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New strategies against drug resistance to herpes
simplex virus
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Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in

mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully

treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections,

especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug

resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase

(H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type

nucleosides) to fight the drug resistance of HSV.

International Journal of Oral Science (2016) 8, 1–6; doi:10.1038/ijos.2016.3; published 25 March 2016

Keywords: new strategies; drug resistance; herpes simplex virus; Janus-type nucleoside analogues; lethal mutagenesis

HERPES SIMPLEX VIRUS AND DRUG RESISTANCE

Herpes virus detection and risk

Viral diseases are the primary cause of death among human infectious

diseases worldwide.1 Herpesviridae is a large family of DNA-

containing viruses that result in human infections to varying extents.

This family comprises eight members, which can be grouped into

three subfamilies (α, β, and γ) based on biological and genomic

similarities.2 Human α-herpes viruses include herpes simplex viruses

(HSV-1, HSV-2) and varicella zoster virus (VZV).3–8 HSV infections

are among the most common human diseases, and 60%–95% of the

population is infected by at least one of these viruses. HSV-1 is

frequently associated with oral and perioral infections, and HSV-2

generally causes genital infections. HSV leads to diseases that range

from mild conditions to severe infections, such as cold sores, keratitis,

corneal blindness, and encephalitis. HSV infections increase the risk

for developing human immunodeficiency virus (HIV) infection and

contribute to the HIV epidemic. HSV can become latent and

subsequently reactivate under certain circumstances, such as emo-

tional stress, fever, and immunosuppression. VZV is the causative

agent of chickenpox and shingles. The human β-herpes viruses include

cytomegalovirus, HHV-6, and HHV-7.9–13 The γ-herpes viruses

include Epstein–Barr virus (EBV) and Kaposi’s sarcoma associated

with herpesvirus.14–17 Acyclovir (ACV) and related drugs for the

treatment of HSV infectious diseases are overwhelmingly successful,18–19

but these anti-herpes drugs have also selected for drug-resistant strains

after long-term use.20–23 Therefore, there is an emergent need to

explore new strategies against drug-resistant HSV.

Current drug and antiviral mechanisms

There are three classes of drugs approved for treatment of HSV

infections, and all of which target viral DNA replication: acyclic

guanosine analogues,24–32 acyclic nucleotide analogues,33–35 and pyro-

phosphate analogues36–37 (Table 1). Typical drugs from these three

categories include valacyclovir (VCV), cidofovir, and foscarnet. ACV

(9-(2-hydroxyethoxymethyl) guanine) has become a gold standard for

prophylaxis and treatment of HSV infections since its introduction in

the 1980s. Researchers have developed a series of anti-HSV nucleoside

drugs, such as VCV, famciclovir, and ganciclovir, which are also first-

line drug treatments for HSV infections.

Nucleoside analogues have a similar anti-HSV mechanism. Nucleo-

side analogues, such as ACV, are selectively phosphorylated to a

monophosphate derivative in infected cells by the virus-encoded

thymidine kinase (TK). The affinity of ACV for HSV-TK is ~ 200

times greater than for human TK, and ACV displays remarkable safety

against HSV. Cell kinases convert the monophosphate derivative of

ACV to diphosphate- and triphosphate (TP)-active derivatives. The

ACV-TP form is a competitive inhibitor of the viral DNA polymerase.

ACV-TP also incorporates into the replicating DNA because of the

absence of 3ʹ prime hydroxyl, which terminates the replication of viral

DNA (refs. 2,38–39) (Figure 1).
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ACV-resistant HSV

