SUPPORTING INFORMATION

New Stereoselective β-Glycosylation by means of a Glycal-derived Vinyl Oxirane

Valeria Di Bussolo, Micaela Caselli, Mauro Pineschi and Paolo Crotti*

Dipartimento di Chimica Bioorganica e Biofarmacia Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy

General Procedures. All reactions were performed in flame-dried modified Schlenk (Kjeldahl shape) flasks fitted with a glass stopper or rubber septa under a positive pressure of argon. Air/and moisture-sensitive liquids and solutions were transferred via syringe. Organic solutions were concentrated by rotary evaporator below 40°C at *ca.* 25 Torr. Flash column chromatography was performed employing 230-400 mesh silica gel. Analytical TLC were performed on Alugram SIL G/UV254 silica gel sheets (Macherey-Nagel) with detection by 0.5% phosphomolybdic acid solution in 95% EtOH.

Materials. Isopropyl alcohol, methyl alcohol, *tert*-butyl alcohol and benzyl alcohol were distilled from calcium hydride at 760 Torr. Ethyl alcohol (absolute), anhydrous MeCN, phenol, sodium methantiolate, diacetone-D-glucose and *tert*-BuOK were purchased from Aldrich and used without purification. Benzene, benzene- d_6 and tetrahydrofuran were distilled from sodium/benzophenone.

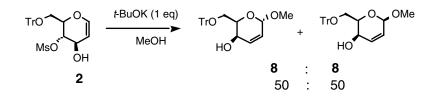
Instrumentation. Infrared (IR) spectra were obtained using a Mattson 3000 FTIR spectrophotometer. Data are presented as frequency of absorption (cm⁻¹). Proton and carbon-13 nuclear magnetic resonance (¹H NMR and ¹³C NMR) spectra were recorded on a Bruker AC 200 (50 MHz) spectrometer; chemical shifts are expressed in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃: δ 7.26, CHD₂OD: 3.31, C₆HD₅: δ 7.16. Data are presented as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, m=multiplet and/or multiple resonances), coupling constant (or $W_{1/2}$) in Hertz (Hz), integration. Optical rotation were acquired on a Perkin Elmer-341 Digital Polarimeter. Melting points were recorded with a Kofler melting point apparatus and are uncorrected.

D-Glucal (**4**).¹ MeONa (0.050 g, 0.92 mmol) was added to a solution of tri-*O*-acetyl-D-glucal (**3**) (4.0 g, 14.7 mmol) in MeOH (40 mL) and the resulting reaction mixture was stirred at rt for 5 h under argon. Evaporation of the organic solvent afforded a product (2.0 g, 93% yield) consisting of **4**, practically pure as a syrup: $R_f = 0.27$ (9:1 CH₂Cl₂/MeOH) ¹H NMR (CD₃OD) δ 6.26 (dd, J = 6.0, 1.6 Hz, 1H), 4.60 (dd, J = 6.0, 2.2 Hz, 1H), 4.04 (dt, J = 7.0, 1.9 Hz, 1H), 3.85-3.58 (m, 3H), 3.48 (dd, J = 9.5, 7.0 Hz, 1H); ¹³C NMR (CD₃OD) δ 146.49, 106.09, 81.86, 72.53, 72.13, 63.84; FTIR (neat film) 3398, 2926, 1645, 1413, 1230, 1074, 1015, 824, 735 cm⁻¹.

6-*O*-(**Trityl**)-**D**-glucal (**5**). A solution of D-glucal (**4**) (2.0 g, 13.7 mmol) in anhydrous pyridine (8 mL) was treated at 0°C with Ph₃CCl (4.20 g, 15.1 mmol). The reaction mixture was stirred 18 h at rt, diluted with Et₂O (30 mL) and washed sequentially with water (2 x 10 mL) and saturated aqueous sodium chloride (2 x 10 mL). The organic layer was dried (MgSO₄) and concentrated to afford a crude product which was purified by flash chromatography (1:1 hexane/EtOAc) to afford diol **5** (4.50 g, 85% yield), pure as a white solid: mp 51-53 °C; R_f = 0.33 (1:1 hexane/EtOAc) ¹H NMR δ 7.50-7.22 (m, 15H), 6.39 (dd,, *J* = 6.0, 1.6 Hz, 1H), 4.75 (dd, *J* = 6.0, 2.1 Hz, 1H), 4.27-4.19 (m, 1H), 3.95-3.77 (m, 2H), 3.56 (dd, *J* = 10.6, 3.2 Hz, 1H), 3.33 (dd, *J* = 10.5, 3.4 Hz, 1H), 2.44-2.17 (m, 2H); ¹³C NMR δ 145.07, 144.12, 129.13, 128.55, 127.77, 103.11, 87.52, 78.25, 72.01, 70.08, 63.46; FTIR (neat film) 3356, 2924, 1645, 1448, 1228, 1074, 1015, 824, 735 cm⁻¹; Anal.Calcd for C₂₅H₂₄O₄: C, 77.30; H, 6.23. Found: C, 77.24; H, 6.18.

