected clinical benefit. Zhao et al. (2012) proposed an alternative to regression in the 

setting where there is no need to consider future treatments or outcomes. Generalizing this 

approach to the multi-stage setting is non-trivial since one must account for long-term 
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cumulative outcomes. Other approaches to direct maximization include robust estimation 

(Zhang et al., 2013) and the use of marginal structural mean models (Orellana et al., 2010). 

Zhang et al. (2013) used a stochastic search algorithm to directly optimize an estimator for 

the mean outcome over all DTRs within a restricted class for a sequence of treatment 

decisions. However, this approach involves maximizing a discontinuous objective function 

and becomes extremely computationally burdensome in problems with a moderate number 

of covariates. Furthermore, theoretical results for this approach are currently unknown.

In this paper, we propose two original approaches to estimating an optimal DTR. Whereas 

Zhao et al. (2012) proposed an alternative to regression we propose an alternative approach 

to regression-based approximate dynamic programming algorithms. This requires nontrivial 

methodological and algorithmic developments. We first develop a new dynamic statistical 

learning procedure, backward outcome weighted learning (BOWL), which recasts 

estimation of an optimal DTR as a sequence of weighted classification problems. This 

approach can be implemented by modifying existing classification algorithms. We also 

develop a simultaneous outcome weighted learning (SOWL) procedure, which recasts 

estimation of an optimal DTR as a single classification problem. To our knowledge, this is 

the first time that learning multistage decision rules (optimal DTRs) is performed 

simultaneously and integrated into a single algorithm. Current algorithms from SVMs are 

adjusted and further developed for SOWL. We demonstrate that both BOWL and SOWL 

consistently estimate the optimal decision rule and they provide better DTRs than Q- and A-

learning in simulated experiments. The contributions of our work include:

1. A new paradigm for framing the problem of estimating optimal DTRs by aligning it 

with a weighted classification problem where weights depend on outcomes.

2. Two fundamentally new statistical learning methodologies, BOWL and SOWL, 

which are entirely motivated by the problem of DTR estimation.

3. Easy-to-use computing algorithms and software. Users familiar with existing 

learning algorithms (especially SVMs) can readily understand and modify our 

methods.

4. A new perspective on estimating optimal DTRs. This perspective motivates future 

work on multi-arm trials, optimal dose finding, censored data, high-dimensional 

feature selection in DTRs, etc. We are confident that other researchers will be able 

to contribute a great deal to this rapidly growing area.

The remainder of the paper is organized as follows. In Section 2, we formalize the problem 

of estimating an optimal DTR in a mathematical framework. We then reformulate this 

problem as a weighted classification problem and based on this reformulation we propose 

two new learning methods for estimating the optimal DTR. Section 3 provides theoretical 

justifications for the proposed methods including consistency and risk bound results. We 

present empirical comparisons of the proposed methods with Q- and A-learning in Section 4. 

Section 5 focuses on the application of the proposed methods for the multi-decision setup, 

where the data comes from a smoking cessation trial. Finally, we provide a discussion of 

open questions in Section 6. The proofs for the theoretical results are given in the Appendix.
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2 General Methodology

2.1 Dynamic Treatment Regimes (DTRs)

Consider a multistage decision problem where decisions are made in T stages. For j = 1, …, 

T, let Aj be a dichotomous treatment with values in  = {−1, 1}, which is the treatment 

assigned at the jth stage, Xj be the observation after treatment assignment Aj−1 but prior to jth 

stage, and XT+1 denotes the covariates measured at the end of stage T. Note that more 

generally Aj might be multi-category or continuous; however, we do not consider these cases 

here (see Section 6). Following jth treatment, there is an observed outcome, historically 

termed the “reward.” We denote the jth reward by Rj and assume it is bounded and has been 

coded so that larger values correspond to better outcomes. In most settings, Rj depends on all 

precedent information, which consists of all the covariate information, X1, …, Xj, treatment 

history, A1, …, Aj, and historical outcomes, R1, …, Rj−1. Note that Rj can be a part of Xj+1. 

The overall outcome of interest is the total reward .

A DTR is a sequence of deterministic decision rules, d = (d1, …, dT), where dj is a map from 

the space of history information Hj = (X1, A1, …, Aj−1, Xj), denoted by , to the space of 

available treatments . The value associated with a regime d (Qian and Murphy, 2011) is

where Pd is the measure generated by the random variables (X1, A1, X2, R1, …, AT, XT+1, 

RT) under the given regime, i.e., Aj = dj(Hj) and Ed denotes expectation against Pd. Thus, Vd 

is the expected long-term benefit if the population were to follow the regime d. Let P denote 

the measure generated by (X1, A1, …, AT, XT+1, RT) from which the observed data are 

drawn, and let E denote expectation taken with respect to this measure. Under the following 

conditions, which are assumed hereafter, Vd can be expressed in terms of P:

a. Aj is randomly assigned with probability possibly dependent on Hj, j = 1, …, T 

(sequential multiple assignment randomization);

b. with probability one, πj(aj, Hj) = P(Aj = aj|Hj) ∈ (c0, c1) for any aj ∈ , where 0< 

c0 < c1 < 1 are two constants, and πj is assumed to be known.

The foregoing assumptions are satisfied when data are collected in a SMART (Lavori and 

Dawson, 2004). Under these assumptions it can be shown that Pd is dominated by P and

where I(·) is the indicator function. As a result,
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(2.1)

When T = 1, the value function of assigning treatment A1 = 1 to all patients is simply a 

weighted average of all outcomes among those that received A1 = 1 with weights π1(A1, 

H1)−1. The optimal value function is defined as V* = , where  consists of all possible 

regimes, and the optimal DTR, denoted by d*, is the regime yielding V*. The goal is to 

estimate d* from data. Note that d* remains unchanged if Rj is replaced by Rj + c for any 

constant c. Hence, we assume Rj ≥ 0, j = 1, …, T.

When the underlying generative distribution is known, dynamic programming shows that 

 where QT (hT, aT) = E(RT|HT = hT, AT = aT) and 

recursively  where Qj (hj, aj) = E(Rj + maxaj+1 Qj+1(Hj+1, 

aj+1)|Hj = hj, Aj = aj) for j = T − 1, …, 1 (Bellman, 1957; Sutton and Barto, 1998). Q-

learning is an approximate dynamic programming algorithm that uses regression models to 

estimate the Q-functions Qj(hj, aj) j = 1, …, T. Linear working models are typically used to 

approximate the Q-functions. However, Murphy (2005b) show that there is a mismatch 

between the estimand in Q-learning and the optimal DTR. This mismatch results from the 

fact that Q-learning targets the optimal Q-function rather than directly targeting the optimal 

regime. A postulated class of Q-functions induces a corresponding class of DTRs, namely 

those representable as the arg max of the postulated Q-functions. Qian & Murphy (2011) 

show that Q-learning can be inconsistent when the postulated Q-functions are misspecified 

even in cases where the optimal DTR resides in the class of induced DTRs.

