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ABSTRACT 
The  purpose of this  paper is to  develop  statistical  tests  of  the  neutral  model of evolution  against a 

class of alternative  models  with the common  characteristic of having  an  excess  of  mutations that occurred 
a long  time ago or a reduction of recent  mutations  compared to the  neutral  model.  This  class of 
population  genetics  models  include  models  for  structured  populations,  models with decreasing  effective 
population size and  models  of  selection  and mutation balance.  Four  statistical  tests  were  proposed in 
this  paper  for DNA samples  from a population. Two  of these  tests,  one  new  and another a modification 
of an existing test,  are  based  on EWENS’ sampling  formula,  and  the  other two new tests make use of the 
frequencies of mutations of various  classes.  Using  simulated  samples  and  regression  analyses,  the  critical 
values of these tests can be computed from regression  equations.  This  approach  for  computing  the 
critical values of a test was found to be appropriate  and  quite  effective. We examined the powers of these 
four tests  using  simulated  samples  from  structured  populations,  populations  with  linearly  decreasing  sizes 
and  models  of  selection  and  mutation  balance  and  found  that they are more powerful than existing 
statistical tests of the  neutral  model of evolution. 

D NA polymorphisms are powerful sources of infor- 
mation for studying the evolution of a popula- 

tion. Whether  a locus or region from which a DNA 

sample has been taken evolves neutrally or under natu- 
ral selection is of considerable  interest  in evolutionary 
study and can be  examined using a statistical test de- 
signed for DNA polymorphisms. A popular statistical 
test proposed by TAJIMA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1989) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT - K / a ,  

h a r  (IT - K /  a,) 

where IT is the mean number of nucleotide differences 
between two sequences, K is the  number of segregating 
sites, n is sample size and 

An essential parameter in the theory of neutral evolu- 
tion is 0 = 4Np, where Nis  the effective population size 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the mutation  rate per sequence  per  generation. 
Almost  all summary statistics  of DNA polymorphisms 
are related to this parameter. For example, the expecta- 
tions of IT and K / a ,  are  both  equal to f3 under  the 
neutral  model, which assumes that  the  population 
evolves according  to the WRIGHT-FISHER model,  that all 
mutations are selectively neutral and  that  there is no 
recombination within the locus. It follows that Tis ex- 
pected to be  zero, and its variance is approximately 
equal  to one when the neutral  model of evolution 
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holds. Although natural selection affects the values  of 
both IT and K/a, ,  the  magnitudes of the effect are dif- 
ferent  and T can thus  be  quite  different from zero. 
Therefore  T can be used as a statistical test of the  neu- 
tral model. The several  tests proposed by FU and LI 
(1993)  are based on  the same idea  but utilizing the 
information in a sample differently. 

Statistical  tests  of the neutral  model,  including TAJI- 
MA’S tests and FU and LI’S tests, are  often  referred to 
as  tests for  the  presence of natural  selection,  but when 
the  neutral  model is rejected,  the  presence of natural 
selection is only one of potentially many  possible causes. 
It would be ideal if not only can one reject the  neutral 
model when it is not  true,  but also can one identify the 
causal evolutionary force ( s )  . It is difficult to achieve 
the  latter goal by using statistical  tests alone,  but it is 
possible to distinguish two types  of departures from the 
neutral  model. For a finite population, all the se- 
quences in a sample are  descendants of a  common an- 
cestral sequence and  the sequence polymorphisms are 
due to mutations  that  occurred  in  the  branches of the 
sample genealogy. Mutations that  occurred  at  genera- 
tions close  to the  generation  at which the most recent 
common  ancestor lived are relatively old in age and 
mutations  that  occurred at  recent generations  are rela- 
tively young in age. When the  neutral  model is violated, 
the  numbers of old and young mutations  are  often dif- 
ferent from those under  the neutral model. For exam- 
ple, when the effective  size of a  population is decreasing 
over generations, one would expect to observe more 
old  mutations and less young mutations  than  expected 
under  the neutral  model, which  assumes a  constant 
effective population size. On the  other  hand, when 
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most mutations at a locus are deleterious, the majority 
of mutations in a sample are expected to be relatively 
young because deleterious mutations are unlikely to 
survive  very long. 

The purpose of this paper is to investigate  statistical 
tests for  detecting  departures from the  neutral model 
that  are characterized by an excess  of old mutations or 
a reduction of young mutations or both. This class  of 
models includes models for structured populations, 
models of mutation and selection balance as  well  as 
models with decreasing effective population size. The 
reason for focusing on detecting  one class  of models is 
that our experience suggests that no single test of the 
neutral model is most powerful for  detecting all alterna- 
tive models, but when a test is powerful for detecting 
one particular model, it is usually  also  powerful for 
detecting  other models that yield similar patterns of 
polymorphism. When there is an excess  of old muta- 
tions or a  reduction of young mutations, TAJIMA'S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT 
and  the several  tests by FU and LI (1993) all tend  to 
be positive. 

Three new  statistical  tests will be proposed in this 
paper and a test due to STROBECK (1987) will be modi- 
fied. A simulation and regression approach will be used 
to compute  the critical values of these tests.  Powers 
of these tests will then be investigated using simulated 
samples and will be compared to the powers of TAJIMA'S 
test and tests by Fu and LI (1993). We shall show that 
the new tests are in general more powerful than  both 
TAJIMA'S test and FU and LI'S tests for detecting  depar- 
tures from the  neutral model due to an excess  of old 
mutations or a  reduction of young mutations or both. 

CONSTRUCTING  STATISTICAL  TESTS 

Tests based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon EWENS' sampling distribution: EWENS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 1972 ) and KARLIN and  MCGREGER ( 1972) showed 
that  under  the infinite-alleles model the probability of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K haplotypes (alleles) in a sample of  size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is 

where 8 = 4Np, Nis  the effective  size  of the  population, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p is the mutation rate per sequence  per  generation  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

s,(8) = e(e + 1) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa . ( e  + - 1) = C. sk,ek. 
k=O 

STROBECK (1987) proposed  a statistical test for de- 
tecting population  structure based on EWENS' sampling 
formula ( 2 )  . His test statistic is defined as 

where 6, = 7 r ,  ie., the mean number of nucleotide 
differences between two sequences. STROBECK (1987) 
suggested that  the null hypothesis of a panminctic p o p  
dation  (the neutral model) is rejected at a (say 0.05) 

significance level if S < a. As we shall show later a is 
not  an appropriate critical value for this  test. 

STROBECK'S test was motivated by several theoretical 
studies (e.g. ,  LI  1976; SLATKIN 1982; STROBECK 1987; 
GOLDING and STROBECK 1983) showing that the expec- 
tation of 6 ,  is independent of the migration rate among 
subpopulations and  that  the  number of haplotypes in 
a sample is on average smaller than  that predicted by 
the EWENS' sampling formula when 8 is assumed to be 
6,. Therefore,  the value of S, which is the probability 
of having no more  than  the observed number  of alleles, 
can indicate whether  the  population under study is sub- 
divided. 