¹ Brimacombe, J. S.; Da'Aboul, I.; Tucker, L.C. N. Carbohyd.Res. 1971, 19, 276.

3-*O*-(*t*-**Butyldimethylsily**)-*6*-*O*-(**trity**)-**D**-glucal (6). A solution of diol **5** (4.15 g, 10.7 mmol) in anhydrous THF (15 mL) containing imidazole (1.45 g, 21.3 mmol) was treated at 0°C with TBDMS-Cl (1.60 g, 10.7 mmol). The reaction mixture was stirred 18 h at rt, diluted with Et₂O (80 mL) and washed sequentially with water (2 x 20 mL) and saturated aqueous sodium chloride (2 x 20 mL). The organic layer was dried (MgSO₄) and concentrated to afford a crude product which was purified by flash chromatography (1:1 hexane/EtOAc) to afford alcohol **6** (5.20 g, 97% yield), pure as a syrup: $R_f = 0.34$ (9:1 hexane/EtOAc); ¹H NMR δ 7.51-7.17 (m, 15H), 6.34 (dd, *J* = 6.1, 1.3 Hz, 1H), 4.62 (dd, *J* = 6.1, 2.4 Hz, 1H), 4.20-4.13 (m, 1H), 3.96-3.76 (m, 2H), 3.54-3.36 (m, 2H), 0.86 (s, 9H), 0.06 (s, 6H); ¹³C NMR δ 144.02, 143.79, 128.86, 128.05, 127.21, 103.62, 86.40, 77.66, 70.75, 69.92, 62.84, 26.02, 18.31, -4.37; FTIR (neat film) 3452, 3063, 2926, 1645, 1450, 1225, 1070, 698 cm⁻¹; Anal. Calcd C₃₁H₃₈O₄Si: C, 74.06; H, 7.62. Found: C, 74.00; H, 7.57.


3-*O*-(*t*-**Butyldimethylsilyl)-4-***O*-**mesyl-6**-*O*-(**trityl**)-**D**-glucal (7). A solution of alcohol **6** (5.20 g, 10.3 mmol) in anhydrous pyridine (25 mL) was treated at 0°C with MsCl (1.64 ml, 21.2 mmol). The reaction mixture was stirred 18 h at rt, then diluted with Et₂O (80 mL) and washed with water (2 x 30 mL). The organic layer was dried (MgSO₄) and concentrated and the residue was purified by flash chromatography (8:2 hexane/EtOAc) to afford mesylate 7 (4.30 g, 72% yield), pure as a solid: mp 53-55°C; $R_f = 0.49$ (7:3 hexane/EtOAc): ¹H NMR δ 7.53-7.17 (m, 15H), 6.41 (d, *J* = 6.2 Hz, 1H), 4.80-4.70 (m, 1H), 4.69-4.61 (m, 1H), 4.40-4.29 (m, 1H), 4.19-4.10 (m, 1H), 3.69 (dd, *J* = 10.8, 8.0 Hz, 1H), 3.23 (dd, *J* = 11.0, 2.3 Hz, 1H), 2.93 (s, 3H), 0.98 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); ¹³C NMR δ 143.91, 143.57, 128.95, 128.03, 127.25, 101.35, 87.09, 77.21, 75.85, 64.04, 62.13, 39.00, 25.89, 18.06, -4.09, -4.30; FTIR (neat film) 3418, 2930, 2856, 1647, 1445, 1361, 1225, 1072, 700 cm⁻¹; Anal. Calcd C₃₂H₄₀O₆SSi: C, 66.18; H, 6.94. Found: C, 66.02; H, 6.73.

