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Abstract

Phosphor-converted white-light-emitting diodes (pc-WLED) have been extensively employed as solid-state lighting

sources, which have a very important role in people’s daily lives. However, due to the scarcity of the red component, it

is difficult to realize warm white light efficiently. Hence, red-emitting phosphors are urgently required for improving

the illumination quality. In this work, we develop a novel orangish-red La4GeO8:Bi
3+ phosphor, the emission peak of

which is located at 600 nm under near-ultraviolet (n-UV) light excitation. The full width at half maximum (fwhm) is 103

nm, the internal quantum efficiency (IQE) exceeds 88%, and the external quantum efficiency (EQE) is 69%. According

to Rietveld refinement analysis and density functional theory (DFT) calculations, Bi3+ ions randomly occupy all La sites

in orthorhombic La4GeO8. Importantly, the oxygen-vacancy-induced electronic localization around the Bi3+ ions is the

main reason for the highly efficient orangish-red luminescence. These results provide a new perspective and insight

from the local electron structure for designing inorganic phosphor materials that realize the unique luminescence

performance of Bi3+ ions.

Introduction

Phosphor-converted white-light-emitting diodes (pc-
WLED) have become the next-generation solid-state
lighting source in both indoor and outdoor lighting
areas1–4. Conventional WLEDs are composed of a blue
LED chip and yellow YAG:Ce3+ phosphor; however, they
emit cold white light because the emission spectra do not
cover the red region5. Therefore, red phosphor is very
important for producing warm white luminescence and
improving the luminous efficiency. Many previous works
have explored the use of red-emitting phosphor to

enhance pc-WLED lighting quality. Eu3+-doped inorganic
phosphor materials are the most frequently investigated
red phosphor materials due to the typical 4f–4f partial spin
and forbidden transition6,7. However, Eu3+ is rarely uti-
lized in warm pc-WLEDs because its excitation spectra do
not fit well with near-ultraviolet (n-UV) and blue light8.
The most widely commercially available red phosphors are
Eu2+-doped nitride phosphors9–12, such as CaAlSiN3:Eu

2+

and Sr2Si5N8:Eu
2+. Although these phosphors realize high

quantum efficiency, harsh synthesis conditions (high
temperature and high pressure) and deep-red emission
limit their large-scale application in the production of
warm white light. In addition, Zhang et al. reported a
narrow-band red-emitting SrLiAl3N4:Eu

2+ phosphor that
was obtained via facile atmospheric pressure synthesis,
which could easily compensate the red component for
YAG:Ce3+ and potentially serve as an alternative phosphor
for n-UV pc-WLEDs. However, the spectral overlap still
remains a large problem13. To date, linear red-emitting
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Mn4+-doped fluoride phosphors have attracted substantial
attention, as their quantum yield can exceed 98% under
blue light irradiation14,15. However, they have two serious
drawbacks: low thermal stability and massive HF acid use.
Hence, exploiting high-quality red-emitting phosphor
materials remains challenging.
Recently, Bi3+-activated phosphors have been exten-

sively investigated due to their unique luminescence
performance16. Their excitation spectra are located in the
n-UV area; thus, spectral overlap can be efficiently avoi-
ded. However, Bi3+ ions typically emit blue and green
light and rarely emit red light, except in a suitable matrix,
such as ScVO4 and ZnWO4

17–20. Bi3+ contains a naked
6s6p energy level; hence, the surrounding coordination
environment is very sensitive21,22. The luminescence
performance of Bi3+ can be easily influenced by tuning
the surrounding electron structure. Recently, it was
demonstrated that the formation of a vacant defect could
contribute to the spectral adjustment. For instance, Zhang
et al.23 reported a giant enhancement of Bi3+ lumines-
cence that was realized by generating an oxygen vacancy,
which is a new strategy for exploring novel Bi3+-doped
phosphor materials.
In this work, we develop a novel and high-quality red-

emitting La4GeO8:Bi
3+ (denoted as LGO:Bi3+) phosphor.

Under 397 nm n-UV excitation, LGO:Bi3+ displays an
orangish-red emission for which the peak is at 600 nm,
fwhm= 103 nm, IQE= 88.3%, and EQE= 69%. Via
experimental and theoretical studies, we demonstrate that
the unique photoluminescence performance is caused by
oxygen-vacancy-induced electron localization around the
Bi3+ ions. This finding provides a new insight into
the design of novel luminescence materials by changing
the local electron structures of activator ions. The fabri-
cated pc-WLED devices realize a high color rendering
index (CRI= 95.1) and a low correlated color temperature
(CCT= 5323 K), thereby indicating that LGO:Bi3+ is a
superb red-emitting candidate in the field of solid-state
lighting.

