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ABSTRACT

We study streaming algorithms for two fundamental geometric

problems: computing the cost of a Minimum Spanning Tree (MST)

of an𝑛-point set𝑋 ⊂ {1, 2, . . . ,Δ}𝑑 , and computing the EarthMover

Distance (EMD) between two multi-sets 𝐴, 𝐵 ⊂ {1, 2, . . . ,Δ}𝑑 of

size 𝑛. We consider the turnstile model, where points can be added

and removed. We give a one-pass streaming algorithm for MST

and a two-pass streaming algorithm for EMD, both achieving an

approximation factor of �̃� (log𝑛) and using polylog(𝑛,𝑑,Δ)-space

only. Furthermore, our algorithm for EMD can be compressed to a

single pass with a small additive error. Previously, the best known

sublinear-space streaming algorithms for either problem achieved

an approximation of 𝑂 (min{log𝑛, log(Δ𝑑)} log𝑛). For MST, we

also prove that any constant space streaming algorithm can only

achieve an approximation of Ω(log𝑛), analogous to the Ω(log𝑛)

lower bound for EMD.

Our algorithms are based on an improved analysis of a recur-

sive space partitioning method known generically as the Quadtree.

Specifically, we show that the Quadtree achieves an �̃� (log𝑛) ap-

proximation for both EMD and MST, improving on the

𝑂 (min{log𝑛, log(Δ𝑑)} log𝑛) approximation.
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1 INTRODUCTION

We study two fundamental geometric problems in high-dimensional

spaces: the Earth Mover’s distance and minimum spanning tree.

Let (X, 𝑑X) be a metric space. Given two (multi-)sets 𝐴, 𝐵 ⊂ X of

size |𝐴| = |𝐵 | = 𝑛, the Earth Mover’s distance (EMD) between 𝐴

and 𝐵 is

EMDX (𝐴, 𝐵) = min
matching
𝑀⊂𝐴×𝐵

∑︁

(𝑎,𝑏 ) ∈𝑀

𝑑X (𝑎, 𝑏).

Given a single multi-set 𝑋 ⊂ X of size 𝑛, the cost of the minimum

spanning tree (MST) of 𝑋 is

MSTX (𝑋 ) = min
tree𝑇

spanning
𝑋

∑︁

(𝑎,𝑏 ) ∈𝑇

𝑑X (𝑎, 𝑏) .

Computational aspects of EMD and MST consistently arise in mul-

tiple areas of computer science [19, 36, 37], such as in computer

vision [12, 41], image retrieval [38], biology [34], document simi-

larity [28], machine learning [7, 16, 32], among other areas. Their

centrality in both theory and practice has motivated the theoret-

ical study of approximate and sublinear algorithms [1ś3, 5, 6, 8,

10, 11, 13, 17, 18, 20, 23, 26, 29, 39, 40, 42, 43] in both low- and

high-dimensional settings.

As an illustrative example, an important application for high-

dimensional EMD comes from natural language processing, par-

ticularly document retrieval and classification. A document can

be represented as a collection of vectors in Euclidean space by

applying word embeddings [30, 35] to each of its words; these em-

beddings have the property that semantically similar words map to

geometrically close vectors. In this context, computing the EMD be-

tween the embeddings of two documents yields a natural measure

of similarity, aptly termed theWord Mover’s Distance [28].

In this paper, we study streaming and sketching algorithms for

computing EMD andMST. Specifically, we consider the turnstile

geometric streaming model, introduced by [20], where the algorithm

receives the input set 𝑋 ⊂ X via an arbitrarily ordered sequence of

insertions and deletions of points 𝑝 ∈ X. The goal is for the algo-

rithm to approximate a fixed function of the implicit set of points 𝑋

in small space, without storing 𝑋 ; ideally, one would hope for space

polylogarithmic in the number of points in |𝑋 |. We focus on the high-

dimensional Euclidean space, where X = {1, 2, . . . ,Δ}𝑑 , and the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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distance between points is given by an ℓ𝑝 norm for 𝑝 ∈ [1, 2]. One

can always reduce from the case of R𝑑 to {1, . . . ,Δ}𝑑
′
via standard

embeddings. For 𝑝 > 2, there are is a Ω(𝑑1−2/𝑝 ) lower bounds on

the space required to estimate the ℓ𝑝 norm [9]. Therefore, estimating

EMDℓ𝑝 ({0}, {𝑏}) andMSTℓ𝑝 ({0, 𝑏}) already requires polynomial-

in-𝑑 space. In this work, our sketches will use polylog(𝑛,𝑑) bits.