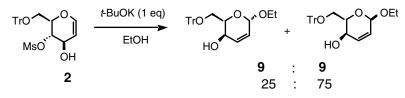
4-O-Mesyl-6-O-(trityl)-D-glucal (2). A solution of mesylate **7** (0.50 g, 0.86 mmol) in anhydrous THF (30 mL) was treated dropwise at 0°C with 1M TBAF in THF (0.86 mL, 0.86 mmol) and the reaction mixture was stirred for 20 min at the same temperature. The reaction

was diluted with water (20 mL) and the aqueous layer was extracted with Et₂O (2 x 60 mL). The combined organic layers were dried (MgSO₄) and concentrated. The residue was purified by flash chromatography (6:4 hexane/EtOAc) to afford hydroxy mesylate **2** (0.26 g, 65% yield), pure as a solid: mp 100-102°C; $R_f = 0.22$ (6:4 hexane/EtOAc): ¹H NMR δ 7.55-7.20 (m, 15H), 6.57 (dd, J = 6.0, 1.4 Hz, 1H), 4.99-4.87 (m, 2H), 4.53-4.33 (m, 1H), 4.19-4.07 (m, 1H), 3.64 (dd, J = 10.6, 2.6 Hz, 1H), 3.29 (dd, J = 10.7, 3.9 Hz, 1H), 3.07 (d, J = 5.5 Hz, 1H), 2.87 (s, 3H); ¹³C NMR δ 144.94, 143.46, 128.91, 128.04, 127.35, 101.88, 87.27, 79.18, 75.11, 67.31, 62.06, 38.38; FTIR (neat film) 3420, 2926, 2854, 1714, 1647, 1452, 1359, 1103, 1071, 698 cm⁻¹; Anal. Calcd for C₂₆H₂₆O₆S: C, 66.94; H, 5.62. Found: C, 66.82; H, 5.57.

Reaction of Hydroxy Mesylate 2 in the Presence of *t***-BuOK with Methanol as the Solvent/Nucleophile.**

A solution of hydroxy mesylate 2 (0.056 g, 0.12 mmol) in MeOH (4 mL) was treated with *t*-BuOK (0.014 g, 0.12 mmol, 1 equiv) and the reaction mixture was stirred at rt for 30 min. The solution was partitioned between CH₂Cl₂ (15 mL) and water (10 mL), and the aqueous layer was further extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried (MgSO₄) and evaporated to afford a crude consisting of an 1:1 mixture of practically pure methyl glycosides 8α and 8β (¹H NMR) (0.043 g, 90% yield). Separation of the diasteroisomers was accomplished by flash chromatography (6:4 hexane/EtOAc) to afford pure:

Methyl-6-*O*-(trityl)-2,3-dideoxy-β-D-*threo*-hex-2-enopyranoside (8β)


a liquid, $R_f = 0.38$ (6:4 hexane/EtOAc): ¹H NMR δ 7.53-7.13 (m, 15H), 6.13 (ddd, J = 11.3, 5.2, 1.3 Hz, 1H), 5.82 (d, J = 11.0 Hz, 1H), 5.01 (bs, $W_{1/2} = 4.3$ Hz, 1H, H-1), 4.01-3.87 (m, 1H), 3.80 (dt, J = 6.2, 2.0 Hz, 1H), 3.56-3.40 (m, 1H), 3.53 (s, 3H), 3.28 (dd, J = 9.6, 5.9 Hz, 1H); ¹³C NMR δ 144.10, 131.11, 130.98, 128.91, 128.04, 127.26, 99.05, 86.95, 74.97, 63.45, 63.01, 55.94; FTIR (neat film) 3418, 2928, 1629, 1615, 1448, 1051, 696 cm⁻¹; Anal. Calcd for C₂₆H₂₆O₄: C, 77.59 H, 6.51. Found: C, 77.45; H, 6.42.