Results

The optical performance of the novel orangish-red-
emitting LGO:Bi3+ phosphor is evaluated in detail
through diffuse reflectance (DR) spectra. The DR spectra
of the LGO matrix show only one prominent band, which
is centered at 280 nm (Fig. 1a). After Bi3+-doping (x=
0.007), in addition to the prominent band in the region of
232–321 nm, a shoulder band appears at ~400 nm. The
former is mainly attributed to the matrix absorption of
LGO and the 1S0→

1P1 transition of Bi3+, while the latter
originates from the 1S0→

3P1 transition of Bi3+,24. The
optical bandgap value can be obtained via linear extra-
polation based on the DR spectra according to the

following equations:25

½hvFðRÞ�1=2 ¼ Aðhv� EgÞ ð1Þ

FðRÞ ¼ ð1� RÞ2=2R ð2Þ

where A represents the absorption constant, R is the
reflectance coefficient (%), F(R) is the absorption coeffi-
cient, Eg is the optical bandgap value, and hv represents
the photon energy. The bandgap values for the LGO
matrix and LGO:0.007Bi3+ are 4.89 and 4.95 eV, respec-
tively (see the inset of Fig. 1a). These results demonstrate
that the LGO matrix is a superior carrier for accom-
modating Bi3+ ions as inorganic luminescence materials.
Figure 1b presents the photoluminescence excitation

(PLE) and photoluminescence emission (PL) spectra of
the LGO:0.007Bi3+ sample and the best commercially
available yellow YAG:Ce3+ phosphor at 298 K. The PLE
spectrum of LGO:0.007Bi3+ shows a wide excitation band
from 250–500 nm with a peak at 397 nm, thereby
demonstrating that the as-prepared LGO: Bi3+ can be well
excited by a n-UV LED chip. This result is consistent with
the results from the DR spectra. In response to 397 nm n-
UV light, LGO:0.007Bi3+ exhibits an unprecedented
orangish-red emission from 500 to 750 nm with a max-
imum at 600 nm (fwhm= 103 nm). This emission can be
attributed to the characteristic 3P1→

1S0 transition of Bi3+.
In the PL spectrum of LGO:Bi3+, an emission redshift of
~50 nm and a broader fwhm compared to those of YAG:
Ce3+ (maximum at 550 nm and fwhm= 87.5 nm) are
observed, thereby demonstrating that LGO:Bi3+ could
cover more of the red component in PL spectra. Simul-
taneously, LGO:Bi3+ shows no reabsorption between the
PLE and PL spectra, the IQE value can reach 88.3%, and
EQE= 69%. The calculated Commission Internationale
de l’Eclairage (CIE) diagrams for LGO:0.007Bi3+ (λex=
397 nm) and YAG:Ce3+ (λex= 460 nm) are located in the
orangish-red region (0.536, 0.444) and yellow region
(0.436, 0.560) (Fig. 1c), respectively. The luminescence
photographs in Fig. 1d further demonstrate the bright
orangish-red emission of LGO:Bi3+ upon 365 nm n-UV
radiation. In addition, the detailed energy-level transition
attribution at low-temperature (10 K) is consistent with
the RT spectra (298 K) (Figure S1a and S1b), thereby
demonstrating a stable Bi3+ luminescence. The
Bi3+-doping optimization demonstrate that the Bi3+

critical concentration is x= 0.007 (Figure S1c-S1f). These
results all demonstrate that LGO:Bi3+ could act as an
orangish-red phosphor in n-UV-based pc-WLEDs and
even has an advantage over the YAG:Ce3+ phosphor for
presenting warm white light.
Since the valence of Bi has a critical influence on its

luminescence properties, it is necessary to define its
valence in the LGO matrix26,27. In Fig. 1e, the X-ray
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photoelectron spectroscopy (XPS) spectra of LGO:xBi3+

(x= 0.01 and 0.03) samples and standard α-Bi2O3 powder
are plotted. All samples show the typical Bi3+ peaks at
~159 and 164.6 eV, which are assigned to Bi 4f7/2 and Bi
4f5/2, respectively. In addition, when the LGO:Bi samples
are treated under a N2/H2 (90%/10%) reducing atmo-
sphere, no luminescence is observed. PL spectra that
are treated in a different environment are shown in Fig-
ure S2. The results of this experiment demonstrate that
the orangish-red emission in LGO originates from
Bi3+ ions.
Typically, low thermal quenching behavior is necessary

for phosphors to produce high-quality lighting in pc-
WLED devices28,29. Fig. 1f exhibits temperature-
dependent PL properties of LGO:0.007Bi3+. Although its
emission intensity gradually declines as the temperature
increases from 298 K to 573 K, it maintains 78.4% emis-
sion intensity at 398 K of the original intensity at 298 K.