2.2 A Different View of Estimating the Optimal DTR

Our proposed methodology takes a completely different approach to estimating the optimal 

DTR. Generally speaking, existing methods model the temporal relationship between the 

historical information and future rewards, e.g., modeling the Q-functions in Q-learning or 

modeling the regret functions in A-learning, and then invert this relationship to estimate the 

optimal DTR. In contrast, our proposed approaches examine the data retrospectively by 

investigating the differences between subjects with observed high and low rewards, so as to 

determine what the optimal treatment assignments should be relative to the actual treatments 

received for different groups of patients. From this perspective, the optimal DTR estimation 

can be reformulated as a weighted classification problem. We can thus incorporate statistical 

learning techniques into the DTR estimation framework.

To provide intuition we first consider the single stage estimation (T = 1) problem considered 

by Zhao et al. (2012). Since T = 1, we omit the subscript so the observed random variables 

only include baseline covariates X, treatment assignment A, and observed reward R. Then 

the value function associate with a treatment regime d is Ed(R) = E[RI(A = d(X))/π(A, X)]. 

Identifying the treatment rule d* which maximizes Ed(R) is equivalent to finding the d* 

which minimizes E[RI(A ≠ d(X))/π(A, X)]. This objective can be viewed as a weighted 

misclassification error, with the weight for each misclassification event given by R/π(A, X). 

Intuitively, minimizing this objective implies that subjects with high observed rewards are 
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more likely to be assigned to the treatment actually received whereas subjects with low 

observed rewards are more likely to be assigned to the treatment not actually received. 

Hence, we view maximizing the value function as minimizing a retrospective outcome 

weighted 0–1 loss function.

Direct minimization of the empirical analogue of the Vd is difficult due to the non-convex 

and discontinuous 0–1 loss. Inspired by the fact that without the weights the objective would 

be the same as commonly used in classification, Zhao et al. (2012) proposed to use a convex 

surrogate loss for the 0–1 loss, which has been widely applied in the classification literature 

(Hastie et al., 2009). Support vector machines (SVMs, Cortes and Vapnik, 1995), enjoy 

optimality properties and fast algorithms which Zhao et al. (2012) showed can be translated 

to the treatment selection problem. In particular, they replaced the 0–1 loss with a hinge loss 

in the empirical analogue of the objective, and subsequently estimated the optimal decision 

function by minimizing

(2.2)

based on the data from n subjects, where: f(x) is the decision function so that d(x) = 

sign(f(x)); ϕ(v) = max(1 − v, 0) is the hinge loss; and λn is the tuning parameter controlling 

the severity of the penalty and ||f||. Typically, ||f|| is the Euclidean norm of β if f(x) = 〈 β, x 〉 + 

β0, where 〈 a, b 〉 = aTb is the inner product in Euclidean space, or ||f|| is given by the norm 

in a reproducing kernel Hilbert space (RKHS). Zhao et al. (2012) established theoretical 

properties and demonstrated superior empirical performance over a regression-based 

approach.

However, the method in Zhao et al. (2012) cannot be directly generalized to estimating 

optimal DTRs, due to the fact that optimal DTRs need to be determined for multiple stages 

and the estimation at stage t depends on the decision for the treatment regimes at future 

stages. To deal with this problem, we propose two distinct new nonparametric learning 

approaches in the following sections: one sequentially estimates optimal DTRs by means of 

outcome weighted learning, and the other simultaneously learns optimal DTRs across all 

stages.

2.3 Approach 1: Backward Outcome Weighted Learning (BOWL)

DTRs aim to maximize the expected cumulative rewards, hence, the optimal treatment 

decision at the current stage must depend on subsequent decision rules. This motivates a 

backwards recursive procedure which estimates the optimal decision rule at future stages 

first, and then the optimal decision rule at current stage by restricting the analysis to the 

subjects who have followed the estimated optimal decision rules thereafter. Assume that we 

observe data (Xi1, Ai1, …, AiT, Xi,T+1, RiT), i = 1, …, n forming n independent and identically 

distributed patient trajectories from a SMART. Suppose that we already possess the optimal 

regimes at stages t + 1, …, T and denote them as . Then the optimal decision 

rule at stage t,  should maximize
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where we assume all subjects have followed the optimal DTRs after stage t. Hence,  is a 

map from  to {−1, 1} which minimizes

(2.3)

This suggests that we minimize the empirical analog of the above expression using the data 

from the n subjects, given that we know the optimal decisions in the future. This is 

equivalent to an empirical average of a weighted 0–1 loss functions, where the weights are 

defined by  for each individual. We 

develop a tractable estimation procedure by using a convex surrogate for the 0–1 loss for 

stage t. We use hinge loss throughout this paper, although any other sensible loss function 

could also be used.

Let ft :  ↦ ℝ denote the decision function at stage t, so that dt(ht) = sign(ft(ht)), were 

 known we could minimize with respect to ft:

The objective function at stage t has a similar form as (2.2), except that the weight 

incorporates future information. The estimator uses data from the subjects whose actual 

treatment assignments are the same as the future optimal treatments in stages t + 1, …, T to 

learn the optimal rule at stage t.

Since future optimal decisions are unknown, we first estimate the optimal decision rule at 

the last stage and then proceed backwards recursively. At each stage, we conduct the 

optimization based on the subjects who have followed the constructed optimal DTRs in the 

later stages. The BOWL estimation algorithm is as follows.

Step 1—Minimize

(2.4)

with respect to fT and let f̂T denote the minimizer. Then the estimated optimal decision rule 

is d ̂
T(hT) = sign(f̂T(hT)). This minimization is equivalent to the single-stage outcome 

weighted learning in Zhao et al. (2012) and it has a similar dual objective function to the 

usual SVM, which can be implemented via quadratic programming.
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Step 2—For t = T − 1, T − 2, …, 1, we backwards sequentially minimize

(2.5)

where the d̂
t+1, …, d ̂

T are obtained prior to stage t. Note that each minimization can still be 

carried out using the same algorithm in Step 1 except that the individual weights in front of 

the hinge loss are replaced by .