Methyl-6-O-(trityl)-2,3-dideoxy-α-D-threo-hex-2-enopyranoside (8α)

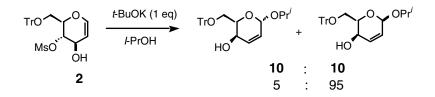
a solid: mp 138-140°C; R_f = 0.29 (6:4 hexane/EtOAc); ¹H NMR δ 7.55-7.16 (m, 15H), 6.12 (dd, *J* = 10.0, 5.4 Hz, 1H), 5.90 (dd, *J* = 10.0, 3.0 Hz, 1H), 4.92 (d, *J* = 2.9 Hz, 1H, H-1), 4.20-4.09 (m, 1H), 3.86-3.79 (m, 1H), 3.53-3.44 (m, 1H), 3.49 (s, 3H), 3.29 (dd, *J* = 10.3, 5.9 Hz, 1H); ¹³C NMR δ 144.12, 129.77, 128.88, 128.65, 128.07, 127.26, 95.45, 87.06, 70.02, 63.70,

62.34, 55.67; FTIR (neat film) 3448, 2926, 1714, 1454, 1280, 1101, 698 cm⁻¹; Anal. Calcd for C₂₆H₂₆O₄: C, 77.59 H, 6.51. Found: C, 77.48; H, 6.35

Reaction of Hydroxy Mesylate 2 in the Presence of *t*-BuOK with Ethanol as the Solvent/Nucleophile.

The same procedure described above for 8α and 8β was followed to prepare 9α and 9β using EtOH as the solvent/nucleophile. The practically pure crude obtained (0.041 g, 83% yield) consisting in a 25:75 mixture of ethyl glycosides 9α and 9β (¹H NMR) was subjected to flash chromatography (7:3 hexane/EtOAc) to afford pure:

Ethyl-6-*O*-(trityl)-2,3-dideoxy-β-D-*threo*-hex-2-enopyranoside (9β)

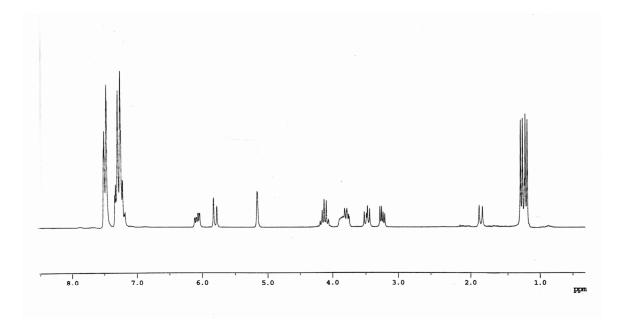

a liquid R_f = 0.43 (7:3 hexane/EtOAc): ¹H NMR δ 7.50-7.10 (m, 15H), 6.12 (dd, *J* = 10.3, 4.8 Hz, 1H), 5.83 (d, *J* = 10.3 Hz, 1H), 5.09 (bs, *W*_{1/2} = 4.4 Hz, 1H, H-1), 4.04-3.85 (m, 2H), 3.85-3.73 (m, 1H), 3.73-3.55 (m, 1H), 3.46 (dd, *J* = 9.6, 6.6 Hz, 1H), 3.28 (dd, *J* = 9.6, 5.8 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR δ 144.16, 131.39, 130.91, 128.94, 128.02, 127.22, 98.10, 86.94, 75.04, 64.36, 63.55, 63.07, 15.48; FTIR (neat film) 3422, 2925, 1623, 1618, 1450, 1063, 698 cm⁻¹; Anal. Calcd for C₂₇H₂₈O₄: C, 77.86 H, 6.78. Found: C, 77.69; H, 6.67.

Ehyl-6-O-(trityl)-2,3-dideoxy-α-D-threo-hex-2-enopyranoside (9α)²

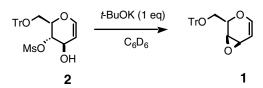
a solid: mp 145°C (lit²:147 °C); R_f = 0.34 (7:3 hexane/EtOAc); $[\alpha]_D^{20}$ =-58.4 (*c* = 0.98, CHCl₃) [(lit²: $[\alpha]_D^{20}$ = -62, c = 1, CHCl₃)]: ¹H NMR δ 7.52-7.12 (m, 15H), 6.12 (dd, *J* = 10.1, 5.3 Hz, 1H), 5.91 (dd, *J* = 10.1, 2.8 Hz, 1H), 5.03 (d, *J* = 2.9 Hz, 1H, H-1), 4.21 (ddd, *J* = 6.9, 5.2, 1.9 Hz, 1H), 3.96 (dd, *J* = 9.6, 7.1 Hz, 1H), 3.87-3.77 (m, 1H), 3.65-3.41 (m, 2H), 3.28 (dd, *J* = 9.8, 5.3 Hz, 1H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR δ 144.18, 129.71, 128.90, 128.04, 127.26, 94.17, 87.03, 77.85, 77.21, 76.58, 70.11, 63.76, 63.69, 62.46, 15.45; FTIR (neat film) 3420, 2925, 1618, 1602, 1445, 1053, 698 cm⁻¹; Anal. Calcd for C₂₇H₂₈O₄: C, 77.86 H, 6.78. Found: C, 77.51; H, 6.94.