EWENS' sampling distribution provides an interesting 
basis for constructing statistical  tests of the  neutral 
model. However, to use this formula, one must substi- 
tute  an estimate for the  parameter 6. For a sample of 
DNA sequences there exist a  number of estimators of 
8, and for each estimator of 8, one can construct a 
test similar to STROBECK'S test.  Besides the  sequence 
diversity e,, two other widely used estimators of 8 are 
WATTERSON'S estimator 6 ,  and  the heterozygosity  esti- 
mator e,. WATTERSON'S estimator 6 ,  (WATTERSON 

1975) is  given by 

6 ,  = K/a , ,  ( 4 )  

where K is the  number of segregating sites and a, is 
given by ( 1 ) . The heterozygosity estimator 6, ( ZOUROS 

1979; CHAKRABORTY  and WEISS  1991 ) is the solution 8 
for the  equation 

-=e[ ,  h + 
1 - h  ( 2  + 8 )  ( 3  + 8 )  

where h is the allelic  heterozygosity of a sample. Re- 
cently, several  new estimators of 8 have been proposed 
(Fu 1994a,b; KUHNER et al. 1995). Although these new 
estimators are  more accurate than  the estimators e,, 
6 ,  and $ k ,  their calculations are time consuming, which 
makes it difficult to investigate the  properties of tests 
using these estimates as substitute of 0. Among these 
new estimators, however, the minimum variance estima- 
tors 6,  and e c  (Fu  1994a), which are based on the 
frequencies of mutations of various  classes (see the  next 
section for  their  definitions) , are relatively  easy to com- 
pute.  Therefore, in addition to the three estimators 
e,, 8, and 6*, we include 6 ,  and as candidate estima- 
tors of 8 for constructing tests from EWENS' sampling 
distribution. 

It  should  be obvious for the purpose of constructing 
a statistical  test that  the best substitute for # in ( 2 )  is 
an estimator that differs  mostly from EWENS' estimator 
6, of 8 when the  neutral model does  not hold because 
6,  is derived from the formula ( 2 )  . The value  of 8,; is 
the solution 8 for the  equation 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Means and  variances of several  estimators for samples from a  panminctic  and an island  population 

Mean  Variance 

Case 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 0, 8, 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 0 E  8, e,  8, 8, 4 
a 1 1.0 1.0 1.0 1.0 1 .o 1  .0 0.3 0.4 0.6 0.6 0.3 0.3 
b 10 10.4 9.9 10.1 8.1 10.1 10.0 11.4 10.6 24.1 7.4 9.0 6.2 
C 10 5.6 6.6 7.7 4.5 6.2 5.9 6.0 8.1 21.6 3.1 6.3 3.9 
d 10 2.0 7.7 10.6 2.2 6.5 4.8 0.6 22.9 91.4 1.3 20.0 4.6 

Cases a and b: panminctic population  and sample size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 30. Case c: Two-islands  model with Nm = 0.125, where N is the 
size of the whole population,  and a sample of 15 sequences from each island is taken. Case d: ten-islands model with Nm = 0.5, 
and a sample of 100 sequences is taken from only one of the 10 islands. Ten  thousand independent samples were simulated 
for  each case. 

Examining the  means and variances of candidate esti- 
mators of 0 under  the  neutral model and  an alternative 
model,  such as WRIGHT’S finite-islands model,  should 
provide a clue on which estimators are worth of further 
investigation. Suppose  a  population is divided into k 
local populations  (islands) . Then WRIGHT’S  finite-is- 
lands  model assumes that  each individual in an island 
has probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm/ ( k  - 1 ) migrating to one of other k 
- 1 islands at  each  generation, where m is the overall 
migration rate.  Table 1 gives  several examples of the 
means and variances of  six estimators of 0 for samples 
from a  panminctic  populations and island populations. 

It is clear from Table 1 that  the heterozygosity estima- 
tor 6, is not a  good choice because its mean differs too 
little from the  mean of 6, and also because it is biased 
even under  the neutral  model  (case b )  . However, CHA- 
KRABORTY and WEIS (1991 ) found  that 8, is a good 
substitute for 0 for  detecting  population growth. It is 
also clear from Table 1 that TAJIMA’S estimator 8, can- 
not be a bad choice because its mean differs mostly 
from that of 0, among  the five candidate estimators. It 
is interesting  that  although  the  mean of WATTERSON’S 
estimator 9, is slightly smaller than  that of e,, its  vari- 
ance is much smaller than  that of e,. It is the small 
variance of  WAITERSON’S estimator 8, that makes it an 
excellent  candidate to  use  with EWENS’ sampling distri- 
bution. We thus  propose  the following  new  test  statistic: 

W =  Pr(kl8,) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAISL18k7. ( 6 )  

Table 1 also  suggests that  both 8, and 0{ should be 
adequate substitutes for 0. Since the  mean and variance 
of 8, are close to those of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGw, the test with 8, as  substi- 
tute of 0 is expected to be similar to  the test W. In the 
case of e,, it is more difficult to judge, because although 
the  mean of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer is considerably smaller than  that of 
Ow, so is its variance. 

A preliminary study of these statistical tests confirmed 
above  analysis  of the five estimators. 8, is indeed  the 
least desirable choice, 8, and 8, are  both similar to 
e,, although 8, is slightly superior.  Therefore, we shall 
focus on only STROBECK’S test S and  the new test W 
from this class  of statistical tests. It should be noted 

1 

LI k ’7, 

that  the well-known  homozygosity  test by  WATTERSON 
(1978) is also inspired by EWENS sampling formula. 
Our preliminary study showed that WAITERSON’S test 
has little power in detecting  the kind of models consid- 
ered in this paper,  thus we shall not discuss  this test 
further. 

Tests  using  the  frequencies  of  segregating  sites  of 

various classes: There  are 2 ( n  - 1 ) branches  in  the 
genealogy of a sample of n sequences. We define  the size 
of a branch as the  number of sequences  in  the sample, 
represented by external  nodes in the genealogy, that 
are  descendents of that  branch. Mutations resulting in 
segregating sites of a sample must occur in the  branches 
of the sample genealogy. The size of a mutation is defined 
as the size  of the  branch  in which the  mutation occurs. 
Therefore,  mutations  in  a genealogy of n sequences are 
classified into n - 1 different size groups. We define <, 
as the  number of mutations of  size i and let & = (<, , 

A mutation is said to be type i if its  size is either i or 
n - i ( i  < n - i) . Therefore,  a  mutation belongs to 
one of [ n / 2 ]  types, where [ n / 2 ]  is equal to n / 2  if n 
is even and is equal to ( n - 1 ) /  2 when n is odd. We 
define v i  as the  number of segregating sites  of  type i 
and let q = (q , ,  . . . , T ] [ ~ / ~ I ) .  By definition, we have 

. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl n - 1 ) .  

F i  + En-,, when i * n - i 
7 1 2  = { 

F i  7 when i = n - i. 

Under the infinite-sites model, one segregating site 
corresponds to exactly one mutation in the sample ge- 
nealogy and vice  versa. Therefore,  under  the infinite- 
sites model,  a  mutation of  type i is simply a segregating 
site at which the two segregating nucleotides are pres- 
ent in i and n - i sequences, respectively. This means 
that  the value of vector q can be found directly from 
the sample under  the infinite-sites model. The value of 
& can also be  obtained directly from the sample if the 
ancestral nucleotide of each segregating site can be 
determined,  for  example, by using an  outgroup se- 
quence  or by phylogenetic reconstruction. FU (1995) 
derived the means, variances and covariances of 5 , ’ s  and 
77,’s for  a  panminctic  population. The two estimators 
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VI 

I 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 v 

0 2 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh X IO I2 14 16 I X  20 

Type of a mutation 

Type of a segregating site 

FIGURE 1.-Means  of t i  ( a )  and v i  (b )  for a sample of 20 
sequences. Black bars, panminctic population; white bar; 
four-islands population with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANm = 0.125 and all sequences 
from a single island; grey bars, four-islands population with 
Nm = 0.125 and five sequences from each island. Five thou- 
sand independent samples were simulated to compute  the 
means of t i ’ s  and v i ’ s  for  the finite-islands model. 

8, and 8, developed by Fu ( 1994a) make use  of q and 
5, respectively. 