One concern about the BOWL method is that the number of subjects actually used in 

learning optimal decision rules is decreasing geometrically as t decreases. For example, 

under pure randomization with randomization probability 0.5 at each decision point, the 

number of nonzero terms in (2.5) is reduced by half at each time point. To include more 

subjects in the estimation process, we also propose an iterative version of the algorithm that 

we call iterative outcome weighted learning (IOWL). To illustrate IOWL, we use a two-

stage setup. Note the objective is to find the DTR with a sequence of two decision rules 

which maximizes (2.1) with T = 2, the expected total amount of reward when the treatments 

are chosen according to rule d. Upon obtaining the stage 1 estimated rule d̃
1 using BOWL, 

we reestimate the optimal stage 2 rule  based on the subset of patients whose stage 1 

treatment assignments are consistent with d̃
1. We continue with the reestimation of the 

optimal stage 1 rule  using the information of patients consistent with . The process 

is then iterated until the estimated value converges. The iteration procedure, given in the 

supplementary material, only updates the decision rule for one stage at a time leaving the 

other unchanged. It can be seen that each iteration of the algorithm increases the expectation 

of the value function. One advantage of the IOWL over BOWL is that through iterative 

reestimation, we are able to explore different subjects, especially those who are 

misclassified in the BOWL method. The use of iterations in IOWL is mainly for small-

sample improvement, since every iteration is valid to yield a consistent DTR asymptotically. 

In our numerical studies, we stopped after 5 iterations.

2.4 Approach 2: Simultaneous Outcome Weighted Learning (SOWL)

Both BOWL and IOWL sequentially maximize the empirical value. In this section, we 

propose an alternative approach which can learn the optimal regimes at all stages 

simultaneously. We call this approach simultaneous outcome weighted learning (SOWL).

In the SOWL method, rather than conducting the estimation in multiple steps, we directly 

optimize the empirical counterpart of (2.1) in one step. However, a direct maximization of 

the empirical analog of (2.1) is computationally difficult due to discontinuity of the indicator 

functions. Thus, we substitute a continuous and concave surrogate function in place of the 

product of indicators. For convenience, we describe this method using a two-stage setup but 

generalization to any number of stages is possible.

In the two-stage setting we seek a concave surrogate for the product of two indicator 

functions. To this end, we define Z1 = A1f1(H1) and Z2 = A2f2(H2), where dj(hj) = sign(fj(hj)), 
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j = 1, 2. The indicator I(Z1 > 0, Z2 > 0) is nonzero only in the first quadrant of the Z1Z2 

plane. The left hand side of Figure 1 shows this indicator. Mimicking the hinge loss in a 

one-dimensional situation, we consider the following surrogate reward ψ:

This smooth surrogate is shown on the right hand side of Figure 1. We drop the constant 1 in 

ψ(Z1, Z2), since it does not affect the optimization procedure.

Consequently, the SOWL estimator maximizes

(2.6)

where λn is a tuning parameter controlling the amount of penalization. To maximize (2.6), 

we first restrict to linear decision rules of the form fj(Hj) = 〈 βj, Hj 〉 + β0j for j = 1, 2. The 

norms of f1 and f2 in (2.6) are given by the Euclidean norm of β1 and β2. To ease notation, 

we write  simply as W. Thus the optimization problem can be 

written as

subject to, ξi ≤ 0, ξi ≤ Ai1(〈 β1, Hi1 〉 + β01) − 1, ξi ≤ Ai2(〈 β2, Hi2 〉 + β02) − 1, where γ is a 

constant depending on λn. This optimization problem is a quadratic programming problem 

with a quadratic objective function and linear constraints. Applying the derivations given in 

the supplementary material, the dual problem is given by

subject to αi1, αi2 ≥ 0, , αi1 + αi2 ≤ γWi, i = 1, …, n. 

Hence, the dual problem can be optimized using standard software. Similarly, we may 

introduce nonlinearity by using nonlinear kernel functions and the associated RKHS. In this 

case, 〈 Hij, Hlj 〉 in the dual problem is replaced by the inner product in the RKHS.

To extend SOWL to T stages, where T > 2, we need to find a concave proxy function for the 

indicator I(Z1 > 0, …, ZT > 0), where Zj = Ajfj(Hj), j = 1, …, T. A natural generalization of 

surrogate reward is ψ(Z1, …, ZT) = min(Z1 −1, …, ZT −1, 0)+1, and the objective function 

analogous to (2.6) for optimization follows correspondingly. The dual problem and 

optimization routine can be developed in the same fashion.
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3 Theoretical Results

In this section, we present the theoretical results for the methods described in Section 2. 

Since the best rule at the current stage depends on the best rules at future stages, the 

theoretical properties of the proposed methods have to be established stage by stage 

conditioning on the estimated rule at future stages. We first derive the exact form of the 

optimal DTR. We then provide asymptotic results for using BOWL and SOWL to estimate 

the optimal DTR.

Define for t = 1, …, T,

(3.1)

Thus Vt(ft, …, fT) is the average total reward gain from stage t until the last stage if the 

sequence of decisions (sign(ft), …, sign(fT)) is followed thereafter. If t = 1, the subscript is 

dropped, indicating that the value function is calculated for all stages, i.e., Vd = V(f1, …, fT) 

with d = (sign(f1), …, sign(fT)). We also define , where 

supremum is taken over all measurable functions, and  is achieved at ( ).

3.1 Fisher Consistency

Fisher consistency states that the population optimizer in BOWL and SOWL is the optimal 

DTR. Specifically, we show that either by replacing the 0–1 loss with the hinge loss in the 

target function (2.3) and solving the resulting optimization problem over all measurable 

functions with the surrogate loss backwards, or by maximizing the surrogate reward with the 

ψ function replacing the product of 0–1 reward functions in (2.1), we obtain a sequence of 

decision rules that is equivalent to the optimal DTR.

Proposition 3.1. (BOWL)—If we obtain a sequence of decision functions (f̃1, …, f̃T) by 

taking the supremum over  ×  × … ×  of

backwards through time for t = T, T − 1, …, 1, then  for all j = 1, …, T.

The proof follows by noting that each step is a single-stage outcome weighted learning 

problem; Zhao et al. (2012) proved that the derived decision rule based on the hinge loss 

also minimizes 0–1 loss. Therefore, . Given this fact, we obtain 

 and so on. This theorem validates the usage of the hinge loss in the 

implementation, indicating that the BOWL procedure targets the optimal DTR directly. 

Similarly, the surrogate reward in SOWL has the correct target function. Define
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(3.2)

The following result is proved in the Appendix.

Proposition 3.2. (SOWL)—If (f ̃1, …, f̃T) ∈  × … ×  maximize Vψ(f1, …, fT) over  × 

… × , then for hj ∈ , , j = 1, …, T.

3.2 Relationship between excess values

The maximal Vψ-value is defined as 

, which is shown in Proposition 3.2 

to be maximized at ( ). We have the following result.

Theorem 3.3. (SOWL)—For any fj ∈ , j = 1, …, T, we have

where ( ) is the optima over  × … × .