Reaction of Hydroxy Mesylate 2 in the Presence of *t*-BuOK with Isopropanol as the Solvent/Nucleophile.

²Moufid, N.; Chapleur, Y.; Mayon, P. J. Chem. Soc. Perkin Trans. 1 1992, 991.

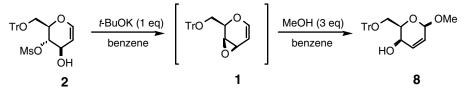


The same procedure described above for 8α and 8β was followed to prepare 10α and 10β using *i*-PrOH as the solvent/nucleophile. The practically pure crude obtained (0.048 g, 93% yield) consisting in a 5:95 mixture of isopropyl glycosides 10α and 10β (¹H NMR) was subjected to flash chromatography (8:2 hexane/EtOAc) to afford pure:

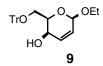

Isopropyl-6-O-(trityl)-2,3-dideoxy-β-D-threo-hex-2-enopyranoside (10β)

R_f = 0.48 (7:3 hexane/EtOAc): ¹H NMR δ 7.56-7.14 (m, 15H), 6.09 (ddd, J = 10.0, 5.0, 1.3 Hz, 1H), 5.81 (d, J = 10.0 Hz, 1H), 5.16 (d, J = 0.8 Hz, 1H, H-1), 4.13 (hept, J = 6.2 Hz, 1H), 3.92-3.74 (m, 2H), 3.49 (dd, J = 9.7, 6.7 Hz, 2H), 3.25 (dd, J = 9.8, 5.1 Hz, 1H), 1.30 (d, J = 6.2 Hz, 3H) 1.23 (d, J = 6.2 Hz, 3H); ¹³C NMR δ 144.22, 131.97, 130.76, 128.97, 128.02, 127.21, 96.80 86.89, 75.20, 71.18, 63.79, 63.21, 23.91, 22.67; FTIR (neat film) 3429, 2918, 1589, 1602, 1420, 1165, 1061, 696 cm⁻¹; Anal. Calcd for C₂₈H₃₀O₄: C, 78.11 H, 7.02. Found: C, 78.02; H, 6.93.

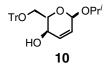
¹H NMR spectrum of compound **10β**.

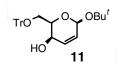


¹H NMR confirmation of the formation of epoxide 1

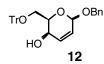


A solution of hydroxy mesylate **2** (0.020 g, 0.042 mmol) in C₆D₆ (0.7 mL) was treated, in the NMR tube, with *t*-BuOK (0.005 g, 0.045 mmol). After 5 min at rt, the ¹H NMR analysis showed pure epoxide **1**: δ 7.70-6.98 (m, 15H), 6.11 (d, *J* = 5.7 Hz, 1H), 4.78 (dd, *J* = 5.7, 4.3 Hz, 1H), 4.00 (t, *J* = 6.2 Hz, 1H), 3.68-3.49 (m, 2H), 3.20 (d, *J* = 4.4 Hz, 1H), 2.81 (t, *J* = 3.7 Hz, 1H).

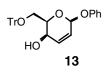

Typical Procedure for Glycosylation of the *in situ* formed Epoxide 1 in Benzene with Alcohol as the Nucleophile.


A solution of hydroxy mesylate **2** (0.112 g, 0.24 mmol) in anydrous benzene (4 mL) was treated with *t*-BuOK (0.027 g, 0.24 mmol, 1 equiv) and the reaction mixture was stirred at rt for 10 min. Methyl alcohol (30 μ L, 0.74 mmol, 3 equiv) was added and the solution was stirred at rt for 30 min. The solution was partitioned between CH₂Cl₂ (15 mL) and water (10 mL), and the aqueous layer was further extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried (MgSO₄) and evaporated to afford a crude mostly consisting of **8** β (the α anomer, detected by ¹H NMR, was less than 3%) which was purified by flash chromatography (6:4 hexane/EtOAc) to afford pure **8** β (0.089 g, 92% yield).