Because the two arrays zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe and q contain rich  informa- 
tion about 8, it is tempting to use them to construct 
statistical  tests  of the neutral model. An informal a p  
proach is to compare the expected values  of e and q to 
their observed ones graphically as did in TAJIMA ( 1989) 
for detecting natural selection. Figure 1 shows the means 
of t i  and vi for a sample of  20 sequences from a panminc- 
tic population and  a subdivided population. There  are 
clear differences between the means of t i  as well as the 
means of v i  for samples from panminctic and subdivided 
populations. It is also  obvious that samples from subdi- 
vided populations by different sampling schemes show 
different patterns of  deviation from the panminctic 
means. This suggests that visual inspection of the fre- 
quencies of t i  and v i  will be an useful supplement  to 
more formal statistical  tests  of the neutral model. 

Fu and LI ( 1993)  proposed several  tests that make 
use of the  frequencies of mutations of different classes, 
one of  which  is defined as 

Since the means, variances and covariances of 7;’s and 
7;’s are now known, one can explore new  tests utilizing 
these frequencies. From  statistical point of view, an a p  
pealing test statistic using 5 is  given  by 

G = g q ( t i  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe / i )  (ti - e / i ) ,  
ij 

where gq is the ij element of the inverse  of the matrix 
Var ( e ) .  Note that 8 /  i is the  expected value  of C i .  
Test of this  form is often called Hotelling test and is 
a natural  choice  for  frequencies  that do  not follow 
a  multinomial  distribution. Asymptotically, this  test 
statistics (multiplied by a factor) follows a x 2  distri- 
bution. However, this large  sample  distribution is 
not helpful  for a  finite DNA sample. The main  disad- 
vantage of test G is that  it  requires inversion of a 
large  matrix, which is inconvenient  and  time con- 
suming. Fu ( 1995 ) showed that  the  nondiagonal ele- 
ments of Var ( e )  are very small  in  comparison with 
the diagonal  elements,  suggesting  that Diag (V- 
ar” ( t1 ) , . . . , Var“ ( tn-l ) ) is close to the inverse 
of Var ( e ) .  For this reason, I propose  to use the fol- 
lowing  test  statistic 

which is the mean of squares of standardized frequen- 
cies, and Fu (1995) showed that  the variance of t i  is 
given by 

1 
Var(t i )  = e + aie2, 

2 

where 

1 
p n ( i )  - T  if i > -  

n 
2 2 

and 

2n  2 -   an+^ - ai) ”.- (10) - 
( n -  i +  l ) ( n -  i) n--2 

The analogous test statistic for q is  given by 

where @ / a i  is the  expected value  of v i  and therefore 
i sequa l toO[ l / i +   l / ( n -  i)] when i#   n -   iand8/  
i when i = n - i. The computation of  Var ( 17; ) requires 
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the covariance between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti and ( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- i). FLJ 
( 1995) showed that 

Cov(Ei9 En-i) = - 
[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan - an-i 

i 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP n ( i )  + P n ( n  - i + 1) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0 '  

2 i ( n  - i) 

for i < n - i. 
Because a sample from a population  that has an ex- 

cess  of old mutations or a reduction of young mutations 
or both will result in larger values  of Gq and GF than 
expected under the  neutral  model,  therefore,  the neu- 
tral model should only be rejected when the value  of 
Gq or the value  of G( is large, which  suggests that  an 
one-sided test should  be used. Note that to use either 
of  the tests, one also has to estimate the value of 0. An 
estimator whose expectation is insensitive to  different 
models and has relatively  small variance would be a 
good choice because by substituting this estimator for 
0, it will result in smaller variances of cj and v i ,  which 
in turn will yield larger values  of the test statistics. It 
is not difficult to see from Table 1 that  the EWENS' 

estimator 0, is likely to be  the best choice and in the 
rest of the  paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, is used as the substitute of 0 in 
these two tests. 

DETERMINING  THE  CRITICAL VALUES OF A TEST 

We proposed  three new test statistics  in the previous 
section, but in order to use them  to test the  neutral 
model, we have to determine  their critical values. If the 
distribution of a test  statistic is known, for example for a 
normal  distribution,  the critical values can be obtained 
easily, otherwise perhaps  the best one can do is to o b  
tain the critical values from a distribution that is close 
to  that of the test statistic. An approximate  to  the distri- 
bution of a test  statistic does not have to be analytical. 
For example, the empirical distribution of a test statistic 
is a useful approximation, which can be  obtained if 
samples under  the null hypothesis can be simulated by 
a computer. However, when the distribution of a test 
statistic has a parameter ( 0 )  whose  value is unknown, 
one must choose some values of the  parameter to simu- 
late  the samples from which the empirical distribution 
is compiled. One approach is to obtain the critical val- 
ues for a number of  values  of the  parameter  and  to 
take either  the minimum or maximum of these critical 
values  as the critical value  of the test, as did by Fu and 
LI ( 1993)  and SIMONSON et al. ( 1995 ) . This approach 
is appropriate when the critical values do  not differ very 
much  for plausible values  of 0; otherwise, it may result 
in a test that is unnecessarily too conservative and conse- 
quently become less  powerful. 

An alternative approach is to obtain an unbiased esti- 
mate 8 of 0 and to calculate the critical values from the 
empirical distribution derived from samples generated 

with 0 = 8. This approach seems to  be logically better 
than  the first one because the  inference is made from 
the most likely distribution of the test statistic.  However, 
this approach is rather  burdensome because many  sam- 
ples have to be simulated to obtain the empirical distri- 
bution every time the test is used, and presenting the 
critical values by tables for a large number of combina- 
tions of the values  of 0 and sample size n is clearly out 
of question. A solution to this dilemma is to summarize 
the critical values  of different values  of 0 and n by re- 
gression  analyses so that reasonably accurate critical val- 
ues can be  computed from the regression equation 
once available. This is the  approach used in this paper. 

The first step is to  obtain  the critical values  of the 
four tests S, W, Gq and GF for a large combinations of 
the values  of 0 and n. We considered 49 different sam- 
ple sizes [ n = 10 (5 )  100 (10) 300, i.e., 10, 15, 20, . . . , 
100, 110, . . . , 3001 and 39 different values  of 0 [ 0 
= 0.2(0.1)1(0.2)3 (0.5)4(1)20(5)50(10)80]. For 
each of the 49 X 39 = 1911 combinations, 20,000 inde- 
pendent samples under the  neutral model were gener- 
ated, from which the empirical distribution of each of 
the  four tests was obtained. This is a large scale  com- 
puter  experiment because in total 1911 X 20,000 a 3.8 
millions samples have to be  generated. What makes 
such a large-scale simulation possible is the coalescent 
algorithms (e.g., HUDSON 1982). After the empirical 
distributions are  obtained,  the critical values of each 
test can  be  determined easily. For example, the critical 
value for test  Wat 5% significance level is the maximum 
value s such that  the  proportion of samples, in the 
20,000 independent samples, with W I s is not  more 
than  5%. 