Theorem 3.3 shows that the difference between the value for (f1, …, fT) and the optimal 

value function with 0–1 rewards is no larger than that under the surrogate reward function ψ 

multiplied by a constant. This quantitative relationship implies a relationship between excess 

values for V(f1, …, fT) and Vψ(f1, …, fT), which is particularly useful in the sense that if the 

Vψ value of certain decision rules is fairly close to , the decision rules also yield a nearly 

optimal value.

Remarks: Similar properties for one-dimensional hinge loss have been derived when 

optimizing over an unrestricted function class (see Bartlett et al., 2006; Zhao et al., 2012), 

where the relationship between excess risk associated with 0–1 loss is always bounded by 

that associated with hinge loss. Since each step is a single-stage outcome weighted learning, 

we naturally obtain the analogous results for BOWL at each stage and do not elaborate here.

3.3 Consistency, risk bound and convergence rates

As indicated in Sections 2.3 and 2.4, the estimation of optimal DTR occurs within a specific 

RKHS. We obtain linear decision rules using linear kernels for the RKHS and nonlinear 

decision rules with nonlinear kernels. Propositions S.1 and S.2 in the supplementary material 

show that, as sample size increases, if the optimal DTR, which is obtained by taking the 

supremum over all measurable functions, belongs to the closure of the selected function 

space, the value of the estimated regimes via BOWL or SOWL will converge to the optimal 

value. Note that Q-learning does not guarantee this kind of property. If any of the postulated 

regression models are misspecified, Q-learning may be inconsistent for the optimal DTR 

even if it is contained within the class of DTRs induced by the Q-functions.
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We now derive the convergence rate of , T − 1, … 1 for the BOWL 

estimator and V(f̂1, …, f̂T) − V* for the SOWL estimator. We particularly consider the RKHS 

, j = t, …, T, as the space associated with Gaussian Radial Basis Function (RBF) kernels 

, and σj,n > 0 is a parameter varying with n 

controlling the bandwidth of the kernel. Therefore, when conducting BOWL backwards and 

at each stage or SOWL simultaneously, we will encounter two types of error: approximation 

error, representing the bias by comparing the best possible decision function in  with that 

across all possible spaces, and estimation error, reffecting the variability from using a finite 

sample. In order to bound estimation error, we need a complexity measure for the selected 

space. Here, by using the Gaussian RBF kernel, the covering number for  can be 

controlled via the empirical L2-norm, defined as 

. Specifically, for any ε > 0, the covering 

number of a functional class  with respect to L2(Pn), N ( , ε, L2(Pn)), is the smallest 

number of L2(Pn) ε-balls needed to cover  where an L2(Pn) -ball around a function g ∈ 

is the set {f ∈ : ||f − g||L2(Pn) < ε}. We assume that at stage j,

where  is the closed unit ball of , and ν and δ are any numbers satisfying 0 < ν ≤ 2 and δ 

> 0. To determine the approximation properties of Gaussian kernels, we assume a geometric 

noise condition regarding the distribution behavior of data near the true decision boundary at 

each stage, which has been used to derive the risk bounds for SVMs (Steinwart and Scovel, 

2007) and for single stage value maximization (Zhao et al., 2012). For each stage j, the noise 

exponent qj reffects the relationship between magnitude of the noise and the distance to the 

decision boundary. Details on the noise condition are provided in the supplementary 

material.

Theorem 3.4. (BOWL)—Let the distribution of (Hj, Aj, Rj), j = 1, …, T satisfy Condition 

S.1 in the supplementary material with noise exponent qj > 0. Then for any δ > 0, 0 < ν ≤ 2, 

there exists a constant Kj (depending on ν, δ, pj and πj), such that for all τ ≥ 1, πj(aj, hj) > c0 

and , j ≥ t, 

, where Pr* denotes 

the outer probability for possibly nonmeasurable sets, and

(3.3)

where nj is the available sample size at stage j. Particularly, when t = 1, we have 

.
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Theorem 3.5. (SOWL)—Let the distribution of (Hj, Aj, Rj), j = 1, …, T with noise 

exponent qj > 0. Then for any δ > 0, 0 < ν < 2, there exists a constant K (depending on ν δ, pj 

and πj), such that for all τ ≥ 1 and , Pr*(V(f ̂1, …, f̂T) ≥ V* − ε) ≥ 1 − e−τ, 

where

(3.4)

Theorems 3.4 and 3.5 measure the probability that the difference between the value of the 

estimated DTR using BOWL or SOWL and the optimal value is sufficiently small. 

Specifically for BOWL, we bound the difference between the value of the estimated DTRs 

starting at arbitrary stage t and the optimal value from that stage on. Furthermore, we can 

derive the rate of convergence of the estimated values approaching the corresponding 

targeted optimal values. Each εj, j = 1, …, T in (3.3), as well as ε in (3.4), consists of the 

estimation error, the first two terms, and the approximation error, the last term. In particular, 

if qj = q (j = 1, …, T) and we balance the estimation and approximation error by letting 

 in (3.3) or (3.4), then the optimal rate for the value of the 

estimated DTRs using BOWL or SOWL is . In this formula, δ is a 

free parameter which can be set arbitrarily close to 0. The geometric noise component q is 

related to the noise condition regarding the separation between two optimal treatment 

groups. The parameter ν measures the order of complexity for the associated RKHS. For 

example, if the two subsets  and , j = 1, …, T have strictly positive distance, i.e., there 

is no data near the decision boundary across all stages, then q = ∞ and the convergence rate 

is approximately , and  with ν close to 0.

Remarks: The fast rate of convergence to the best achievable error for SVMs is anticipated 

provided certain conditions hold on the data generating distribution (Tsybakov, 2004; 

Steinwart and Scovel, 2007; Blanchard et al., 2008). Indeed, the convergence rate of 

can be further improved to as fast as  if ηj(hj), j = 1, …, T are bounded away from 1/2 by 

a gap, that is, there is a distinction between the rewards gained from treatment 1 and −1 on 

the same patient. More details can be found in the supplementary material.

4 Simulation Studies

To assess the performance of the proposed methods, we conduct simulations under a number 

of scenarios imitating a multi-stage randomized trial. We first consider a two-stage setup. 

Specifically, 50 dimensional baseline covariates X1,1, …, X1,50 are generated according to N 

(0, 1). Treatments A1, A2 are randomly generated from {−1, 1} with equal probability 0.5. 

The models for generating outcomes R1 and R2 vary under the different settings stated 

below:
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1 Stage 1 outcomeR1 is generated according to N (0.5X1,3A1, 1), and stage 2 

outcome R2 is generated according to 

.