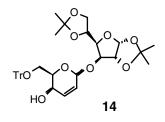
The same reaction carried out with EtOH (3 equiv), afforded a crude product (only β anomer was detected by ¹H NMR) which was purified by flash chromatography (7:3 hexane/EtOAc) to afford pure **9** β (0.085 g, 85% yield).



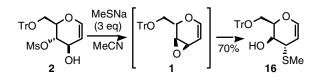
The same reaction carried out with *i*-PrOH (3 equiv), afforded a crude product (only β anomer was detected by ¹H NMR) which was purified by flash chromatography (8:2 hexane/EtOAc) to afford pure **10** β (0.094 g, 91% yield).


t-Butyl-6-*O*-(trityl)-2,3-dideoxy-β-D-*threo*-hex-2-enopyranoside (11β)

The same reaction carried out with *t*-BuOH (3 equiv), afforded a crude product (only β anomer was detected by ¹H NMR) which was purified by flash chromatography (8:2 hexane/EtOAc) to afford pure **11** β (0.083 g, 78% yield); R_f = 0.48 (7:3 hexane/EtOAc); ¹H NMR δ 7.61-7.02 (m, 15H), 6.04 (ddd, *J* = 9.8, 4.9, 1.3 Hz, 1H), 5.75 (d, *J* = 9.9 Hz, 1H), 5.27 (bs, *W*_{1/2} = 4.3 Hz, 1H, H-1), 3.84-3.70 (m, 2H), 3.51 (dd, *J* = 9.7, 7.4 Hz, 2H), 3.18 (dd, *J* = 9.9, 4.3 Hz, 1H), 1.35 (s, 9H); ¹³C NMR δ 144.29, 133.29, 130.54, 128.96, 128.00, 127.16, 93.35, 86.82, 75.59, 68.86, 63.98, 63.10, 29.00; FTIR (neat film) 3452, 2918, 1615, 1434, 1265, 1108, 685 cm⁻¹; Anal. Calcd for C₂₉H₃₂O₄: C, 78.35 H, 7.25. Found: C, 78.28; H, 7.19.


Benzyl-6-*O*-(trityl)-2,3-dideoxy-β-D-*threo*-hex-2-enopyranoside (12β)

The same reaction carried out with BnOH (3 equiv), afforded a crude product (only β anomer was detected by ¹H NMR) which was purified by flash chromatography (8:2 hexane/EtOAc) to afford pure **12** β (0.104 g, 91% yield); R_f = 0.25 (8:2 hexane/EtOAc); ¹H NMR δ 7.55-7.18 (m, 20H), 6.11 (ddd, *J* = 10.1, 5.0, 1.3 Hz, 1H), 5.86 (d, *J* = 10.1 Hz, 1H), 5.15 (d, *J* = 0.9 Hz, 1H, H-1), 4.93 (d, *J* = 11.8 Hz, 1H), 4.72 (d, *J* = 11.8 Hz, 1H), 3.98-3.86 (m, 1H), 3.85-3.75 (m, 1H), 3.53 (dd, *J* = 9.8, 6.6 Hz, 2H), 3.30 (dd, *J* = 9.8, 5.4 Hz, 1H); ¹³C NMR δ 144.15, 137.52, 131.13, 131.07, 128.93, 128.64, 128.44, 128.20, 128.07, 127.29, 96.85, 86.91, 75.19, 70.00, 63.98, 63.80, 63.33; FTIR (neat film) 3435, 3059, 2931, 2877, 1639, 1597, 1491, 1448,1248, 1051, 698 cm⁻¹; Anal. Calcd for C₃₂H₃₀O₄: C, 80.31 H, 6.32. Found: C, 80.26; H, 6.28.


Phenyl-6-O-(trityl)-2,3-dideoxy-β-D-threo-hex-2-enopyranoside (13β)