The second step of the  approach is to summarize the 
critical values from step one by regression analyses. Let 
c,,~( a )  be  the critical value  of a test at a significance 
level for given  values  of 0 and n. Consider first the tests 
S and W. These two statistics are  both  the probabilities 
of  having no  more  than  the observed number of  alleles, 
so their values are between 0 and 1. Therefore  the criti- 
cal  values c,,~( a )  are also  between by 0 and 1, which 
suggests that  the c,,@( a)  of both tests may be fitted well 
by the following  logistic regression: 

where t is the  degree of the polynomial. Regression 
analysis  of this kind can be  performed by many  available 
statistical  packages and  our analyses  were carried out 
using the  Spackage ( BECKER et al. 1988) . We first exam- 
ined polynomial of degree  one,  then  degree two and 
so on till we found a polynomial that fit the critical 
values  sufficiently  well. We found  that polynomials  of 
degree 5 ( t = 5 )  were  sufficiently accurate to summa- 
rize the critical values  of both tests ( R2 = 0.998) . The 
resulting coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuii of both tests for a = 0.01, 0.05 
and 0.10 are given in Table 2. 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuY for statistical test S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW 

Test S Test W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 1% 5% 10% 1% 5% 10% 

0 0 -185.111298 109.082016 15.044644 -3.489784 0.00051 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1.280793 
0  1 33.753254 -32.225147 -0.618113 -1.537124 0.764512 0.266559 
0 2 -3.015477 3.739171 -0.433905 -0.054939 -0.391339 -0.239910 
0  3 0.890137 -0.386910 -0.088669 0.000804 0.133860 0.002830 
0 4 -0.034225 0.022612 0.026116 0.026263 -0.030685 0.02701  1 
0  5 -0.001008 0.005592 0.001569 0.002010 0.005321 -0.002389 
1  0 261.882416 - 146.268860 -21.304512 6.5841 12 0.337418 1.559456 
1  1 -36.910984 35.535301 1.560557 2.832137 -0.150552 0.352623 
1 2 -36.910984 35.535301 0.41  1562 -0.104963 0.183202 0.046478 
1  3 -0.539223 0.168822 0.002215 -0.056296 -0.044648 -0.037627 
1  4 0.020277 -0.018626 -0.01 1392 -0.012927 -0.004339 -0.002933 
2 0 -143.417999 76.568031 11.873906 -3.509265 0.158736 -0.490870 
2  1 14.868989 -14.013808 -0.787185 -1.133289 0.032517 -0.124980 
2  2 -0.214840 0.697717 -0,127098 0.069633 -0.023248 0.016870 
2 3 0.057726 -0.013337 0.006860 0.015236 0.008780 0.006474 
3  0 38.511288 -19.401344 -3.137545 1.016457 -0.076385 0.075944 
3 1 -2.527603 2.399835 0.172957 0.199899 0.003182 0.019126 
3  2 -0.003391 -0.052053 0.013197 -0.007544 0.000839 -0.002819 
4  0 -5.058973 2.398004 0.404350 -0.150550 0.010343 -0.005717 
4  1 0.156266 -0.150378 -0.013435 -0.013245 -0.001002 -0.001181 
5 0 0.260767 -0.1 15992 -0.020435 0.008827 -0.000438 0.000170 

It  should  be  emphasized  that  the  purpose of our 
regression analyses is different  from  that of a typical 
statistical analysis  of data,  in which finding  a  simple 
relationship between a dependent variable and  inde- 
pendent variables is often  the focus. Our purpose is 
to find a regression equation  that can be used to  regen- 
erate  accurate critical values. Therefore,  once  the de- 
gree of polynomial was determined, we did  not go 
further to see if some  of the terms  in the polynomial 
can be dropped without significantly reducing  the 
goodness of fit. Also since users of these tests are  not 
expected to calculate the critical values by hand, it 
does not matter  for  a regression equation to have a 
few more terms. 

The high accuracy of the regression equation in recov- 
ering  the critical  values of test W can be seen from the 
two examples in Figure 2 where the observed  values of 
c , , ~ (  0.05) and  the values computed from the regression 
equation are plotted for sample sizes n = 30 and 100. 

From the logistic regression Equation 12, the critical 
values  of test S or test W at significant levels a = 0.01, 
0.05 and 0.10 can be  computed as 

where uV are from an  appropriate  column of Table 2. 

If c , , ~ (  a )  of  test W or test S is larger than a,  test W 
or test S will be conservative when the critical value is 
set to be a; on  the  other  hand, if c, ,~(  a )  is smaller than 
a ,  the test  Wor test Swill be too liberal when the critical 
value is set to be a. Figure 3 gives  values  of ~ ~ , , ~ ( 0 . 0 5 )  

of test W. It is clear that when 0 and sample size n are 
small, test Wwill be conservative, and when n are  both 
large,  the test Wwill be  too liberal, if one set c , , ~ (  0.05) 
= 0.05. Similar pattern was found  for test S. 

0 10 20 30 40 50 

Theta 

FIGURE 2.-Critical  values ~ , , ~ ( 0 . 0 5 )  of test W for sample 
sizes 30 and 100. The circles  are  observed  values and curves 
are from the  regression equation. 
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FIGURE 3.-The  values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,,~( 0.05) 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtest Wcomputed from the  regres- 
sion equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 13) . 

Next we consider the regression analyses for the criti- 
cal  values  of  tests G, and Ge. Since both of them  are 
nonnegative and theoretically have no  upper limits, we 
choose the following regression equation 

log[c,,B(a)l = v,(log n) i ( loge) l .  (14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i + j = O , .  . . , t  

The model fitting was carried  out again using the S 
package and polynomials of 5 degree were found to be 
sufficiently accurate for  both tests ( R2 0.99). The 
resulting coefficients u, of both tests are given in Table 
3, from which the critical values  of these two tests can 
be computed as 

c , , @ ( a )  = exp[  vY(log n)‘( logO)j . (15)  
j+ j=o. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 5  1 

THE  ACHIEVED LEVELS OF SIGNIFICANCE 

We obtained in the previous section regression equa- 
tions for  computing  the critical values  of  tests S, W, G, 
and Gt for  a given sample size and 8. When  performing 
these tests, we have to substitute estimates for 8. There- 
fore, we cannot claim  yet that  the achieved levels  of 
significance with critical values computed  from  the re- 
gression equations will be close enough  to  the  nominal 
levels  of significance and thus  the tests are properly 
constructed. Before we go on to verify the validity  of 
these tests, an examination of the achieved levels  of 
significance of STROBECK’S original S (Figure 4 )  should 
help  to  appreciate  the difficulty in constructing  a 
proper test of the  neutral model. It is clear from Figure 
4 that  the achieved levels  of significance of STROBECK’S 

original test vary considerably for different values  of 8, 
and they can  be considerably larger  than  the  nominal 

level  of significance, rendering  the test invalid fre- 
quently. 

To see the effect of estimating 8 on the achieved 
levels of significance of a test, we applied  the  four tests 
to samples from panminctic populations simulated in- 
dependently from those used to compile the critical 
values. For each simulated sample, we computed  the 
value  of  statistics Sand compared  it to the critical  value 
obtained from Equation 13 by substituting 8, for 8. 
Similar computations were performed for the  other 
three tests. 

Figure 5a shows the achieved levels  of  significance of 
STROBECK’S test S using the critical values computed 
from ( 13) .  We can see that  at 5 and 10% nominal levels 
of significance, the critical values appear to be properly 
constructed because the achieved levels  of  significance 
are close to 5 and lo%, respectively, although  the test 
appears slightly  conservative for some values of 8. How- 

ever, at 1% nominal significant level, the achieved levels 
of significance are still too high for some values  of 8 
and sample size. This seems due to  the fact that  the 
true critical values of the test at 1% significance level 
are so close to zero such that  their estimates from the 
empirical distributions are  not accurate. Because  of  this 
drawback, I do  not recommend to use  test S at 1% 
significance level. 