ACV and its derivatives are available for clinical application, and these

agents are widely used for the treatment of HSV infections. However,

long-term treatment with ACV and its derivatives may lead to drug

resistance.40–46 A large difference has been observed between immu-

nocompetent and immunocompromised patients. HSV infection in

the former patients generally requires short-term anti-HSV therapy,

and drug resistance does not easily occur. In contrast, the latter

patients generally require long-term anti-HSV therapy, and they are

likely to develop drug resistance. A low prevalence (range from 0.1%

to 0.6%) of HSV resistance to ACV has been reported in normal

immunocompetent patients. However, HSV resistance to ACV is more

often isolated in immunocompromised patients and ranges from 3.5%

to 10%.22 Some clinical surveys have reported a rate of ACV-resistant

HSV isolates of up to 36%.47 For example, the prevalence of resistance

to ACV among allogeneic bone marrow transplant patients has been

reported to reach 30%.48 Resistant isolates result in severe, debilitating

mucosal disease, and visceral dissemination. Therefore, the resistance

of HSV to ACV is an important clinical problem for immunocom-

promised patients. The following resistance mechanisms of HSV to

ACV have been reported:2 (a) decreased production of viral TK, (b)

complete deficiency in viral TK activity, and (c) viral TK protein and

DNA polymerase with altered substrate specify. The viral mutations

conferring resistance to ACV are located in activating/phosphorylating

genes (TK, UL23 kinase) and the viral DNA pol enzyme (UL30),

consistently with the above mechanisms of action.42,48–52 The viral

mutations in the TK gene generally result in incomplete or deficient

enzymes because of the addition or deletion of nucleotides in

long homopolymeric runs of Gs and Cs. Approximately 95% of

ACV-resistant HSV clinical isolates have a TK-deficient phenotype.

The target of anti-HSV drugs is primarily the DNA pol gene of HSV.

A single mutation in DNA pol enzyme may confer resistance to many

anti-HSV agents.53–55 For example, most ACV-resistant HSV isolates

are also resistant to penciclovir because of a mutation in viral DNA

polymerase.

STRATEGIES AGAINST DRUG RESISTANCE

Drug-resistant HSV mutants may result in more severe and chronic

infections in immunocompromised patients, given the increasing

numbers of transplant and cancer patients. Therefore, the emergence

of drug-resistant HSV infections is no longer a rare event. Antiviral

drugs for the treatment of HSV infections have been developed over

the past 40 years. However, most drug-resistant HSV isolates have

been discovered in laboratories and clinics, which may contribute to

the use of a single target (such as viral DNA polymerase) in all current

antiviral drugs. The identification of novel strategies for the develop-

ment of new antiherpetic molecules with different mechanisms of

action that are highly effective and exhibit low toxicity against drug-

resistant HSV isolates is challenging. Here, we summarise some of the

strategies currently in development:

New target

The DNA helicase/primase (H/P) complex is a target for herpes viral

infection.56–64 The viral H/P complex is common to all members of

the herpes virus family, and it may be a good target for the

development of novel anti-HSV agents. The HSV-1 H/P complex

includes three components (UL5, UL52, and UL8) that exhibit 5ʹ–3ʹ

helicase, primase, and single-stranded DNA-dependent NTPase activi-

ties, respectively. The new inhibitors of the H/P complex have diverse

chemical structures, such as thiazole, thiazoleurea, and thiazolyphenyl

derivatives.63 BAY 57-1293 exhibits almost 200 times greater potency

against HSV than ACV in vitro65–67 (Figure 2). ASP2151 has been

shown to be a safe and effective treatment for genital HSV in Phase III

clinical trials59,62,68 (Figure 2). Some promising compounds have been

identified, and several of these compounds have undergone clinical

trials. However, several problems still exist. For example, the Phase I

clinical trial of ASP2151 was terminated because of adverse events.69

Therefore, the development of this new type of drugs will require

substantial work in the future.

Figure 1 The anti-HSV mechanism of ACV. ACV, acyclovir; HSV, herpes simplex virus.