PriorWork on Sketching and Streaming EMD andMST. We briefly

survey what is known for streaming and sketching EMD and MST.

We emphasize that many aspects of the sketchability and streama-

bility of EMD andMST remain open, and obtaining tight bounds

for these tasks, as well as related geometric graph problems, still

remains elusive.1

Indyk [20], building on work of [13], was the first to formulate

dynamic geometric streams and give algorithms for EMD andMST

which achieved an 𝑂 (𝑑 logΔ)-approximation. The result forMST

was improved to a (1 + 𝜖)-approximation in [17], however, the re-

sulting space complexity is exponential in the dimension, making

the algorithm suitable only in low-dimensional spaces. For EMD

on the plane, [2] gave a 𝑂 (1/𝜖) approximation at the cost of a

Δ
𝜖 dependence in the space complexity. The best lower bound on

sketching EMD on the plane is due to [5], where they show that

one cannot have both a constant bit and constant approximation

sketch. If the sketch proceeds by an embedding into ℓ1, [33] show

the approximation must be Ω(
√︁
logΔ). Parametrizing the approxi-

mation in terms of 𝑛, [11] gave embeddings of EMD on the plane

into ℓ1 with distortion 𝑂 (log𝑛).

For the high-dimensional regime, Andoni, Indyk, and Krauthgamer

[3] gave an algorithm for EMD (in fact, an embedding into ℓ1) with

approximation 𝑂 (log𝑛 log(𝑑Δ)). Furthermore, building on an ℓ1-

embedding lower bound of [27], they show that any 𝑠-bit sketch

with approximation 𝛼 > 1 must have 𝑠𝛼 = Ω(log𝑛). For sketching,

the approximation of [3] may be improved to

𝑂 (log𝑛min{log𝑛, log(𝑑Δ)}) by the techniques in [8, 11].MST has

not been formally considered in the high-dimensional regime, al-

though we note that an 𝑂 (log𝑛min{log𝑛, log(𝑑Δ)})-approximate

streaming algorithm readily applies here as well. For lower bounds

on streaming high-dimensional MST, nothing was known, and

(prior to this work) a constant-bit stream achieving a constant

approximation was possible.

1.1 Our Results

In this work, we develop new algorithms and lower bounds for

approximating EMD and MST in a stream. Specifically, we show

that the approximation factor for these problems can be improved

from 𝑂 (log𝑛 ·min{log𝑛, log(Δ𝑑)}) to �̃� (log𝑛). We now state the

main results of this paper. In the theorem statements which follow,

we consider a fixed setting of 𝑛,𝑑 and Δ. The metric space consists

of points in [Δ]𝑑 = {1, . . . ,Δ}𝑑 with ℓ𝑝 distance for any fixed

𝑝 ∈ [1, 2]. We state the theorems in the random-oracle model, i.e.,

any random bits stored by the algorithm do not factor into the space

complexity Ð we show that storing the random bits would incur at

most an additive 𝑑 · polylog(𝑛,Δ) bits of space..2

1See Open Problems 7 and 49 for sketching EMD in https://sublinear.info/
2Also note that to even store a single update 𝑝 ∈ [Δ]𝑑 , one requires Ω (𝑑 logΔ) bits
of space.

Theorem 1.1 (MST Streaming Algorithm). There exists a turn-

stile streaming algorithm using at most polylog(𝑛,𝑑,Δ) bits of space

which, given a set 𝑋 ⊂ [Δ]𝑑 of size 𝑛, outputs �̂� ∈ R satisfying

MSTℓ𝑝 (𝑋 ) ≤ �̂� ≤ �̃� (log𝑛) ·MSTℓ𝑝 (𝑋 )

with high probability.