The relatively large variation in the achieved levels 
of significance of test Sfor different values of 8 is disap- 
pointing, but regression equations are  not  the causes 
because they fit the critical values derived from the 
empirical distributions extremely well. To show  this is 
indeed  true, I examined the achieved levels  of  signifi- 
cance of  test S using the critical values from the empiri- 
cal distribution directly plus interpolations,  the results 
were almost identical to those in Figure 5a. Therefore, 
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TABLE 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvii for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtests Gq and G6 

G, G< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 1%  5%  10%  1%  5% 10% 

0 0 0.967084 1.752913 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1.050296 -1.479156 -0.219901 0.408483 
0 1 1.309209 0.538587 1.662626 1.368190 0.831832 0.543068 
0 2 -0.101838 -0.228294 0.135360 -0.114900 0.160098 -0.089139 
0 3 -0.010869 0.029290 0.105359 0.031198 0.089510 0.078124 
0 4 0.000703 0.003140 0.007196 0.009747 0.001371 0.010644 
0 5 0.000475 0.000991 0.000758 0.000426 0.000415 0.000433 
1 0 0.955308 -0.758499 1.645483 4.194960 1.730981 0.474256 
1 1 -0.669673 0.022883 - 1.549584 -0.818370 -0.665446 -0.125440 
1  2 0.01 1283 0.083208 -0.232490 -0.031969 -0.246778 -0.046099 
1  3 0.016080 -0.010227 -0.047392 -0.018335 -0.029942 -0.042342 
1 4 -0.001604 -0.002664 -0.002974 -0.003218 -0.001296 -0.002971 
2 0 -0.699278 0.232020 -0.524068 -2.376007 -0.959304 -0.405576 
2  1 0.114329 -0.123740 0.598341 0.214444 0.259561 -0.034746 
2  2 -0.005919 -0.010299 0.074490 0.024084 0.071735 0.030626 
2  3 -0.001200 0.002367 0.006368 0.003670 0.003329 0.005900 
3 0 0.225428 -0.026298 0.039726 0.645058 0.248595 0.149916 
3  1 -0.005174 0.029694 -0.105090 -0.031794 -0.049336 0.011864 
3  2 0.000885 0.000118 -0.007013 -0.003023 -0.006089 -0.003692 
4 0 -0.034200 0.000076 0.007092 -0.085000 -0.031077 -0.025276 
4 1 -0.000268 -0.002035 0.006836 0.002063 0.003469 -0.000878 
5  0 0.001982 0.000102 -0.000940 0.004371 0.001514 0.001590 

it seems that  the large variation in  the achieved levels 
of significance of  test S for  different 0 is due to the 
large variance of 8,. 

Comparing  a and b of Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, we can see that  the 
new  test W has achieved levels  of significance much 
closer to  the  nominal levels  of significance than test S 
does, indicating  that this test together with the regres- 
sion equations  for  computing its critical values is  well 
constructed. The variation in  the achieved levels  of  sig- 
nificance for  different values  of 0 and n is much smaller 
than  that of  test S. 

Figure 6 shows the achieved levels  of significance of 
tests G, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGE. It is clear that  the variations in the 
achieved levels  of significance of tests G, and GE are 
very similar. These achieved levels  of significance are 
all close to their  nominal levels, except  for small  values 

of 0 ( 0  5 1 ) . Also when sample size is too small  relative 
to the value of 0, the achieved levels  of significance tend 
to be larger than the nominal levels  of significance. This 
is because when 0 is large and sample size is small, 
EWENS' estimator 8, becomes biased downward, which 
leads to the use  of biased critical values. But how can 
we judge whether 0 is too large for these two tests for 
a given sample size? A rule of thumb is that it is likely 
so when 8, is close to '/3 of the sample size. Neverthe- 
less, we can conclude  that the two tests G7) and GC are 
in general properly constructed. 

We have thus demonstrated  that  the simulation-re- 
gression method  for  computing  the critical values  of a 
test statistic is an effective approach to construct  a test 
and  that tests constructed by this approach  tend to have 
achieved levels of significance close to the  nominal lev- 

FIGURE 4.-The achieved levels of signifi- 
cance of Strobeck's  original  test at 5% signifi- 
cance level. Ten thousand independent sam- 
ples from a panminctic population were 
simulated for each combination of 19 and sam- 
ple size n. 

0 60 120 180 240 300 

Sample size 
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els  of significance for  a wide range of  values of 0 and 
sample size. 

POWERS OF THE TESTS 

In this section, we  will investigate the powers  of the 
tests S, W, G7 and G,, as  well  as TAJIMA'S test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and the 
tests by FU and LI (1993) ,  for rejecting the  neutral 
model when it is not true. We shall consider  three 
alternative population  genetic models. The first is 
WRIGHT'S finite-islands model with migration,  the sec- 
ond is a  model with decreasing effective population 
size and  the  third is a  model of selection and mutation 
balance. In all these studies, the regression equations 

FIGURE 5.-The  achieved  levels  of  significance 
oftestsS(a)andW(b)at1,5andlO%nominal 
significance  levels. The five  curves at each nomi- 
nal  significance  level in each panel correspond 
to samples with 6' = 1, 2, 5, 10 and 30 and their 
legends are the same as those of Figure 4. Twenty 
thousand independent samples were simulated 
for each combination of 0 and n. 

[ ( 13) and ( 15) 3 are used to  compute  the critical val- 
ues of  tests S, W, G,, and GE, and similar regression 
equations (not  presented)  are used to  compute  the 
critical values  of TAJIMA's T and Fu and LI'S tests. Al- 
though all the  four tests by FU and LI (1993) were 
examined  in our simulations, it was found  that  their 
powers are very similar and I will therefore  present 
only the results for test D. 

Structured population: Among various models of 
structured populations, WRIGHT'S finite-islands model 
(WRIGHT 1931 ) is the one mostly studied. Consider a 
population  that is subdivided into k local subpopula- 
tions (islands) . WRIGHT'S finite-islands model assumes 
that each individual in an island  has probability m/( k 

d 

FIGURE 6.-The achieved levels of 
significance of tests zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,, ( a )  and GE (b )  

levels.  See footnote to Figure 5 for ex- 
planations of legends. 
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TABLE 4 

Powers of detecting  population  structure  when  samples  are from island populations with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5 

b 

C 

d 

Sampling  Islands zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANrn 

a 2 0.10 
2 0.50 
2 2.00 
5 0.10 
5 0.50 
5 2.00 
2 0.10 
2 0.50 
2 2.00 
5 0.10 
5 0.50 
5 2.00 
4 0.10 
4 0.50 
4 2.00 

10 0.10 
10 0.50 
10 2.00 
4  0.10 
4 0.50 
4  2.00 

10 0.10 
10 0.50 
10 2.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S 

0.16 
0.05 
0.04 
0.36 
0.08 
0.05 
0.19 
0.12 
0.07 
0.38 
0.32 
0.16 
0.36 
0.07 
0.04 
0.69 
0.13 
0.05 
0.36 
0.29 
0.14 
0.42 
0.49 
0.30 

W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGl, 

0.13 0.18 
0.05 0.06 
0.04 0.05 
0.31 0.32 
0.07 0.08 
0.05 0.06 
0.25 0.25 
0.14 0.14 
0.08 0.08 
0.48 0.48 
0.41 0.37 
0.19 0.17 
0.34 0.35 
0.08 0.08 
0.05 0.05 
0.68 0.61 
0.14 0.15 
0.06 0.06 
0.56 0.51 
0.42 0.35 
0.19 0.16 
0.54 0.52 
0.66 0.60 
0.42 0.33 

G€ 

0.16 
0.06 
0.05 
0.32 
0.08 
0.06 
0.26 
0.14 
0.08 
0.49 
0.39 
0.17 
0.34 
0.08 
0.05 
0.61 
0.14 
0.06 
0.55 
0.37 
0.16 
0.56 
0.64 
0.35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D T 

0.15 0.21 
0.08 0.06 
0.06 0.06 
0.39 0.29 
0.11 0.08 
0.07 0.06 
0.18 0.14 
0.14 0.1 1 
0.11 0.08 
0.30 0.20 
0.28 0.22 
0.20 0.13 
0.33 0.36 
0.1 1 0.10 
0.07 0.06 
0.72 0.54 
0.19 0.15 
0.08 0.07 
0.33 0.22 
0.26 0.23 
0.21 0.16 
0.34 0.22 
0.40 0.33 
0.33 0.25 

(a) Sample  size is 30 with  equal  number of sequences  drawn  from  each  island. (b) Sample size is 30 with 
all 30 sequences  drawn  from a single island. (c) Sample size is 80 with  equal  number of sequences  drawn 
from  each island. (d) Sample size is 80 with all 80 sequences drawn  from a single  island.  Five  thousand 
independent samples were simulated for  each  combination of parameters. 