The quenching temperature, which is denoted as T50

(when emission intensity is half the original intensity), is
488 K. The quenching process is ascribed to the thermally
excited nonradiative transition. Furthermore, the emis-
sion peak position and shape show almost no shift (inset
of Fig. 1f) with increasing temperature in the region of
298–473 K, thereby demonstrating excellent color-
stability. Furthermore, the temperature-dependent PL
spectra and integrated intensity from 10 K to 300 K
support the excellent temperature stability (Figure S3),
thereby demonstrating that LGO:Bi3+ has high thermal
stability for the practical application of pc-WLEDs.
To explore the origin of the unique orangish-red

emission of Bi3+ ions in LGO, the crystal structure con-
figuration and composition of LGO:Bi3+ are investigated.
The XRD patterns of LGO:xBi3+ (x= 0.005‒0.030) could
be indexed with the standard La4GeO8 (PDF No.
40–1185), thereby demonstrating the formation of a pure
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Fig. 1 Photoluminescence properties and thermal stability analysis. a Diffuse reflectance (DR) spectra of La4-xGeO8:xBi
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samples; the inset presents the calculated optical bandgap values. b PLE and PL spectra of an LGO:0.007Bi3+ sample and commercially available

yellow YAG:Ce3+ phosphor, which are monitored at the optimal wavelength. c The chromaticity coordinates of the representative LGO:0.007Bi3+

sample (λex= 397 nm) and YAG:Ce3+ sample (λex = 460 nm) in the CIE 1931 color space. d Photographs of LGO:0.007Bi3+ under natural light (left)

and 365 nm n-UV light (right) radiation. e XPS spectra of LGO:xBi3+ (x= 0.01, 0.03) samples and a standard α-Bi2O3 sample, which is used for

comparison. f The variation in the integrated emission intensity (λex= 397 nm) of LGO:0.007Bi3+ vs the heating temperature (298–573 K); the inset

presents the corresponding temperature-dependent PL spectra
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phase (Figure S4). Figure 2a and Figure S5a-S5c display
the Rietveld refinement XRD patterns of LGO:xBi3+ (x=
0‒0.03). All the as-prepared samples crystalize in
orthorhombic unit cells with space group P1. The refined
lattice parameters for LGO are a= 7.6642(8) Å, b=

5.8470(9) Å, c= 18.2897(4) Å, and V= 819.629(3) Å3 and
the detailed structural information is listed in Table S1.
Figure S5d plots the representative lattice parameter c and
cell volume V as functions of the Bi3+ ion concentration x.
The lattice parameters gradually decrease as x increases,
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which results from the smaller ionic radius of Bi3+ (1.03
Å, CN= 6; CN represents the coordination number)
compared to La3+ (1.032 Å, CN= 6). Furthermore, the
lattice parameters a and b gradually increase with x,
thereby indicating that the La lattices may be locally
distorted with the incorporation of Bi3+ (Figure S5e and
S5f).
Density functional theory (DFT) calculations are used to

further investigate the electron properties and structural
configuration of the LGO:xBi3+ (x= 0‒0.03) system. Fig-
ure 2b presents the projected electron density of states
(PDOS) of the LGO matrix. According to the DFT cal-
culations, the electrons of the conduction band are con-
tributed by La atoms and O atoms, while the electrons of
the valence band are mainly contributed by O atoms. The
calculated bandgap (Eg) value (4.79 eV) is close to the
experimental value (4.89 eV). The crystal structure that is
calculated via the DFT method is depicted schematically
in Fig. 2c. Along the b-axis direction, LGO exhibits a
highly symmetric structure, which consists of three types
of [LaOn] polyhedra (n= 6, 7) and two types of [GeO4]
tetrahedra. The six crystallographic La sites can be sorted
into three categories: La1–La3. The La1 site is connected
with six O atoms to form a distorted octahedron, while
the La2 and La3 sites are coordinated with seven O atoms
to form decahedra. The O atoms in LGO can also be
divided into three types: Oi-Oiii. The structural infor-
mation that is obtained via DFT calculations well agrees
with the Rietveld refinement results. The calculated
average La–O bond lengths are summarized in Fig. 2d and
Table S2, which are 2.4642 Å for La1–O, 2.4759 Å for
La2–O, and 2.5486 Å for La3–O.
The composition of LGO:xBi3+ (x= 0, 0.007, 0.030) is

determined from FT-IR spectra (Figure S6) and Raman
spectra (Fig. 2e). In the FT-IR spectra, the stronger peak at
683 cm−1 and weaker peak at 709 cm−1 are typically
antisymmetric vibrations of GeO4 tetrahedra