For EMD, our algorithm achieving an �̃� (log𝑛)-approximation

requires two passes over the data. This arises from a technical issue

in the approach for EMD which is not present in MST. We state

the theorem in terms of two-pass streaming algorithms, and then

show how to compress the two passes into one, at the cost of an

additive error in the approximation.

Theorem 1.2 (EMD Two-Pass Streaming Algorithm). Given

two multi-sets 𝐴, 𝐵 ⊂ [Δ]𝑑 of size 𝑛 there exists a two-pass turn-

stile streaming algorithm using polylog(𝑛,𝑑,Δ) bits of space which

outputs �̂� ∈ R satisfying

EMDℓ𝑝 (𝐴, 𝐵) ≤ �̂� ≤ �̃� (log𝑛) · EMDℓ𝑝 (𝐴, 𝐵)

with high probability.

Theorem 1.3 (EMD One-Pass Streaming Algorithm). Given

two multi-sets 𝐴, 𝐵 ⊂ [Δ]𝑑 of size 𝑛 and any 𝜖 > 0, there exists a

turnstile streaming algorithm using 𝑂 (1/𝜖) · polylog(𝑛,𝑑,Δ) bits of

space which outputs �̂� ∈ R satisfying

EMDℓ𝑝 (𝐴, 𝐵) ≤ �̂� ≤ �̃� (log𝑛) · EMDℓ𝑝 (𝐴, 𝐵) + 𝜖𝑑Δ𝑛.

with high probability.

We encourage the reader to think of instances where𝐴 and 𝐵 are

size-𝑛 subsets of the hypercube {0, 1}𝑑 with ℓ1 distance (i.e., Δ = 2

and 𝑝 = 1). This setting captures all the complexity encountered in

this work. For Δ > 2 and 𝑝 ∈ (1, 2], the algorithm first applies an

embedding into {0, 1}𝑑 with ℓ1.

Regarding the additive error in Theorem 1.3, while an appropri-

ate setting of 𝜖 may absorb the additive error into relative error, we

leave as an open problem whether this additive error may be re-

moved completely in one-pass algorithms. For instance, if the points

do not overlap almost always, i.e., when |𝐴 ∩ 𝐵 |/|𝐴 ∪ 𝐵 | ≤ 1 − 𝜖0,

then EMDℓ𝑝 (𝐴, 𝐵) ≥ 𝜖0𝑛, and 𝜖 may be set to 𝜖0/𝑑Δ in order to ab-

sorb the additive error into the relative error by increasing the space

by a factor of 𝑑Δ, and keeping a poly-logarithmic dependence on

𝑛. From a practical perspective, the fact that points do not overlap

may be a reasonable assumption to make.

All of our streaming algorithms are linear sketches, meaning

that they store only the matrix-vector product S𝑓 for some ran-

domized S ∈ R𝑘×𝑛 , where 𝑓 = 𝑓𝑋 ∈ RΔ
𝑑
is the indicator vector

(with multiplicity) of 𝑋 for the case of MST, and 𝑓 = 𝑓𝐴,𝐵 ∈ R2·Δ
𝑑

is the indicator vector (with multiplicity) of 𝐴, 𝐵 for EMD. Linear

sketches are an important class of turnstile streaming algorithms,

and have many well-known and studied advantages. For instance,

such sketches directly resulted in algorithms for distributed compu-

tation such as the MPC model, as well as algorithms for multi-party

communication. Our results, therefore, can be applied in a natural

way to these models as well.
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Improved Analysis of the Quadtree. The prior sketching algo-