- 1 )  of migrating to one of the  other k - 1 islands at 
each generation, where m is the overall migration rate. 

We shall consider the case where all the islands  have 
the same effective population size N/k. Samples under 
WRIGHT’S finite-islands model can be simulated using 
the coalescent algorithm developed by STROBECK 
(1987). With some modifications, STROBECK’S algo- 
rithm can also be used to generate samples from circu- 
lar stepping-stone model ( MARWAMA 1970)  and linear- 
islands model. Since the powers of the six  tests  were 
found to be very similar for these models from our 
preliminary study, we thus focused on WRIGHT’S finite- 
islands model. 

Several factors can influence  the power  of a test to 
detect  population  structure,  among which are sample 
size,  values  of Nm and 8 = 4Np, number of islands and 
sampling strategy. Although our main interest  here is to 
identify test ( s )  that  are powerful for  detecting  hidden 
population structure from a sample drawn at one geo- 
graphic location (island), we shall also examine the 
case of multiple samples for  the purpose of comparison. 

Table 4 gives the powers  of the six  tests for detecting 
population structure  for several combinations of param- 
eters. Comparing the results of different settings (a- 
d ) ,  one can see that  the powers  of these tests are  indeed 
affected by the factors mentioned above. We summarize 
the results  as  follows: 

The  structure of a sample and the level  of migration 
have strong effects on  the powers of these tests. When 
a subsample of equal size  is taken from each island 
(cases a and c ) , the power of each test decreases 
rapidly  with the value  of Nm and all these tests  have 
little power when Nm is larger than 0.5. On the  other 
hand, when only one sample from a single island is 
taken (cases b and d ) , these tests  have considerable 
powers  even when M m  is  as large as 2.0, and the 
power of each test does  not increase or decrease 
monotonically with Nm. The powers  of these tests are 
generally larger for the case of a single sample than 
those for  the case of multiple subsamples unless Mm 
is  very small. 
The  number of islands also  has considerable effect 
on the powers  of these tests. When other things are 
equal,  the powers of these tests appear to increase 
with the  number of islands, but  at different rates. 
In  the case of a single sample, tests W, G, and Gc are 
the most  powerful  tests, and among them Wappears 
to be most  powerful when the  number of islands is 
large. Test S is  less powerful than these three tests, 
but overall is more powerful than FU and LI’S D test. 
Among the six  tests,  TAJIMA’S  test Tis  the least  power- 
ful one.  The difference in the powers of test T and 
each of the  three tests W, G, and Gc is substantial in 
several combinations of parameters. 
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W In  the case  of multiple subsamples of equal size,  TAJI- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

MA’S test is slightly more powerful than  the rest five 
tests when there  are only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo islands with  low migra- 
tion rate, but  the difference in the powers of these 
tests is not substantial. TAJIMA’S test T gradually be- 
comes the least powerful test with increasing number 
of islands. 

Recently SIMONSEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1995) examined TAJIMA’S 
test T and Fu and LI’S test D* for detecting  population 
structure in the case of  two populations evolving inde- 
pendently since their  separation some time ago, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.e., no 
migration between them. They studied  the situation in 
which a sample of 25 sequences was drawn from each 
subpopulation and  found  that test Tis more powerful 
than test D*. Their model should be similar to 
WRIGHT’S finite-islands model with  two islands and 
small migration rate. Our study  shows that TAJIMA’S test 
Tis  indeed slightly more powerful than FU and LI’S test 
D (and test D*, result not  shown) in this situation, but 
as we can see from Table 4, test Tbecomes less  powerful 
than test D (and test D*, result not shown) when the 
number of island is 5. Further simulations (results  not 
shown) showed that even  with two islands, TAJIMA’S  test 
can be considerably less  powerful than  the  other tests 
when the two subsamples are of different sizes or when 
the effective  sizes of the two island populations are  not 
the same. 

The relatively  small  powers  of these tests in detecting 
population  structure for multiple subsamples do  not 
necessarily mean  that  it is a  better strategy to take  only 
one sample from a single island. HUDSON et al. ( 1992) 
developed a test of population  structure for the case of 
multiple subsamples and  our preliminary study  showed 
that their test is in general  more powerful than  the six 
tests considered in this paper.  Therefore, when multi- 
ple subsamples from different geographic regions (is- 
lands)  are available and the  interest is to test whether 
there is significant genetic difference among these p o p  
ulations, HUDSON et d ’ s  (1992) test should be pre- 
ferred. 

Population with decreasing effective size: We shall 
consider  a  model in which the size  of a  population 
changes in a deterministic manner.  The coalescent the- 
ory for such populations was developed by GRIFFITHS 
and TAW& (1994), in which exponentially growing 
populations were examined in detail. An obvious candi- 
date  model for us to consider is one in which the effec- 
tive population size decreases exponentially over gener- 
ations or grows exponentially looking backward  in time. 
Assume that  a sample is taken from the  current popula- 
tion and let Nt be the effective population size at the 
tth generation  prior to the  current  generation.  Then 
this model can be specified by 

Nt = gtN, 

where Nis the effective  size  of the  present  population 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp > 0. However, this model implies that  the effec- 

TABLE 5 

The  mean  age of the MRCA and the  relative  size of the 
common  ancestral  population 

n = 20 n = 50 

P MA Rs MA Rs 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

1.1 
1.3 
1.5 
1.8 
2.2 
2.8 
3.7 
6.2 
8.4 

11.1 

1.2 
1.5 
1.9 
2.4 
3.2 
4.4 
6.2 

10.9 
16.1 
22.1 

1.1 
1.3 
1.5 
1.8 
2.3 
3.1 
4.5 
5.7 
8.9 

12.6 

1.2 
1.5 
1.9 
2.5 
3.3 
4.7 
7.3 

10.1 
17.1 
25.0 

~~ 

Four thousand  samples were simulated for each values of 
P and n. One unit in MA corresponds to 4N generations. 

tive population size at some generations ago was effec- 
tively infinite so that  there is certain probability that 
coalescence to  the common ancestor does  not occur 
(R. C. GRIFFITHS, personal communication) . Because 
only finite populations are of interest here, we shall 
examine a model in which the effective population size 
decreases linearly over generations, i e . ,  

where P > 0. Following  GRIFFITHS and TAV& (1994), 
the kth coalescent time tk under this model (one unit 
corresponds to 2N generations) has the following den- 
sity function 

where skCl = t, + * - * + with s,+~ = 0. It is easy to 
show from g( t) that 

which is finite only when P < ($ )  . Therefore, as long 
as p < 1,  the age of the most recent common ancestor 
(MRCA) of a sample will be finite. 