2 Stage 1 outcomeR1 is generated according to N ((1 + 1.5X1,3)A1, 1); two 

intermediate variables, X2,1 ~ I{N (1.25X1,1A1, 1) > 0}, and X2,2 ~ I{N 

(−1.75X1,2A1, 1) > 0} are generated; then the Stage 2 outcome R2 is generated 

according to N ((0.5 + R1 + 0.5A1 + 0.5X2,1 − 0.5X2,2)A2, 1).

There are no time-varying covariates involved in Scenario 1, and a non-linear relationship 

exists between baseline covariates and stage 2 treatment. Additionally, R1 plays a role in 

determining the second stage outcomes. We incorporate two time-varying covariates in 

Scenario 2, i.e., additional binary covariates are collected after stage 1, the values of which 

depend on the first and second baseline variables. In the third scenario, we consider a three-

stage SMART with data generated as follows.

3 Treatments A1, A2 and A3 are randomly generated from {−1, 1} with equal 

probability 0.5. Three baseline covariates X1,1, X1,2, X1,3 are generated with N 

(45, 152). X2 is generated according to X2 ~ N (1.5X1,1, 102) and X3 is generated 

according to X3 ~ N (0.5X2, 102). Rj = 0, j = 1, 2 and R3 ~ 20 − |0.6X1,1 − 40|

{I(A1 > 0) − I(X1,1 > 30)}2 − |0.8X2 − 60|{I(A2 > 0) − I(X2 > 40)}2 − |1.4X3 − 40|

{I(A3 > 0) − I(X3 > 40)}2.

In this scenario, the regret for stage 1 is |0.6X1 − 40|{I(A1 > 0) − I(X1,1 > 30)}2, the regret for 

stage 2 is given by |0.8X2 − 60|{I(A2 > 0) − I(X2 > 40)}2 and the regret for stage 3 is given 

by |1.4X3 − 40|{I(A3 > 0) − I(X3 > 40)}2. We can easily obtain the optimal decision rule by 

setting the regret to zero at each stage. That is, 

, and . In the simulations, 

we vary sample sizes from 100, 200 to 400 and repeat each scenario 500 times.

For each simulated data set, we apply the proposed learning methods including BOWL, 

IOWL, and SOWL. We also implement the Q-learning, L2-regularized Q-learning, and A-

learning for the purpose of comparison. In all these algorithms, we consider linear kernels 

for illustration. We also explored the use of Gaussian kernels but found that the performance 

changed little in any of these scenarios. In order to carry out Q-learning, we consider a linear 

working model for the Q-function of the form Qj(Hj, Aj; αj, γj) = αjHj + γjHjAj, j = 1, …, T, 

where H1 = (1, X1), and Hj = (Hj−1, Hj−1Aj−1, Xj) and Xj includes Rj−1 and other covariates 

measured after Aj−1. Here we assume Hj includes intercept terms. Take T = 2 as the 

example, the second stage parameter can be estimated as 

, and the estimated treatments for 

stage 2 are obtained via argmaxa2 Q2(H2, a2; α̂
2, γ̂2). We then obtain pseudo outcomes for 

stage 1 with R̂1 = R1 + maxa2 Q2(H2, a2; α̂
2, γ2̂). (α̂1, γ̂1) can be computed by fitting the 

imposed model Q1(H1, A1; α1, γ1) for R̂1, and the estimated stage 1 treatments are argmaxa1 

Q1(H1, a1; α̂
1, γ̂1). L2-regularized Q-learning is considered to handle the high dimensional 

covariate space, where ridge regression with an L2 penalty is applied at each stage. The 

regularization parameter was chosen using cross validation. We implement A-learning using 
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an iterative minimization algorithm developed in Murphy (2003), where the regret functions 

are linearly parameterized with other components unspecified. For BOWL, we follow the 

procedures described in Section 2.3, where the optimal second stage treatments are obtained 

via a weighted SVM technique based on history H2, with the optimization target defined in 

(2.4). The estimation of the optimal treatment in stage 1 is then carried out by minimizing 

(2.5) using H1 on the subset of patients whose assignments A2 are consistent with the 

estimated decisions d̂2. The weighted SVM procedure is implemented using LIBSVM 

(Chang and Lin, 2011). We use 5-fold cross validation to select tuning parameters λt,n in 

each stage: the data is partitioned into 5 subsets; each time 4 subsets are used as the training 

data for DTR estimation while the remaining set is used as the validation data for calculating 

the value of the estimated rule; the process is repeated 5 times and we average the value 

obtained each time; then we choose λt,n for stage t, to maximize the estimated values. In the 

IOWL method, we iteratively apply the weighted SVM technique, based on the group of 

patients receiving the recommended treatment for the other stage. Again, cross validation is 

utilized to select the required tuning parameter via a grid search. The iterative procedure 

stops upon stabilization of the value functions or reaching the maximum number of 

iterations, preset in our simulations. In the implementation of SOWL, we maximize the 

objective function presented in (2.6) coupled with a commonly used procedure in convex 

optimization (Cook, 2011), where the parameter λn is chosen via 5-fold cross-validation. In 

general, it takes less than 1 minute to run a 2-stage example, and 3 minutes to run a 3-stage 

example, where we select tuning parameters for each stage based on a prefixed set of 15 

candidate values, on a Macbook Pro with CPU 2.6 GHz Intel Core i7, 16GB memory.

Scientific interest is to investigate the ability of the estimated DTRs to produce an optimal 

outcome. In each scenario, based on one training set out of 500 replicates, we construct 

DTRs using competing methods. For each estimated DTR, we calculate the mean response 

had the whole population followed the rule (the value function) by Monte Carlo methods. 

Specifically, we generate a large validation data set (size 10000) and obtain the subject 

outcomes under the estimated DTRs. Therefore, the values of the value function can be 

calculated by averaging the outcomes over 10000 subjects, and we have 500 values of the 

estimated rules on the validation set for each scenario. We summarize the results by plotting 

the smoothed histograms of these values obtained, which are displayed in Figures 2{4. We 

expect to see better performing methods leading to large values more frequently. We also 

provide means and standard errors (s.e.) of the values over 500 runs for each scenario in 

Table 1.

With large number of covariates, Q- and A-learning tend to overfit the model, leading to 

worse performances in general. L2-regularized Q-learning yields an improvement, yet the 

performance is not satisfactory when the treatment effect is misspecified. For example, the 

treatments effect is highly nonlinear in Scenario 1, where a linear basis is used for modeling. 

In this situation, Q- and A-learning based methods may never closely approximate the 

correct decision boundary. As shown in Figure 2, they tend to estimate the wrong target 

since the mean of the distribution deviates from the optimal value substantially. Even though 

the proposed methods also misspecify the functional relationship, they outperform Q-

learning/A-learning, and behaviors of the three methods are consistent in the sense that 
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different approaches most of the time lead to the same value, which is close to the truth. 