30, while the
peak at 502 cm−1 corresponds to characteristic stretching
vibrations of the La–O bond. Due to the scant
Bi3+-doping concentration, the incorporation of Bi3+ does
not influence the structures of the as-prepared samples.
Raman spectra also support the phase composition of
LGO. The relative intensities of the peaks at 284.4 cm−1

and 303.6 cm−1 differ substantially between the x= 0 and
x= 0.007 samples (marked by an orange dashed rec-
tangle). The peak splitting degree at ~400 cm−1 also dif-
fers between the two samples (marked by a pink dashed
rectangle). These variations in the Raman spectra
demonstrate that the local lattice coordination environ-
ment in the LGO matrix changes slightly with Bi3+ ion
incorporation and may result in the formation of lattice
defects. XPS analysis is an effective method for elucidating
the presence of vacancies. With the doping of Bi3+ into
the LGO matrix, the 3d orbital of La and the Ge binding

energy remain unchanged (Figure S8). The O 1s orbital
could be fitted by four Gaussian peaks that are centered at
~528.2, ~529.6, ~531, and ~532 eV in both the LGO and
LGO:Bi3+ samples (Fig. 2f). Accordingly, the high-energy
component (red lines) is mainly attributed to loosely
bound oxygen, whereas the two low-energy peaks (blue
lines) are ascribed to the presence of oxygen vacancies31.
The low-energy peaks increase in intensity with Bi3+

incorporation, thereby indicating the generation of oxy-
gen vacancies in the LGO:Bi3+ sample.
Enlightened by the crystal structure and lattice envir-

onment analysis, we posit that Bi3+ ions randomly occupy
all La sites. DFT calculations are used to investigate the
local electron structure variation around the Bi3+ ions and
coordinated O atoms. The calculated total and partial
electron densities of state of the La1–La3 sites in
LGO:0.007Bi3+ are displayed in Fig. 3a and b. The loca-
tions and contributions of the La, Ge, and O atoms in
LGO:Bi3+ are coincident with those in the LGO matrix.
Surprisingly, no electron transition energy levels of the Bi3
+ ions are observed between the conduction band and
valence band. In Fig. 3b, the extracted PDOSs for the total
and s and p energy levels of the Bi atoms support the
absence of an electron transition energy level between
the conduction band and the valence band of LGO. The
calculated results demonstrate that there is no lumines-
cence when doping Bi3+ ions in the LGO matrix, which
contradicts the experimental results.
According to the previous Raman results, slight changes

occur with Bi3+ ion doping into the LGO matrix; hence,
defects or distortions in the local lattice coordination
environment are expected. The calculated La1 site dis-
tortion degree is increased from 0.2832 for the LGO
matrix to 0.2943 for LGO:0.007Bi3+; the distortion degree

is calculated as D ¼ 1
n

Pn

i¼1

di�davj j
dav

32, where D represents the

lattice distortion, di is the distance from Ba to the ith
coordinating O atom, dav is the average Ba–O distance,
and n is the coordination number. Among the various
defects, oxygen vacancies are easily generated during the
annealing process of Bi-activated inorganic phos-
phors18,23. Then, we calculate the electron structures of
LGO:Bi3+ with three types oxygen-vacancy defects at the
La1–La3 sites; the results are exhibited in Fig. 3c, d and
Figure S7. The whole electron distribution shifts in the
low-energy direction by ~2.5 eV. The electron transition
energy levels of the Bi 6p orbital appear between the
conduction band and the valence band of the LGO
matrix. Thus, we conjecture that the existence of oxygen-
vacancy defects is extremely important for the generation
of orangish-red emission in LGO:Bi3+.
To further investigate the influence of oxygen vacancies

on the Bi3+ luminescence behavior in the LGO matrix,
the electron localization function (ELF) maps around the
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Bi atoms at the La1–La3 sites (Fig. 3e) without and with
oxygen vacancies are analyzed. When Bi atoms substitute
La sites, many electrons will localize around the Bi atoms
and fewer electrons will be concentrated on coordinated
O atoms. Comparing the ELF maps without (up) and with
(down) oxygen vacancies at the La1–La3 sites, the elec-
tron localization area around the Bi atom enlarges as an
adjacent oxygen vacancy appears. Accordingly, the unique
orangish-red emission of LGO:Bi3+ is mainly ascribed to
the electron localization around Bi atoms in the presence
of oxygen vacancies. The proposed electron transition,
which is based on DFT calculations, is summarized

schematically in Fig. 3f. When Bi3+ ions occupy La3+ ions
without generating oxygen vacancies, the Bi 6p energy
level embeds into the conduction band, while the 6s
energy level is close to the valence band. The separation
energy between the 6s and 6p energy levels is almost equal
to the bandgap value; thus, there are no electron transi-
tions on Bi3+ ions for generating luminescence. In the
presence of an oxygen vacancy, the Bi 6p excited-state
energy level appears between the conduction band and
the valence band and the 6s energy level mainly embeds
into the valence band maximum. The separation energies
of the 6s and 6p energy levels with various oxygen
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vacancies at the La1–La3 sites are in the range of
1.80–2.44 eV and the statistical separation energies in
ascending order are La1 < La2 < La3. These results
demonstrate that Bi3+ can randomly occupy the La1, La2,
and La3 sites in the LGO matrix and, theoretically, emits
yellow to deep-red light in the presence of oxygen
vacancies at the La1‒La3 sites. Our experimental results
well agree with this theoretical prediction. The Gaussian
fitting PL spectra (Fig. 3g) and lifetime values (Figure S9,
1.39, 1.34, and 1.28 μs for the La1–La3 sites, respectively)
for LGO:0.007Bi3+ support the existence of three lumi-
nescence centers with peak positions at 1.93 eV (650 nm),
2.08 eV (600 nm), and 2.24 eV (550 nm). The crystal
splitting field energy (Dq) is expressed as follows:33,34