It is  well  known that  the mean age of the MRCA  of 
a sample is about 4N generations in a  population of 
constant effective  size (e.g., TAJIMA 1983). When Nt in- 
creases  with t, the mean age of the MRCA  will be larger 
than 4N. Table 5 lists, for different values of 0, the 
mean age ( M A )  of the MRCA and  the effective  size 
( R S )  of the  population at the  generation in which the 
MRCA lived  relative to the size  of present  population. 
Table 5 shows that  both MA and RS increase with p as 
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TABLE 6 

Powers of detecting  linear  change in population  sizes  at 5% significance  level  when  sample  size is 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS W G9l G, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 7’ 

e = 3  

0.10  0.05 0.06 0.07 0.07 0.07  0.07 
0.20  0.09 0.09  0.1  1 0.1 1  0.10  0.10 
0.30  0.11 0.13  0.14 0.14  0.12  0.1  1 
0.40  0.14 0.16  0.18 0.18  0.14  0.14 
0.50  0.18 0.21 0.23 0.23  0.18  0.17 
0.60  0.21 0.24 0.25 0.15 0.21  0.18 
0.70 0.25 0.28  0.30 0.30  0.24  0.21 
0.80  0.30 0.33  0.35 0.35  0.28  0.24 
0.90  0.32 0.36  0.37 0.37 0.31 0.25 
0.95 0.35 0.39  0.39 0.40  0.33  0.26 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10 

0.10 0.07 0.08  0.08 0.08 0.07 0.08 
0.20  0.11 0.1 1  0.12 0.12  0.10  0.1  1 
0.30 0.14 0.14  0.16 0.17  0.15 0.11 
0.40  0.18 0.18  0.20 0.20  0.18  0.15 
0.50  0.23 0.25  0.26 0.26  0.23  0.18 
0.60  0.26 0.28 0.29 0.30  0.26  0.19 
0.70 0.31 0.33  0.34 0.34 0.30 0.21 
0.80  0.36 0.38  0.39 0.39  0.35 0.25 
0.90 0.38 0.41  0.41 0.42  0.38  0.26 
0.95  0.41 0.45  0.44 0.45 0.40 0.27 

Four thousand  samples  are  generated  for  each  values of B and 8. 

expected,  but  none of them  are sensitive to the sample 
size. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso note  that even  with a large value  of /?, say 0.9, 
the size  of the common ancestral population is only 
-17 times as large as the size  of present  population. A 

17-fold reduction in population size  over about 9 X 2N 
generations is certainly possible for populations on 
their ways to extinction. 

Table 6 gives the powers  of the six  tests for  detecting 
linear  change in population size for  a sample of 50 
sequences with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = 3 and 8 = 10. It is clear that  the 
powers  of  all these tests increase with the value  of /? 
but  at different rates.  Tests W, G,, and GE are  the most 
powerful among  the six  tests, trailing closely behind  are 
the tests S and test D. Test Tis the least  powerful test 
among  the six  tests and when /? is close to 1, the differ- 
ence in the powers  of test T and the other five  tests  is 
considerable. Table 6 also  shows that larger value  of 8 
does not improve the powers  of these test substantially 
and in the case  of  TAJIMA’S test, increasing 8 from 3 to 
10 has nearly no effect on  the power  of the test. 

Mutation  and selection  balance: Consider a sample 
of DNA sequences from a  neutral locus that is com- 
pletely linked to  a locus of  two alleles subject to  natural 
selection, and assume that  the frequencies of the two 
alleles are  at equilibrium due  to  the balance of natural 
selection and mutation. The coalescent theory and a 
simulation algorithm under this model were developed 
by -LAN et al. ( 1987). Balance  of selection and muta- 
tion can be  reached in a  number of population genetics 

models, including  the deleterious mutation model and 
the balancing (over-dominant) selection model. Let 
w u ,  W A ~  and w,, be  the fitness  of genotypes A A ,  Aa and 
aa, respectively. Then  the deleterious mutation model 
corresponds to the fitness scheme 

WU = 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, wAa = 1 + sh, w,, = 1, 

and  the balancing selection model corresponds to the 
fitness scheme 

WA.4 = 1 - SI, WAa = 1, w,, = 1 - s2, 

where s, sl and s, are of order 1/ (2N)  and h is between 
0 and 1. 

Let b l  = ~ N U A  and b2 =  NU,, where uA and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, are 
the  mutation rate from A to a and from a to A, respec- 
tively. Then the frequency ( x0) of allele A at equilib- 
rium may depend  on both  the selection coefficients 
and  the  mutation rates for some models but can also 
be independent of the mutation rates for other models. 
In  general, when the  mutation parameters 61 and 62 
are given, x0 can still  take different values depending 
on the values  of the selection coefficients. Therefore, 
it is  of interest  to examine the powers  of the six  tests 
for various  values  of x0 for given  values  of b l  and 62. 
Figure 7 plots the powers of these tests with respect to 
different values of x0 for three settings of parameters. 
The samples used in these comparisons were generated 
using the coalescent algorithm by WLAN et al. ( 1987). 

Figure 7 shows that no single test is most  powerful 
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0.0 0.2 0.4 0.6 0.8 1.0 

x0 

FIGURE ’7.-Powers  of  tests  at 5% significance  level under 
mutation-selection  balance  for a sample of 50 sequences  and 
19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5. Four  thousand independent samples  were  generated 
for each  value of x0 in each panel. 

for all  values  of x0 in each of the  three settings. TAJIMA’S 
test T performs very  well when x0 is -0.5 but becomes 
the least powerful test when x0 is close to 0 or to 1. In 
comparison, FU and LI’S test D performs well when x0 
is close to 0 or to 1, but becomes the least powerful 
tests among  the six  tests when x0 is around 0.5. Figure 
7 also  shows that tests zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGq and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG, are very similar in their 
powers and they are slightly  less  powerful than TAJIMA’S 
test Twhen x0 is -0.5 but  are substantially more power- 
ful than TAJIMA’S test T when x0 is close to 0 or to 1. 

For example,  the difference in the powers of test Gq 
and test Tis only 0.05 when x 0  = 0.5, 61 = b2 = 0.05 
but is 0.64 when x0 = 0.1, 61 = 0.03 and 62 = 0.01. 
Test S is as powerful as  tests G, and G, when is -0.5 

but is less  powerful when 3 ~ 0  is close to 0 or to 1. On 
the other  hand, test  Wis  as  powerful  as  tests G, and Gc 
when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ~ 0  is close either  to 0 or to 1 but is less  powerful 
than G,, G, and S when x0 is around 0.5. 

To summarize these results, we conclude that tests 
G, and G, are overall the most  powerful  tests when 
selection and mutations are balanced. Tests Wand S 

are slightly  less  powerful than tests Gq and G( . TAJIMA’S 
test T and FU and LI’S test D (and D*, Fand P, results 
not shown) have strength and weakness but  are overall 
less  powerful than  the  other  four tests. 

The models of selection and mutation balance are in 
many  aspects similar to WRIGHT’S  finite-islands model 
with migration. Therefore,  the relative  powers of the 
six  tests (Table 4) in the cases of many  islands  suggest 
that under a selection model with more  than two alleles, 
the tests G, and G, should  continue to be the most 
powerful  tests among  the six  tests, and  the difference 
in the powers of these two tests and TAJIMA’S test is 
expected to be even more substantial. 

DISCUSSION AND CONCLUSIONS 

We proposed  three new statistical  tests W, G, and GC 
in this paper and reformulated STROBECK’S (1987) test 
S, which was originally designed to  detect population 
structure from a single sample. Despite the fact that  the 
two tests Sand W, which are based on EWENS’ sampling 
formula, are very different from the two tests G, and 
GE, which are based on  the frequencies of mutations of 
various  classes, our simulation and regression approach 
for determining  the critical values of these tests are 
quite successful. The advantage of this approach is that 
it can bring  the achieved levels  of significance close to 
the nominal levels for a wide range of values  of the 
unknown parameter in the distribution of a test statistic. 
Therefore, this approach  should  be useful for determin- 
ing  the critical values of future statistical  tests of the 
neutral model. 

The new  tests are designed to  detect such departures 
from the  neutral model that  there is an excess  of old 
mutations or a reduction of young mutations or both. 
We demonstrated  that  the  four new  tests are overall 
more powerful than TAJIMA’S test Tand FU and LI’S tests 
using simulated samples from structured populations, 
populations with linearly decreasing sizes and a model 
of selection and mutation balance. We found  that when 
a test is powerful for  detecting one  nonneutral  model, 
it is generally also  powerful for  detecting  other  nonneu- 
tral models of  similar characteristics. The  three new 
tests W, G, and G( are  the most powerful among  the 
tests examined. Among them, test W is slightly more 
powerful than  the  other two when a sample is from a 
structured  population, while  tests G, and Gc are  more 
powerful than test Wwhen the sample is from a locus 
that is linked to  another locus whose  allelic frequencies 
are  at equilibrium due to selection and mutation bal- 
ance. The modified STROBECK test Sis also quite power- 
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ful, although it is  overall  less powerful than  the  three 
new  tests. This may be partly due to the large variation 
in the achieved levels  of significance of  this test. 