Scenario 2 takes evolving variables into consideration and responses generated at each stage 

are linearly related to the covariates. Again, the proposed methods are comparable or better 

than Q- and A-learning. In Scenario 3, we mimic a 3-stage SMART. This imposes 

significant challenges on deriving the optimal DTRs due to limited sample sizes yet multiple 

options of treatment sequences over 3 stages. Although the optimal treatment decision at 

each stage is linear, the Q-function and the regret function are not linear here. Hence, the 

posited models in Q-learning and A-learning are misspecified, but the proposed methods 

using linear kernel are correct. Indeed, the proposed methods have better performances for 

this complex scenario, and the values of the deduced DTRs are closer to the optimal value as 

sample size increases. The strength of IOWL over BOWL is demonstrated in this example. 

By taking advantage of an iterative process cycling over the complete data set, it improves 

the decision from BOWL with better precision. In addition to Q- and A-learning, Zhang et 

al. (2013) proposed a robust method to search for the optimal DTRs within a pre-specified 

treatment class using a genetic algorithm. Since their method cannot handle very high-

dimensional covariate spaces, we perform comparisons by keeping only key covariates in 

the simulation, with the data generation mechanism remaining the same. When the number 

of predictors is reduced, all methods tend to perform similarly, and ones with modeling 

assumptions satisfied can have comparatively better performances (see Table S.2 in the 

supplementary material). Additional simulation results are also presented in the 

supplementary materials, including settings with simple treatment effects and discrete 

covariates. The proposed methods have comparable or superior performances to all 

competing approaches.

5 Data Analysis: Smoking Cessation Study

In this section we illustrate the proposed methods using data from a two-stage randomized 

trial of the effectiveness of a web-based smoking intervention (see Strecher et al., 2008, for 

details). The smoking cessation study consists of two stages. The purpose of stage 1 of this 

study (Project Quit), was to find an optimal multicomponent behavioral intervention to help 

adult smokers quit smoking; and among the participants of Project Quit, the subsequent 

stage (Forever Free) was conducted to help those who already quit stay quit, and help those 

who failed to quit continue the quitting process. The study initially enrolled 1848 patients of 

which only 479 continued on to the second stage.

The baseline covariates considered in stage 1 include 8 variables, denoted by X1,1, …, X1,8, 

and 2 additional intermediate variables, X2,1 and X2,2, measured after 6 months are 

considered in stage 2. Both of them are described in the supplementary material. The first 

stage treatment is A1 = “Story” which dictates the tailoring depth of a web-based 

intervention. “Story” is binary and is coded 1 and −1 with 1 corresponding to high tailoring 

depth (more tailored) and −1 corresponding to low tailoring depth (less tailored). The second 

stage treatment is A2=“FFArm” which is also binary and coded as −1 and 1, with −1 

corresponding to control and 1 corresponding to active treatment. A binary outcome was 

collected at 6 month from stage 1 randomization, with RQ1 = 1 if the patients quit smoking 

successfully and 0 otherwise. The stage 2 outcome was collected as RQ2 (1 = quit, 0 = not 

quit) from stage 2 randomization. To simplify our analysis, we first only consider the subset 
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of patients that completed both stages of treatment with complete covariate and 

corresponding outcome information.

We are mainly interested in examining the performance of the proposed approaches, i.e., 

BOWL, IOWL and SOWL. However, to serve as a baseline we also consider Q-learning and 

A-learning as competitors. For the implementation of Q-learning, we need to posit a model 

for each decision point. We first incorporate all the history covariates and history-treatment 

interactions, i.e., H1 = (1, X1) and H2 = (H1, H1A1, X2,1, X2,2, R1), into the prediction models 

for Q-functions. A-learning is implemented with Hj as linear predictors for the contrast at 

stage j, j = 1, 2. For BOWL, IOWL and SOWL methods, linear kernels are considered with 

Hj as input for both stage, j = 1, 2. We use RQj divided by the estimated π̂j(aj, Hj), where 

π̂j(aj, Hj) = Σj I(Aj = aj)/nj to weigh each subject, and nj is the sample size at stage j.

For any DTR d = (d1, d2), we can estimate the associated value using

Let’s first consider non-dynamic regimes. If the entire patient population follows the fixed 

regime d = (1, 1), i.e., stories are highly tailored to the whole population in stage 1, and all 

patients are provided with treatment in the second stage, the expected value associated with 

(1, 1) is 0.729. Similarly, we have V ̂(1, −1) = 0.878, V ̂(−1,1) = 0.769 and V ̂(−1, −1) = 0.568. 

Using the complete dataset, we derive the DTRs based on different methods. The values for 

the derived treatment regimes can also be estimated unbiasedly using the same strategy. In 

general, the use of estimated optimal DTRs, which are tailored to individual characteristics, 

yield better outcomes than any fixed treatment regimes. The highest value results from 

regimes recommended by BOWL, with V ̂d̂BOWL = 1.096, followed by the regimes 

recommended from IOWL with V̂d̂IOWL = 1.019. Fewer patients follow the regime (1, 1), 

while around half of the patients are recommended with the regime (1, −1). By checking the 

loadings of the covariates in the estimated rules using BOWL methods, we find that people 

with lower motivation to quit smoking should more frequently be assigned to highly tailored 

stories. We also learn that smokers who quit smoking but with lower self-efficacy after stage 

1 should be recommended to active treatment at the second stage. Results from the 

considered methods are presented in Figure 5 for comparison. We can see that the proposed 

methods provide similar recommendations, which lead to better benefits compared with 

other methods.

Indeed, there is considerable dropout during the study. We may possibly introduce bias by 

doing a complete-case data analysis as above. Here, we present one possible remedy yet not 

necessarily the best approach by including dropout within the reward structure, since to 

handle missing data appropriately, one would hope to have a full understanding of the 

missing mechanism. Among dropout patients, 317 patients quit smoking successfully and 

601 did not. We adopted the principle of last observation carried forward, i.e., for each 

dropout subject, we impute RQ2 by the observed RQ1 for the same subject. Hence, the 
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outcome of interest is 2RQ1 for patients not moving into stage 2, and (RQ1 + RQ2) otherwise. 

We apply Q-learning, BOWL and IOWL to the dataset under this framework, which yield 

values of 0.742, 0.787 and 0.779 accordingly. BOWL produces a better strategy, where by 

checking the loadings of the covariates in the estimated BOWL rule, we find that people 

with lower motivation to quit smoking or lower education level (≤ high school) should be 

provided with highly tailored stories.