rithms are based on a hierarchical partitioning method known as

theQuadtree.3 Here, we refer to quadtrees as a generic class of meth-

ods that embed points fromX into a randomized tree by recursively

partitioning the space. At a high level, the Quadtree algorithm re-

cursively and randomly partitions the space X, which results in a

rooted (randomized) tree. Each point in the set 𝑋 for the case of

MST, or 𝐴 ∪ 𝐵 for EMD, is sent down to a leaf of the tree. From

there, a spanning tree or a matching, is constructed in a bottom-up

fashion. Each point łwalks up the treež and is greedily connected (in

the case ofMST), or matched (in the case of EMD) as it encounters

other points. This results in a very efficient offline (non-sketching)

algorithm. The recent work of [8] study the quadtree algorithm

explicitly, where they call it łFlowtree,ž and showed it has favorable

practical properties. From a theoretical point-of-view, the approx-

imation incurred by these methods were the bottleneck in prior

works for sketching and streaming EMD and MST, here, we im-

prove this analysis of [3, 8] from 𝑂 (log𝑛min{log𝑛, log(𝑑Δ)}) to

�̃� (log𝑛).

Theorem 1.4 (QuadtreeMethods (Informal)). Given twomulti-

sets 𝐴, 𝐵 ⊂ [Δ]𝑑 of size 𝑛, the łFlowtreež algorithm of [8] outputs an

�̃� (log𝑛)-approximation to EMDℓ1 (𝐴, 𝐵) with probability at least 0.9.

Similarly, given a multi-set 𝑋 ⊂ [Δ]𝑑 of size 𝑛, the greedy, bottom-

up spanning tree is an �̃� (log𝑛)-approximation to MSTℓ1 (𝑋 ) with

probability at least 0.9.

Lower bounds for MST.. For lower bounds, [3] shows that any ran-

domized ℓ-bit streaming algorithm distinguishing EMDℓ1 (𝐴, 𝐵) ≥ 𝑟

and EMDℓ1 (𝐴, 𝐵) ≤ 𝑟/𝛼 with probability at least 2/3 must sat-

isfy 𝛼ℓ = Ω(𝑑), where the instances used have 𝑑 = log𝑛. For a

qualitative comparison, estimating ℓ1 norm does admit such 𝑂 (1)-

approximation, 𝑂 (1)-bit space streaming algorithms (with public

randomness), implying that EMD is a harder problem. We show an

analogous lower bound forMST in the streaming model.

Theorem 1.5. Any randomized ℓ-bit streaming algorithm which

can distinguish whether a size-𝑛 set 𝑋 ⊂ {0, 1}𝑑 has MSTℓ1 (𝑋 ) ≥

𝑛𝑑/3 orMSTℓ1 (𝑋 ) ≤ 𝑛𝑑/𝛼 with probability at least 2/3 must satisfy

ℓ+log𝛼 = Ω(log𝑛/𝛼).Moreover, this holds even in the insertion-only

model, where points are only added to 𝑋 in the stream.

We emphasize that, prior to Theorem 1.5, there were no lower

bounds known for streamingMSTÐ not even an Ω(1) lower bound

was known on the approximation of a constant-bit algorithm. We

note that [3] actually considers the (stronger) two-party communi-

cation setting for EMD, where each player receives one of the sets.

The two-party communication game for MST where each player

receives half of the set 𝑋 is insufficient, as there is simple 𝑂 (1)-

approximation, constant-bit protocol.4 Therefore, our theorem will

crucially involve the streaming nature of the algorithm.

3The name Quadtree is an artifact of the study of the algorithm originally in the planar
(two-dimensional) case, in which the algorithm recursively partitions the plane into
quadrants. Our Quadtrees, being in high dimensions, will partition space into more
than 4 parts at a time. However, since they are the natural generalization of the planar
case, it is common to refer to the generic method as Quadtree regardless of dimension.
4Intuitively, the players may compute the cost of theirMST locally, and compute the
distance between two arbitrary points. The sum of these quantities is a 3-approximation
to theMST of the entire set.