Dq ¼
Ze2r4

6R5
ð3Þ

where Z is the charge of the anion, e is the charge of one
electron, r is the radius of the d wave function, and R is the
average La–O bond length. As the bond length decreases,
the crystal field splitting increases. On the basis of Fig. 2d
and Table S2, the deep-red (650 nm), orange (600 nm),
and yellow (550 nm) luminescence centers are assigned to
the occupation of Bi3+ at the La1, La2, and La3 sites,
respectively. The oxygen-vacancy-induced electron locali-
zation around the Bi atoms is the crucial factor for gen-
erating orangish-red emission in the LGO:Bi3+ phosphor.
To evaluate the practical application of LGO:Bi3+

phosphor in a pc-WLED device, we fabricated a pc-
WLED device by using LGO:0.007Bi3+, commercial green
Ba3Si6O12N2:Eu

2+ phosphor, blue BAM:Eu2+ phosphor,
and a 400 nm n-UV LED chip. For comparison, the
pc-WLED is fabricated similarly by using commercial
YAG:Ce3+ phosphor with a 460 nm LED chip. The elec-
troluminescence (EL) spectra are presented in Fig. 4a, b,
which are consistent with their corresponding PL spectra.
Under the optimal LED chip excitation, LGO:0.007Bi3+

covers more of the red component in the visible light
region than YAG:Ce3+. With a 3 V, 20 mA current
driving, the CCT (correlated color temperature) and CRI
(color rendering index) of the as-fabricated pc-WLEDs for
LGO:0.007Bi3+ are 5323 K and 95.2, respectively, which
are superior compared to the commercial YAG:Ce3+

phosphor (6015 K and 72.2). The luminous efficiency of
the as-fabricated pc-WLEDs for LGO:0.007Bi3+ is
6.4 lm/W, which should be optimized via proper process
treatment. Moreover, the CIE color coordinates of the
former (0.337, 0.360) correspond to a more suitable
white-emitting position than those of the latter (0.320,
0.354). The fabricated pc-WLED of LGO:Bi3+ exhibits
much warmer white light than that of YAG:Ce3+ (Fig. 4c).
These results demonstrate that the developed LGO:Bi3+ is
a promising orangish-red phosphor material for applica-
tion in n-UV-based warm pc-WLEDs lighting.

Discussion

In summary, we have successfully exploited an
orangish-red-emitting LGO:Bi3+ phosphor with the
emission peak locating at 600 nm (λex= 397 nm) and the
fwhm= 103 nm. Its IQE could reach 88.3%, EQE= 69%.
Rietveld refinement confirms that the as-prepared sam-
ples crystalize in orthorhombic unit cells with space group
P1, and its lattice parameters are a= 7.6642(8) Å, b=
5.8470(9) Å, c= 18.2897(4) Å, and V= 819.629(3) Å3.
The XRD spectra and DFT calculation results demon-
strate that Bi3+ ions randomly occupy La1–La3 sites in
LGO, which will emit deep-red (1.93 eV), orange (2.08
eV), and yellow (2.24 eV) light when substituting at La1,
La2, and La3 sites, respectively. Interestingly, the unique
orangish-red luminescence behavior should be ascribed to
the electron localization surrounding Bi3+ ions with the
presence of adjacent O vacant defects through ELF maps
analysis. The fabricated n-UV-based pc-WLED with a
hybrid of LGO:Bi3+ phosphor, blue BAM:Eu2+ and green
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CRI: 72.2
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E
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Fig. 4 WLEDs applications for La4GeO8:Bi
3+ phosphor. EL spectra of pc-WLEDs that were fabricated from a an orangish-red LGO:0.007Bi3+

sample, blue BAM:Eu2+ phosphor and green Ba3Si6O12N2:Eu
2+ phosphor with a 400 nm LED chip and b yellow YAG:Ce3+ phosphor with a 460 nm

LED chip. c Photographs of the pc-WLED devices that were fabricated from LGO:Bi3+ and YAG:Ce3+ phosphors

Wei et al. Light: Science & Applications            (2019) 8:15 Page 7 of 9



Ba3Si6O12N2:Eu
2+ phosphor achieves high CRI (95.2) and

low CCT (5323 K), indicating a superb candidate in
lighting field. The concept of focusing on the electron
localization properties surrounding activators ions offers a
new perspective and insight for exploring unique lumi-
nescence behavior in inorganic luminescence materials.