Table 1 Three classes of drugs approved for the treatment of HSV

infections

Class of drugs Licensed drugs

Acyclic guanosine analogues Acyclovir, Ganciclovir, Penciclovir, Valaciclovir,

Valganciclovir, Famciclovir

Acyclic nucleotide analogues Cidofovir, Adefovir dipivoxil

Pyrophosphate analogues Foscarnet

HSV, herpes simplex virus.
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New types of molecules

Natural products are an important source of new molecules for use as

anti-HSV agents, such as flavonoids, sugar-containing compounds,

and peptides.6,70–72 Researchers have recently found that the notogin-

senoside ST-4 inhibits the entry of HSV into cells in vitro, with

concentrations for 50% of maximal effect (EC50s) of 16.47 μmol·L�1

and 19.44 μmol·L�1 for HSV-1 and HSV-2, respectively.73–74 Cheng

and colleagues75–76 have found that putranjivain A and pterocarnin A

(from Euphorbia jolkini and pterocaryastenoptera, respectively) inhi-

bit the entry and replication of viruses at concentrations of 2–

8 μmol·L�1. In the 1990s, Perry et al.77 first reported that mycalamide

A display antiviral activities. Mycalamide A has recently been shown to

inhibit HSV-1 at 5 ng per disc.78 Traditional Chinese medicine theory

(in which one compound may target several proteins, or several

compounds may target one protein) has allowed identification of a

large number of natural products that inhibit HSV effectively; these

discoveries may hopefully solve the present problem of drug resis-

tance. However, the development of natural antiviral drugs faces

several challenges, such as the isolation and identification of the active

components from complex products, large-scale production, and

selective inhibition.

New antiviral mechanism

The lethal mutagenesis antiviral mechanism has been proposed as a

novel chemotherapeutic strategy for drug resistance.79–91 Viruses

survive on the basis of quasispeciestheory,92–93 which states that

viruses must maintain high levels of potentially beneficial mutations

to adapt to new environments quickly via immune responses and

antiviral drug therapy. However, the high frequency of mutations in

the viral genome also implies a large danger of genetic phenomena.

There is an intrinsic limit to the maximum number of mutations in a

viral genome before the virus loses its infection activities. The viral

genetic information may be lost if the virus quasispecies exceeds the

limitation, or it may result in a lethal accumulation of errors (termed

lethal mutagenesis). Therefore, lethal mutagenesis may be effective not

only in reducing viral infection activity but also in weakening the

capacity of the virus for drug resistance. Only one nucleoside analogue,

ribavirin, exhibits broad spectrum of antiviral activity against DNA-

and RNA-based viruses. Ribavirin is also a classic example that is

mutagenic in viral cell cultures. Crotty and colleagues79–80,90,94–95 have

demonstrated that ribavirin may be a template for uridine or cytidine

with equal efficiency via rotation around the C3-carbonyl bond to give

s-cis and s-trans conformers, which may have pushed the viral genome

mutations beyond the error threshold (Figure 3).

However, the efficiency of ribavirin’s incorporation into a viral

genome is relatively low. The exploration of new mutagenic molecules

to efficiently lead to the mutation of a viral genome is an excellent

strategy to develop new antiviral drugs on the basis of lethal mutage-

nesis. Numerous researchers have focused on advancing the application

of nucleoside molecules to induce viral lethal mutations88,91 (Table 2).

For example, 5-aza-5,6-dihydro-2ʹ-deoxycytidine (KP-1212) pairs with

different natural purines (guanosine and adenosine) by the diverse

tautomerization of the nucleobase (amino and imino).96–98 KP-1212

inhibits HIV with an EC50 of 10 nmol·L�1, which increases the

Figure 3 The lethal mutagenesis mechanism of ribavirin. The ribavirin cis conformer can pair with uridine by mimicking adenosine, and the trans conformer

can pair with cytidine by mimicking guanosine.