Considering the potential problems arising from overfitting, we further perform a cross-

validation type analysis using complete-case data. For 100 iterations we randomly split the 

data into 2 roughly equally sized parts, one part of the data is used as a training set, on which 

the methods are applied to estimate the optimal DTR, and the remaining part is retained for 

validation by calculating values of the obtained estimates. Moreover, we consider two 

additional outcomes for the purpose of a comprehensive comparison: a binary outcome RSj = 

1 if the level of satisfaction with the smoking cessation program is high and RSj = 0 

otherwise, j = 1, 2; and ordinal outcomes RNj= 0 if the patient had zero abstinent months; 

RNj = 1 if the patient experienced 1–3 abstinent months; and RNj = 2 if the patient 

experienced 4 or more abstinent months during the jth stage. Table 2 gives the mean and the 

standard error of the cross validated values across 100 iterations for different outcomes, 

where higher values signify better results. It can be seen that values resulted from BOWL/

IOWL/SOWL for all outcomes are comparable or higher than either Q- or A-learning. One 

possible reason for this is that the proposed methods do not attempt to do model fitting. Q- 

or A-learning impose regression models, particularly linear here, for the Q-function or regret 

function, which may be misspecified.

6 Discussion

We have proposed novel learning methods to estimate the optimal DTR using data from a 

sequential randomized trial. The proposed methods, formulated in a nonparametric 

framework, are computationally efficient, easy and intuitive to apply, and can effectively 

handle the potentially complex relationships between sequential treatments and prognostic 

or intermediate variables.

All three of the proposed estimators are philosophically similar in that they aim to maximize 

the value function directly, and yield a unique optima which converges to the true optimal 

value asymptotically. However, they use different optimization methods to find the optimal 

DTR – backward recursion for BOWL and IOWL, simultaneous optimization for SOWL. 

This simultaneous optimization may cause some numerical instability in SOWL when the 

number of stages is large. Comparatively, BOWL and IOWL may have more benefits in the 

complex setting with multiple (>2) stages. While we primarily considered SVMs in this 

paper, this is not essential, and any classification algorithm capable of accommodating 

example weights could be used, e.g., tree-based methods, neural networks, etc. In fact, one 

could use different classification algorithms at each stage. Conversely, SOWL attempts a 

simultaneous estimation of the decision rules at each stage by using a single concave 

relaxation of the empirical value function. Furthermore, a new algorithm is developed to 

facilitate optimization over multiple stages simultaneously. This relaxation involves defining 

a multi-dimensional analog of the margin in classification and a corresponding multi-
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dimensional hinge-loss. However, since such methods have not yet been widely studied (to 

our knowledge, this is the first time such an approach has been used) questions of how to 

choose an effective concave relaxation for a given problem as well as how best to tune such 

a relaxation remain open questions. We assume the Rj to be non-negative, and suggest to 

replace Rj by Rj − mini Rij if any of the observed values are negative. The shift in location 

does not affect the method’s asymptotic properties, but it may have some impact in finite 

samples. We are currently investing this issue to examine some optimal recoding of rewards 

when they are not all nonnegative.

The proposed methods enjoyed improved empirical performance when compared with 

regression based methods Q- and A-learning. One reason for this is that the proposed 

methods directly estimate the optimal DTR rather than attempting to back it out of 

conditional expectations. There is a direct analogy between hard- and soft-margin classifiers 

wherein hard-margin classifiers directly estimate the decision boundary and soft-margin 

classifiers back-out the decision boundary through conditional class probabilities. When the 

class probabilities are complex, hard-margin classifiers may lead to improved performance 

(Wang et al., 2008); likewise, when the conditional expectations are complex, directly 

targeting the decision rule is likely to yield improved performance. Since the proposed 

methods do not model the relationship between outcomes and DTRs, they may be more 

robust to model misspecification than statistical modeling alternatives such as Q-learning 

(Zhang et al., 2012b,a). Modeling based approaches may be more efficient if the model is 

correctly specified. In the multi-decision setup, to find the best rule at one stage, we need to 

take into account the future rewards assuming that the optimal treatment regimes have been 

followed thereafter. Using a nonparametric approach, we cannot use the information from 

the patients whose assigned treatments are different from the optimal ones, since the 

observed rewards underestimate the true optimal future rewards. With modeling step 

included, Q-learning can impute the predicted future outcomes for constructing optimal 

DTRs. We may consider integrating both approaches by predicting the missing outcomes via 

Q-learning and subsequently estimating the optimal DTRs via IOWL/BOWL/SOWL. This 

would allow us to combine the strengths of both methods and potentially obtain more 

refined results in decision making and future prediction.

Sometimes, more than two treatments are available; an extreme example includes optimal 

dosing where there are a continuum of treatments. Hence, extensions to multiple and 

continuous treatments are needed. Existing methods for multi-category classification can be 

used with the proposed methodology to handle the multiple treatments case (Liu and Yuan, 

2011). For continuous treatments, one possibility is to smooth over treatments, such as 

replacing indicators with kernel smoothers. In addition, methods for estimating DTRs should 

be developed which are capable of operating effectively within ultra-high dimensional 

predictor spaces. A possible solution under the proposed framework is to incorporate sparse 

penalties in the optimization procedure, for example, the l1 penalty (Bradley and 

Mangasarian, 1998; Zhu et al., 2003).

It is critical to recognize that the presented approaches are developed for the discovery of 

optimal DTRs. In contrast to typical randomized clinical trials, which are conducted to 

confirm the efficacy of new treatments, the SMART designs mentioned at the beginning of 
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this article are devised for exploratory purposes in developing optimal DTRs. However, a 

confirmatory trial with a phase III structure can be used to follow-up and validate the 

superiority of the estimated DTR compared to existing therapies. Conducting statistical 

inference for DTRs is especially important to address questions such as “How much 

confidence do we have in concluding that the obtained DTR is the best compared to other 

regimes?” Efforts have been made to construct confidence intervals for the parameters in the 

Q-function, with main challenges coming from nonregularity due to the non-differentiability 

of the max operator (Robins, 2004; Chakraborty et al., 2010; Laber et al., 2011). We have 

shown that the proposed methods lead to small bias in estimating the optimal DTR and 

derived finite sample bounds for the difference between the expected cumulative outcome 

using the estimated DTR and that of the optimal one. We believe that this article paves the 

way for further developments in finding the limiting distribution of the value function and 

calculating the required sample sizes for the multi-decision problem.

We require in Assumption (b) that the πj are bounded away from 0 and 1, since the 

performance of the proposed approach may be unstable with small πj(Aj, Hj). One fix is to 

replace πj(Aj, Hj) by a stabilized weight, for example, one may use πj(Aj, Hj)/ πj(−1, Hj) or 

project πj(Aj, Hj) onto [c0, c1]. The proposed methods and theory still apply. While we only 

considered data generated from SMART designs here, the proposed methodology can be 

extended for use with observational data. In this case, πj is unknown and must be estimated 

(Rosenbaum and Rubin, 1983), and Assumption (b) may be violated. The framework has to 

be generalized and/or stronger modeling assumptions have to be made. Another important 

issue is missing data, for example, as in the smoking cessation trial in Section 5. We provide 

a strategy to account for missing responses due to patient dropout, yet there may also be 

item-missingness. Imputation techniques can be used to handle this problem, i.e., impute 

values for the missing data and conduct the optimal DTR estimation using the imputed 

values as if they were the truth (Little and Rubin, 2002; Shortreed et al., 2011). 