Materials and methods

Materials synthesis

Samples of La4-xGeO8:xBi
3+ (x= 0‒0.03), which is

denoted as LGO:xBi3+, were prepared via a conventional
high-temperature solid-state approach. The raw materials
of La2O3 (99.99%), GeO2 (99.999%) and Bi2O3 (99.99%)
were all purchased from Aladdin. First, stoichiometric raw
materials were weighed, put into agate, and ground
together for 1 h. The obtained mixtures were transferred
into corundum crucibles and annealed in a horizontal
tube furnace at 1100‒1300 °C for 4 h in air. After naturally
cooling to room temperature, the annealed samples were
ground again. In addition, La4-xGeO8:xBi

3+ (x= 0‒0.03)
samples were prepared under an N2/H2 (90%/10%)
reduced atmosphere with the same other conditions for
comparison.

LED fabrication

pc-WLED devices were fabricated by using the as-
prepared orangish-red LGO:0.007Bi3+ phosphor, blue
BAM:Eu2+ phosphor, green Ba3Si6O12N2:Eu

2+ phosphor,
and a 400 nm LED chip. In a typical fabrication process, the
LGO:0.007Bi3+, BAM:Eu2+ and Ba3Si6O12N2:Eu

2+ phos-
phors were evenly blended with silicone resins A and B (A:
B= 1:1) in the agate mortar and the resulting mixture was
coated on a 400 nm LED chip. The packaged devices were
cured in an oven at 120℃ for 12 h to form the resulting pc-
WLED devices. The commercially available yellow YAG:
Ce3+ phosphor and a 460 nm LED chip were also fabricated
to pc-WLED via the same method for comparison.

Characterization

Powder X-ray diffraction (XRD) were collected on a D8
Focus diffractometer with Ni-filtered Cu-Kα (2θ= 5°–20°,
λ= 1.540598 Å). Rietveld refinements were performed
with General Structure Analysis System (GSAS) software
based on XRD data. Photoluminescence excitation (PLE)
and photoluminescence emission (PL) spectra were col-
lected by a fluorescence spectrometer (Fluoromax-4P,
Horiba Jobin Yvon, New Jersey, U.S.A.) whose excitation
source is a 450 W xenon lamp. Diffuse reflectance (DR)
spectra were collected with using a UV–vis-NIR spec-
trophotometer (Hitachi U-4100). Photoluminescence
decay curves were obtained with using a Lecroy Wave
Runner 6100 Digital Osilloscope (1 GHz) (Contimuum
Sunlite OPO), the excitation was a tunable laser (pulse

width= 4 ns and gate= 50 ns). Fourier-transform infra-
red spectra (FT-IR) were performed on spectro-
photometer (Bruker, Vertex Perkin–Elmer 580BIR) by
using KBr pellet technique. Raman spectra were obtained
on Raman spectrometer (JYT6400) using a 512 nm laser.
The photoluminescence quantum yield (QY) was
obtained on an absolute PL quantum yield measurement
system (Hamamatsu photonics K.K., C9920-02 Japan).
The electroluminescence performances of pc-WLED
devices were measured analyzer system (tarspec
SSP6612.) by using an integrating sphere. All the above
measurements were performed at room temperature.
Temperature-dependent PL spectra (10–300 K and
298–573 K) were recorded on a fluorescence spectro-
photometer (Edinburgh Instruments FLSP-920) with a
temperature controller.

Computational methods

The first-principle density functional theory (DFT) cal-
culations were performed with the Vienna ab initio simu-
lation package (VASP) code. The electron–ion interaction
was treated with the projector augmented wave (PAW)
method. La (5s25p65d16s2), Ge (4s24p2), O (2s22p4) and Bi
(6s26p3) electrons were treated as the valence electrons. The
exchange and correlation functional were described via the
Perdew–Burke–Ernzerhof (PBE) generalized gradient
approximation. To investigate the electronic properties and
obtain an accurate description of the density of states, we
employed the Heyd–Scuseria–Ernzerhof (HSE06) method.
A plane-wave cutoff energy of 400 eV was applied in our
calculations and 4×4×2 Monkhorst–Pack k grids were used
during the optimization. The iterative process was con-
sidered to have converged when the force on the atom was
less than 0.01 eVÅ−1 and the energy change was <10–5 eV
per atom.

Acknowledgements

This work was supported by the National Natural Science Foundation of China

(Grants Nos. 51672259, 51720105015, 51672265, 21521092, 51750110511, and

21872174), Key Research Program of Frontier Sciences of CAS (YZDY-SSW-

JSC018), the CAS-Croucher Funding Scheme for Joint Laboratories (CAS18204),

the Scientific and Technological Department of Jilin Province (Grant No.

20170414003GH), Project of Innovation-Driven Plan in Central South University

(2017CX003), State Key Laboratory of Powder Metallurgy in Central South

University, Thousand Youth Talents Plan of China, Hundred Youth Talents

Program of Hunan, Shenzhen Science and Technology Innovation Project

(630), Jiangmen Innovative Research Team Program (2017), and Major program

of basic research and applied research of Guangdong Province

(2017KZDXM083).