Figure 2 The chemical structures of two potent HPI active compounds against HSV. HPI, helicase-primase inhibitor; HSV, herpes simplex virus.
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mutation frequency of proviral HIV-1 DNA by 50%–100% and does

not result in resistance or genotoxicity to the host.99 The prodrug of

KP-1212, KP-1461, has been used as a monotherapy for the treatment

of HIV-1 infection with significant resistance in Phase IIa clinical

trials, which have provided critical insight for the translation to

clinical use and new avenues for drug development.91,100

Two different faces/base-pairing systems, a novel Janus-type pyrimido

[4,5-d]pyrimidine guanosine–cytosine (J-GC) ribonucleoside and

2ʹ-deoxyribosenucleoside with a tridentate hydrogen bonding pattern,

have been designed and synthesised for lethal mutagenesis.101–102

Cristol first proposed Janus molecules (from the two-faced Roman

god Janus) to describe a new symmetrical carbocyclic system. The

J-GC mimics natural nucleosides and has the structure of canonical

pyrimidine and pure systems in a single molecule (Figure 4). The

Watson–Crick base-pairing pattern of J-GC can maintain the triden-

tate H-bond array. The base moiety of J-GC has one face with a

Watson–Crick donor–donor–acceptor H-bond pattern of guanine and

the other face with an acceptor–acceptor–donor array of cytosine. The

J-GC has two different conformations (syn or anti), which allow

pairing with diverse nucleosides in the viral genome via rotation

around the glycosyl bond and further induces viral lethal mutations, in

a similar manner to ribavirin (Figure 4).

Janus-type pyrimido[4,5-d]pyrimidine adenosine–thymidine (J-AT)

nucleosides have been synthesised to expand this tridentate J-GC

nucleoside system to a bidentate J-AT nucleoside system and obtain a

combination of all four chemical letters of the genetic nucleoside

alphabet.103 The base moiety of J-AT has one face with a Watson–

Crick H-bond acceptor–donor pattern of thymidine and the other face

with a donor–acceptor pattern of adenine. J-AT may be able to pair

with diverse nucleosides in the viral genome by rotation around the

glycosyl bond. Different mono-substituted nucleosides have been

synthesised by replacing one N–H on the thymine ring or the adenine

ring with corresponding sugar residues attaching to N1, N3, or N8 of a

Janus-type adenosine–thymidine system through divergent synthetic

routes, such as Vorbruggen or transglycosylation reactions.104–108 The

preliminary antiviral activity testing has demonstrated that the J-GC

ribonucleoside is active against the hepatitis B virus, which supports

the application of Janus-type nucleosides in the field of drug-resistant

HSV and the great potential for antiviral drug development. These

researchers have also found that the Janus-type nucleosides form

different morphogenesis nanostructures (flower-like superstructures,

nanobundles, and nanoparticles) by self-assembling in solutions and

have demonstrated that the novel self-assembled nucleoside nanopar-

ticle can efficiently act as a drug delivery system in the treatment of oral

cancer.107–108 These molecules for the development of this theory for

antiviral use are just beginning. However, this subject will likely yield the

best advances in strategies against drug resistance.

CONCLUSION

ACV and related nucleoside analogues have been gold standard

molecules for the treatment of HSV infections during the past decades.

However, the emergence of ACV drug-resistant HSV is rising rapidly

with the increasing numbers of transplant and cancer patients.

Therefore, new antiviral drugs with different antiviral actions, includ-

ing new antiviral targets, new antiviral mechanisms, and new antiviral

molecules, are required. Janus-type nucleosides have two different

faces (mimicking the natural purine and pyrimidine systems) in one

molecule, and these drugs may pair with diverse natural bases via

rotation around the glycosyl bond, which further induces viral lethal

mutation. Therefore, unique Janus-type nucleoside analogues possess

great potential in the exploitation of new lethal mutagenesis drugs as

novel strategies for antiviral chemotherapy.
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Figure 4 The potential mutagenic molecule. Janus nucleoside analogues (for example, J-GC) can pair with guanosine and cytidine by rotating around the

glycosyl bond. J-GC, Janus-type pyrimido[4,5-d]pyrimidine guanosine–cytosine.

Table 2 Selected nucleoside analogue viral mutagens

Chemical name Mutation

5-aza-5,6-dihydro-2ʹ-deoxycytidine C/T–U transitions

5-hydroxycytidine C/T–U transitions

5-aza-2ʹ-deoxycytidine C/G transversions

2-amino-N6-hydroxyadenosine A/G transitions

8-oxiguanosine G/U transversions
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