That  the powers  of  tests zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG7) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGE differ little is quite 
a surprise because the  latter utilizes more  information 
than  the  former and because FU (1994a) showed that 
the estimator of8, which is based on is considerably 
better  than  the estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe7, which is based on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.  Since 
the values  of v i  can be found directly from a sample, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G? is easier to compute  than Gc and therefore  should 
be preferred over Gt. However, when using either of 
the two tests, one should be aware that  the sample size 
needs to be reasonably larger than  the value of 8 so 
that EWENS’ estimator of 0 will be unbiased. All things 
considered,  I  recommend  Wand G7) as general tests of 
the  neutral  model against the alternative models that 
are likely to give  rise an excess of old mutations or a 
reduction of young mutations  or  both. 

It  should be pointed  out  that the infinite-sites model 
was implicitly assumed when we simulated samples to 
determine  the critical values and to compare  the powers 
of the tests. When multiple hits at some sites of DNA 
sequences of a sample are evident, some corrections 
should  be done before applying these new  tests,  as well 
as TAJIMA’S test T and FU and LI’S (1993) tests. One 
effective way to deal with multiple hits is to calculate 
the values of the variables used by these tests from the 
sample genealogy estimated by maximum parsimony 
method.  This  approach has been used by FU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1994b) 
to estimate the value of 8 from human  mitochondria 
sequences. 

We have  also assumed in this paper  that  there is no 
recombination within the locus from which sequences 
are  obtained. This assumption is likely incorrect  for an 
autosomal locus that is large or consisting of multiple 
regions. It is therefore  important to understand  the 
effects of recombinations  on these new  tests. We note 
that  recombinations do  not change  the expectations of 
8, and 8, but  reduce  their variances and increase the 
number of alleles in a sample. The larger the  number 
of alleles in a sample is, the less  likely the  neutral  model 
will be rejected by tests S and W. Therefore,  both tests zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S and  Ware likely  conservative in the  presence of re- 
combinations. The effects of recombinations on tests 
G7) and GE are less clear because recombinations inflate 
both  the value of the  numerator  and  the value  of de- 
nominator of each term in the  summations of G7) and 
Gc. Since both  the  numerator  and  the  denominator  are 
quadratic functions of 8, it appears  that  recombinations 
would affect them by about  the same order of magni- 
tude; we thus  expect  that  recombinations do  not affect 
these two tests much unless they are  frequent. With 
more  sequences available from large locus or multiple 
loci, the  construction of statistical tests  of neutrality of 
mutations taking recombinations  into  consideration is 
an  area of considerable  importance and deserves fur- 
ther investigations. 

I thank Dr. B. GRIFFITHS for discussions on  the coalescent  algorithm 
for a  sample  from  a population of changing effective population size 
and two referees for  their comments.  This study is supported in part 
by a First Award from National  Institutes of Health. 

LITERATURE CITED 

BECKER, R. A,, J. M. CHAMBERS and A. R. WILLS, 1988 The Nau zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 
Language. Wadsworth, Pacific Grove, CA. 

CHAKRABORTY, R., and K. M. WEI~S,  1991 Genetic variation of the 
mitochondrial DNA genome in american  indians is at mutation- 
drift equilibrium. Am. J. Phys. Anth. 86: 497-506. 

EWENS, W. J., 1972 The sampling  theory of selectively neutral alleles. 
Theor. Popul. Riol. 3: 87-112. 

Fu, Y. X., 1994a Estimating effective population size or mutation 
rate  using the frequencies of mutations of various classes in a 
sample of  DNA sequences. Genetics 138: 1375-1386. 

FCJ, Y. X., 1994b A phylogenetic estimator of effective population 
size or mutation  rate.  Genetics 136: 685-692. 

Fu, Y. X., 1995 Statistical properties of segregating sites. Theor. 
Popul. Biol. 48: 172-197. 

Fu, Y. X., and W. H. LI, 1993 Statistical tests of neutrality of muta- 
tions. Genetics 133: 693-709. 

GOI.DING, B., and C. STROBECK, 1983 Variance and covariance of. 
homozygosity in a structured population. Genetics 104 539-545. 

GRIFFITHS, R. C., and S. TAVARB, 1994 Sampling  theory  for  neutral 
alleles in a vatyng  environment. Phil.  Trans. R. Soc. Lond. B 
344: 403-410. 

HUDSON, R. R., 1982 Testing the constant-rate neutral allele model 
with protein  sequence data. Evolution 37: 203-217. 

HUDSON, R. R., D. D. Boos and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. L. KAPLAN, 1992 A statistical test 
for detecting  geographic subdivision. Mol.  Biol.  Evol. 9: 138-151. 

KAPIAN, N. I,., T. DAWEN and R. R. HUDSON, 1987 The coalescent 
process in models with selection. Genetics 120: 819-829. 

KARLIN, S., and J. L. MCGREGOR, 1972 Addendum to  a paper o f  W. 

EWENS. Theor. Popul. Biol. 5: 95-105. 
KINGMAN, J. F. C., 1982a The coalescent. Stochastic Processes Appli- 

cations 13: 235-248. 
KINGMAN, J. F. C., 1982b On  the genealogy of large populations. J. 

Appl. Probab. 19A 27-43. 
KLJHNER, M. K.,J. YAMATO and J. FELSENSTEIN, 1995 Estimating effec- 

tive population size and mutation  rate from  sequence  data using 
METROPOI.IS-HASTINGS sampling. Genetics 140: 1421 - 1430. 

LI, W. H., 1976 Distribution of nucleotide  differences between two 
randomly  chosen cistrons in a subdivided population: the finite 
island model. Theor. Popul. Biol. 10: 303-308. 

MARLWAMA, T., 1970 Analysis of population  structure. i. one  dimen- 
sional  stepping-stone  models of finite length.  Ann.  Hum.  Genet. 
3 4  201-219. 

SIMONSEN, K. L., G. CIIURCHILI. and C. F. AyuADRO, 1995 Properties 
of statistical tests of neutrality for DNA polymorphism data. Ce- 
netics 141: 413-429. 

SIATKIN, M., 1982 Testing  neutrality in a subdivided population. 
Genetics 100: 533-545. 

STRORECK, C., 1987 Average number of nucleotide  difference in a 
sample  from a single subpopulation:  a test for population subdivi- 
sion. Genetics 117: 149-153. 

TAJIMA, F., 1983 Evolutionary relationship of DNA sequnences in 
finite populations. Genetics 105: 437-460. 

TAJIMA, F., 1989 Statistical method  for testing the  neutral  mutation 
hypothesis by  DNA popymorphism. Genetics 123: 585-595. 

WATTF.RSON, G. A,, 1975 On  the  number of segregation sites. Theor. 
Popul. Biol. 7: 256-276. 

WKII‘ERSON, G. A., 1978 The homozygosity test of neutrality. Genet- 
ics 88: 405-417. 

WORKMAN, P. Id., and J. D. NISWANDER, 1970 Population  studies on 
southwestern  indian tribes. ii. local genetic  differentiation in the 
papago, Am. J. Hum.  Genet. 22: 24-49. 

WRIGIIT, S., 1931 Evolution in mendelian populations. Genetics 16: 
97-159. 

ZOUROS, E., 1979 Mutation  rates,  population sizes, and  amounts of 
electrophoretic variation of enzyme loci in natural  populations. 
Genetics 92: 623-649. 

Communicating  editor: G. B. GOI.DING 