Author details
1Engineering Research Center of Nano-Geomaterials of Ministry of Education,

Faculty of Materials Science and Chemistry, China University of Geosciences,

388 Lumo Road, 430074 Wuhan, People’s Republic of China. 2State Key

Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, 130022 Changchun, People’s

Republic of China. 3Hunan Key Laboratory for Super-microstructure and

Ultrafast Process, School of Physics and Electronics, Central South University,

410083 Changsha, Hunan, People’s Republic of China. 4State Key Laboratory of

Wei et al. Light: Science & Applications            (2019) 8:15 Page 8 of 9



Powder Metallurgy, Central South University, 932 South Lushan Road, 410083

Changsha, Hunan, People’s Republic of China. 5Institute for Biomedical

Materials and Devices (IBMD), Faculty of Science, University of Technology

Sydney, Sydney, NSW, Australia. 6School of Applied Physics and Materials, Wuyi

University, 529020 Jiangmen, Guangdong, People’s Republic of China

Authors’ contributions

G.L. and J.L. designed the system, Y. W. and G.X. conducted the experiment

and wrote the manuscript, K.L. and M.L. completed the DFT calculation section,

P.D. and S.L. did measurement. Z.C. and D.J. analyzed the data. All authors took

part in this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information is available for this paper at https://doi.org/

10.1038/s41377-019-0126-1.

Received: 13 October 2018 Revised: 13 December 2018 Accepted: 14

December 2018

References

1. Qin, X., Liu, X. W., Huang, W., Bettinelli, M. & Liu, X. G. Lanthanide-activated

phosphors based on 4f-5d optical transitions: Theoretical and experimental

aspects. Chem. Rev. 117, 4488–4527 (2017).

2. George, N. C., Denault, K. A. & Seshadri, R. Phosphors for solid-state white

lighting. Annu Rev. Mater. Res. 43, 481–501 (2013).

3. Li, G. G., Tian, Y., Zhao, Y. & Lin, J. Recent progress in luminescence tuning of

Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44,

8688–8713 (2015).

4. Lin, C. C. & Liu, R. S. Advances in phosphors for light-emitting diodes. J. Phys.

Chem. Lett. 2, 1268–1277 (2011).

5. George, N. C. et al. Local environments of dilute activator ions in the solid-

state lighting phosphor Y3–xCexAl5O12. Chem. Mater. 25, 3979–3995 (2013).

6. Liu, Y. S. et al. A strategy to achieve efficient dual-mode luminescence of Eu3+

in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 22,

3266–3271 (2010).

7. Tao, Z. X. et al. Photoluminescence properties of Eu3+-doped glaserite-type

orthovanadates CsK2Gd(VO4)2. Inorg. Chem. 53, 4161–4168 (2014).

8. Grigorjevaite, J. & Katelnikovas, A. luminescence and luminescence quenching

of K2Bi(PO4)(MoO4):Eu
3+ phosphors with efficiencies close to unity. ACS Appl.

Mater. Interfaces 8, 31772–31782 (2016).

9. Park, W. B., Singh, S. P., Yoon, C. & Sohn, K. S. Combinatorial chemistry

of oxynitride phosphors and discovery of a novel phosphor for use in

light emitting diodes, Ca1.5Ba0.5Si5N6O3:Eu
2+. J. Mater. Chem. C 1, 1832–1839

(2013).

10. Wang, L., Xie, R. J., Suehiro, T., Takeda, T. & Hirosaki, N. Down-conversion nitride

materials for solid state lighting: recent advances and perspectives. Chem. Rev.

118, 1951–2009 (2018).

11. Park, W. B., Singh, S. P. & Sohn, K. S. Discovery of a phosphor for light emitting

diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu
2+. J. Am.

Chem. Soc. 136, 2363–2373 (2014).

12. Pust, P. et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu
2+ as a next-generation

LED-phosphor material. Nat. Mater. 13, 891–896 (2014).

13. Zhang, X. J. et al. Facile atmospheric pressure synthesis of high thermal sta-

bility and narrow-band red-emitting SrLiAl3N4:Eu
2+ phosphor for high color

rendering index white light-emitting diodes. ACS Appl. Mater. Interfaces 8,

19612–19617 (2016).

14. Fang, M. H. et al. Control of luminescence by tuning of crystal symmetry and

local structure in Mn4+-activated narrow band fluoride phosphors. Angew.

Chem. Int. Ed. 57, 1797–1801 (2018).

15. Huang, L. et al. HF-free hydrothermal route for synthesis of highly efficient

narrow-band red emitting phosphor K2Si1–xF6:xMn
4+ for warm white light-

emitting diodes. Chem. Mater. 28, 1495–1502 (2016).