The same reaction carried out with PhOH (3 equiv), afforded a crude product (only β anomer was detected by ¹H NMR) which was purified by flash chromatography (8:2 hexane/EtOAc) to afford pure **13** β (0.099 g, 89% yield); R_f = 0.32 (8:2 hexane/EtOAc); ¹H NMR δ 7.56-7.13 (m, 20H), 6.20 (dd, *J* = 10.0, 4.8 Hz, 1H), 6.20 (d, *J* = 10.1 Hz, 1H), 5.75 (bs, *W*_{1/2} = 4.3 Hz, 1H, H-1), 3.99-3.82 (m, 2H), 3.58 (dd, *J* = 10.0, 7.5 Hz, 1H), 3.29 (dd, *J* = 10.0, 4.2 Hz, 1H); ¹³C NMR δ 157.18, 144.07, 131.56, 130.24, 129.63, 128.91, 128.04, 127.23, 122.61, 116.81, 96.25, 87.06, 75.60, 63.98, 63.76 62.95; FTIR (neat film) 3442, 3063, 2994, 2885, 1620, 1594, 1495, 1320, 1245, 1158, 1085, 696 cm⁻¹; Anal. Calcd for C₃₁H₂₈O₄: C, 80.15 H, 6.07. Found: C, 80.03; H, 5.96.

$3-O-(4-O-hydroxy-6-O-trityl-2,3-dideoxy-\beta-D-threo-hex-2-enopyranosyl)-1,2,5,6-di-O-isopropylidene-\alpha-D-glucofuranose (14<math>\beta$)

The same reaction carried out with diacetone D-glucose (3 equiv), afforded a crude product (only β anomer was detected by ¹H NMR) which was purified by flash chromatography (6:4 hexane/EtOAc) to afford pure **14** β (0.115 g, 76% yield); Rf = 0.33 (6:4 hexane/EtOAc); ¹H NMR δ 7.55-7.15 (m, 15H), 6.23 (dd, *J* = 10.0, 5.4 Hz, 1H), 5.90 (d, *J* = 3.6 Hz, 1H), 5.83 (d, *J* = 10.1 Hz, 1H), 5.34 (bs, *W*_{1/2} = 4.4 Hz, 1H, H-1), 4.68 (d, *J* = 3.6 Hz, 1H), 4.48 (dd, *J* = 16.2, 3.2 Hz, 1H), 4.37-3.85 (m, 5H), 3.83-3.73 (m, 1H), 3.47-3.25 (m, 2H), 1.47 (s, 3H) 1.34 (s, 3H), 1.28 (s, 3H), 1.24 (s, 3H); ¹³C NMR δ 144.01, 132.46, 130.12, 128.88, 127.23, 111.93, 108.90, 105.32, 96.25, 86.89, 84.00, 80.70, 77.63, 75.55, 73.16, 67.13, 63.75, 62.94, 27.15, 27.00, 26.62, 25.61; FTIR (neat film) 3462, 2985, 2935, 1716, 1565, 1450, 1381, 1217, 1163, 1072, 910, 846, 732, 707 cm⁻¹; Anal. Calcd for C₃₇H₄₂O₉: C, 70.46 H, 6.71. Found: C, 70.38; H, 6.59.

6-*O*-(**trityl**)-**3**-**deoxy-3**-**methylthio-D-gulale** (**16**). A solution of hydroxy mesylate **2** (0.10 g, 0.21 mmol) in anydrous MeCN (6 mL) was treated with CH₃SNa (0.044 g, 0.63 mmol, 3 equiv) and the reaction mixture was stirred at rt for 30 min. The solution was partitioned between CH₂Cl₂ (15 mL) and water (10 mL), and the aqueous layer was further extracted with CH₂Cl₂ (2 x 10 mL). The combined organic layers were dried (MgSO₄) and evaporated to afford a crude mostly consisting of **16** which was purified by flash chromatography (7:3 hexane/EtOAc) to afford the glycal **16** (0.065 g, 70% yield), pure as a liquid; R_f = 0.45 (7:3 hexane/EtOAc): ¹H NMR δ 7.55-7.16 (m, 15H), 6.55 (d, *J* = 6.0, 1H), 4.87-4.79 (m, 1H), 4.19-4.11 (m, 1H), 3.97-3.90 (m, 1H), 3.62 (dd, *J* = 10.2, 4.8 Hz, 1H), 3.27 (dd, *J* = 10.2, 4.8 Hz, 1H), 3.21 (d, *J* = 5.2, 1H), 3.13-3.06 (m, 1H), 2.11 (s, 3H) ¹³C NMR δ 145.62, 143.71, 128.93, 128.27, 127.49, 98.81, 87.69, 72.04, 69.18, 65.02, 44.32, 14.95; Anal. Calcd for C₂₆H₂₆O₃S: C, 74.61 H, 6.26. Found: C, 74.49; H, 6.15.