Generalization for right-censored survival data is also crucial. Methods have been developed 

for the multi-decision problem within the Q-learning framework, where survival times are 

the outcome of interest (Zhao et al., 2011; Goldberg and Kosorok, 2012). Outcome weighted 

learning approaches, however, have not yet been adapted to handle censored data. It would 

be worthwhile to investigate the possibility of such a generalization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Sketched Proofs

Here we sketch the proofs of theoretical results. For completeness, the details are provided 

in the supplementary materials (Section S.5). With any DTR d, we associate the sequence of 

decision functions (f1, …, fT) where dt(ht) = sign(ft(ht)), ht ∈  for t = 1, −, T. Define the 

conditional value function for stage t given ht ∈  as

This conditional value function can be interpreted as the reward gain in the long term given 

the current history information ht when using the decision rules (sign(ft), …, sign(fT)) 

thereafter. Let  be the set of all measurable functions mapping from  to ℝ. Accordingly, 

we define the optimal value function given ht at stage t as 

, achieved at ( ), the optima over 

all measurable functions on  × … × . The optimal decision rule at stage t, , 

can be expressed in terms of , where

(6.1)

Note that Vt(ft, …, fT) = E(Ut(Ht; ft, …, fT)) and .

Proof of Proposition 3.2

We prove the results for T = 2 while the results for T > 2 can be obtained by induction. 

According to (6.1), , and 

. We need to show that the obtained (f ̃1, f̃2) 

by maximizing SOWL objective Vψ(f1, f2) over all measurable functions satisfies, for 

particular h1,  and for particular h2, .
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Denote Zj = Ajfj(Hj), , j = 1, 2. For each h2 ∈ , A1 = a1 and H1 = h1 are fixed 

constants since H2 = h2 includes all prior information. Then

According to Lemma S.1 in the supplementary material, we obtain

and thus . Particularly, (f1, f2) achieves the maxima where f2 = f ̃2.

Furthermore, for each h1 ∈ , to find f̃1 ∈ , we maximize

over all measurable functions. By the form of f̃2, we know that if A2 ≠ sign(f̃2(H2)), A2f̃2(H2) 

− 1 = −|min(Z1 − 1, 0) + 1| −1 ≤ min(Z1 − 1, 0). Thus the second term equals

which does not play a role in determining f̃1.

On the other hand, if A2 = sign(f̃2(H2)), then  and A2f ̃2(H2) − 1 = | min(Z1 − 1, 

0)+1|−1 ≥ min(Z1−1, 0). Then the first term equals 

. This follows from the 

definition of  and the fact that the value of f1(h1) should be in [−1,1]. Otherwise, we 

can truncate f1 at −1 or 1, which gives a higher value. Therefore, it is maximized at f̃1(h1), 
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with , and we conclude 

.

Proof of Theorem 3.3

We prove the results for T = 2. The results for T > 2 can be obtained by induction. First,

On the other hand, since , we have

The first inequality follows since min(Z1 −1, 0) ≥ min(Z1 −1, Z2 −1, 0), and 

 if , which has been shown in the proof of Proposition 3.2. The 

second inequality follows from the established results in the single stage setting (Zhao et al., 

2012) by noting that , which 

maximizes both  and . Similarly, 

we have

We obtain the desired relationship by combining the above results.

Proofs of Theorem 3.4

We first define the risk functions

Intuitively, they are the opposites of the value function. Actually, using the law of iterated 

conditional expectations, we may write (ft, …, fT) as
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(6.2)

By plugging in the estimated DTR, (f̂t, …, f ̂T) is the risk at stage t with d̂t = sign(f̂t), which 

is obtained by minimizing (2.5), given (d̂t+1, …, d̂T) is followed thereafter. Define  = 

 (ft, f ̂t+1, …, f ̂T) and , where the infimum is taken 

over all measurable functions.  and  respectively represent the minimum risk that can be 

achieved at stage t if the estimated DTR d̂ or the optimal DTR d* is applied after that stage. 

Recalling that  is the set of all measurable functions mapping from  to ℝ, we have

(6.3)

(6.4)

We can decompose and obtain an upper bound for the excess values at stage t as:

(6.5)

We establish the inequalities using (6.3), (6.4) and the assumption that πt(at, ht) > c0.

Provided with (6.5), in order to show Theorem 3.4, we can prove at the final stage T that 

 and at stage t, t = 1, …, T − 1, that 

, 

then we obtain Theorem 3.4 using induction. More details can be found in the 

supplementary materials.

Proof of Theorem 3.5

We consider the case when T = 2. Results for T > 2 can be obtained similarly. Define the 

norm in  as || · ||kj. According to Theorem 3.3, it suffices to focus on

(6.6)
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Specifically, regarding the first bias term, we note that

The inequality is established using Assumption (b) and the Lipschitz continuity of the 

weighted surrogate function. The equality is obtained by applying the single stage results 

respectively to each term (Theorem 2.7, Steinwart & Scovel (2007)). The remaining terms 

can be controlled using Theorem 5.6 in Steinwart and Scovel (2007), and then we can 

complete the proof. The required conditions are verified in the supplementary material.
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Figure 1. 
Left panel: the nonsmooth indicator function 1(Z1 > 0, Z2 > 0); Right panel: the smooth 

concave surrogate min(Z1 − 1, Z2 − 1, 0) + 1.
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Figure 2. 
Smoothed Histograms of Values of Estimated DTRs for Scenario 1. The optimal value is V* 

= 6.695.
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Figure 3. 
Smoothed Histograms of Values of Estimated DTRs for Scenario 2. The optimal value is V* 

= 3.667.
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Figure 4. 
Smoothed Histograms of Values of Estimated DTRs for Scenario 3. The optimal value is V* 

= 20.
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Figure 5. 
Selected Percentages of Two-Stage Treatments using Different Methods

Note: The estimated values using different methods are: 0.835 by Q-learning (QL), 0.863 by 

L2Q-learning (L2QL), 0.933 by A-learning (AL), 1.096 by BOWL, 1.019 by IOWL and 

0.999 by SOWL. Stage 1 treatment denoted by 1 or −1 represents a highly tailored story or 

the opposite. Stage 2 treatment denoted by 1 or −1 indicates a treatment or not.
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