16. Han, J. et al. Redefinition of crystal structure and Bi3+ yellow luminescence

with strong near-ultraviolet excitation in La3BWO9:Bi
3+ phosphor for

white light-emitting diodes. ACS Appl. Mater. Interfaces 10, 13660–13668

(2018).

17. Kang, F. W. et al. Red photoluminescence from Bi3+ and the influence of the

oxygen-vacancy perturbation in ScVO4: a combined experimental and theo-

retical study. J. Phys. Chem. C 118, 7515–7522 (2014).

18. Han, J. et al. Toward Bi3+ red luminescence with no visible reabsorption

through manageable energy interaction and crystal defect modulation

in single Bi3+-doped ZnWO4 crystal. Chem. Mater. 29, 8412–8424 (2017).

19. Kang, F. W. et al. Broadly tuning Bi3+ emission via crystal field modulation in

solid solution compounds (Y,Lu,Sc)VO4:Bi for ultraviolet converted white LEDs.

J. Mater. Chem. C 2, 6068–6076 (2014).

20. Kang, F. W. et al. Band-gap modulation in single Bi3+-doped yttrium-

scandium-niobium vanadates for color tuning over the whole visible spec-

trum. Chem. Mater. 28, 2692–2703 (2016).

21. Kang, F. W., Peng, M. Y., Zhang, Q. Y. & Qiu, J. R. Abnormal anti-quenching and

controllable multi-transitions of Bi3+ luminescence by temperature in a

yellow-emitting LuVO4:Bi
3+ phosphor for UV-converted white LEDs. Chem. Eur.

J. 20, 11522–11530 (2014).

22. Kang, F. W. et al. Broadly tunable emission from CaMoO4:Bi phosphor based

on locally modifying the microenvironment around Bi3+ ions. Eur. J. Inorg.

Chem. 2014, 1373–1380 (2014).

23. Zhang, K. et al. Giant enhancement of luminescence from phosphors through

oxygen-vacancy-mediated chemical pressure relaxation. Adv. Opt. Mater. 5,

1700448 (2017).

24. Kang, F. W., Zhang, Y. & Peng, M. Y. Controlling the energy transfer via multi

luminescent centers to achieve white light/tunable emissions in a single-

phased X2-type Y2SiO5:Eu
3+,Bi3+ phosphor for ultraviolet converted LEDs.

Inorg. Chem. 54, 1462–1473 (2015).

25. Liu, L. L. et al. K5Ba10(BO3)8F: a new potassium barium borate fluoride with a

perovskite-like structure. J. Phys. Chem. C 120, 18763–18770 (2016).

26. Qin, X. X. et al. A novel NIR long phosphorescent phosphor:SrSnO3:Bi
2+. RSC

Adv. 5, 101347–101352 (2015).

27. Zhou, G. J. et al. Two-dimensional-layered perovskite ALaTa2O7:Bi
3+ (A= K and

Na) phosphors with versatile structures and tunable photoluminescence. ACS

Appl. Mater. Interfaces 10, 24648–24655 (2018).

28. Kim, Y. H. et al. A zero-thermal-quenching phosphor. Nat. Mater. 16, 543–550

(2017).

29. Zhao, M. et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2:

Eu2+ phosphor for backlight display application. Adv Mater 30, 1802489 (2018).

30. Bernard, A., Zhang, K. Y., Larson, D., Tabatabaei, K. & Kauzlarich, S. M. Solvent

effects on growth, crystallinity, and surface bonding of Ge nanoparticles. Inorg.

Chem. 57, 5299–5306 (2018).

31. Li, X. Y., Wang, Y. L., Liu, W. F., Jiang, G. S. & Zhu, C. F. Study of oxygen vacancies

′ influence on the lattice parameter in ZnO thin film. Mater. Lett. 85, 25–28

(2012).

32. Chen, M. Y., Xia, Z. G., Molokeev, M. S., Wang, T. & Liu, Q. L. Tuning of

photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2-

(1-x)Ca10Li(PO4)7:Eu
2+ phosphors. Chem. Mater. 29, 1430–1438 (2017).

33. Tang, Z. B., Zhang, G. Y. & Wang, Y. H. Design and development of a bluish-

green luminescent material (K2HfSi3O9:Eu
2+) with robust thermal stability for

white light-emitting diodes. ACS Photonics 5, 3801–3813 (2018).

34. Li, X. et al. Color-tunable luminescence properties of Bi3+ in Ca5(BO3)3F via

changing site occupation and energy transfer. Chem. Mater. 29, 8792–8803

(2017).

Wei et al. Light: Science & Applications            (2019) 8:15 Page 9 of 9

https://doi.org/10.1038/s41377-019-0126-1
https://doi.org/10.1038/s41377-019-0126-1

	New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization
	Introduction
	Results
	Discussion
	Materials and methods
	Materials synthesis
	LED fabrication
	Characterization
	Computational methods

	ACKNOWLEDGMENTS
	ACKNOWLEDGMENTS