1.2 Technical Overview

1.2.1 The Main Idea: Tree Embeddings with Data-Dependent Edge

Weights. In [20], Indyk described an approach for streaming a vari-

ety of graph problems (includingMST and EMD) in discrete geomet-

ric spaces, leading to𝑂 (𝑑 logΔ)-approximations for these problems

in the metric space [Δ]𝑑 with ℓ1 distance. This approach, later re-

fined in [3], forms the basis of our work, so we give a very high

level overview in order to highlight the new ideas. For simplicity,

we describe it for EMD, as the high-level picture forMST is similar.

A streaming algorithm for EMD with sets 𝐴, 𝐵 ⊂ [Δ]𝑑 of size 𝑛

may proceed in the following way:

(1) Sample a recursive random partition of the space, broadly

referred to as a quadtree, which specifies an embedding of the

original space [Δ]𝑑 into a rooted tree. For example, when𝑑 =

2, one may sample log2 Δ randomly shifted, nested square

grids of side length Δ/2,Δ/4, . . . , 1 and arrange them into a

rooted tree of depth log2 Δ + 1. Each node corresponds to a

region of the space, where the root contains the entire space,

and the children of a node have regions which partition the

region of the parent. The points in 𝐴 and 𝐵 are assigned to

leaves of this tree, according the regions where points fall,

and the quadtree implicitly defines a matching𝑀 between

𝐴 and 𝐵 given by the natural bottom-up greedy procedure.

Having implicitly specified a matching 𝑀 , the goal of the

streaming algorithm will be to approximate the cost of𝑀 .

(2) In order to do so, [3, 20] maintains a high-dimensional vector

which implicitly encodes the matching 𝑀 . Specifically, the

vector has a coordinate for each edge of the quadtree, and

the entry in each coordinate is the number of points from 𝐴

falling within the region of the child minus the number of

points in𝐵 fallingwithin the region of the child. Furthermore,

the ℓ1-norm of the vector, where each coordinate of an edge

is scaled by some edge weight (for example, by the size of

the parent region) gives an approximation of the cost of𝑀 .

Thus, this gives an ℓ1-embedding for EMD over [Δ]𝑑 , and

known algorithms for streaming the ℓ1-norm can be applied.

With the above approach in mind, there are two steps involved in

showing the approximation guarantee: (i) showing the matching

𝑀 in Step 1 has approximately optimal cost, and (ii) showing that

the appropriate scalings of coordinates reduce approximating the

cost of the matching 𝑀 to an ℓ1-computation. We note that even

though the above presentation is a two-step procedure, [3, 20] do

not present it this way. In fact, de-coupling the matching𝑀 from

the method to approximate the cost of𝑀 is an important conceptual

contribution which is made explicit in [8], which led us to revisit

the EMD problem.

Prior to our work, (i) proceeded by the method of tree embed-

dings. One assigns the edge weights to the quadtree and inter-

prets it as a tree embedding of the metric ( [Δ]𝑑 , ℓ1). By studying

the distortion of this embedding, one bounds the cost of 𝑀 . The

edge weights chosen in [20] (building on work of [13]) embed

( [Δ]𝑑 , ℓ1) with distortion 𝑂 (𝑑 logΔ), which will become the ap-

proximation. Refining the approach, [3] show that another choice

of edge weights (better suited for high-dimensional spaces) embeds

subsets of ( [Δ]𝑑 , ℓ1) with bounded average distortionwhich suffices

for an 𝑂 (log𝑛 log(𝑑Δ)) bound on the cost of𝑀 . Given the bound
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on 𝑀 with respect to a fixed tree metric, (ii) is straight-forward:

since the fixed tree metric specifies the scalings of the vector, and

approximating the cost of𝑀 amounts to an ℓ1-norm computation.

Our main contribution is two-fold. First, we show how to go

beyond the distortion argument in (i) to show that the cost of𝑀 is a

Θ̃(log𝑛)-approximation to EMD with probability 0.9. To do so, we

study a data-dependent notion: instead of fixing the edge weights as

in [3, 20], we allow the edge weights to depend on the input 𝐴 ∪ 𝐵.

The use of data-dependent edge weights implies 𝑀 is actually a

better quality matching than what the method of tree embeddings

specified. The data-dependent edge weights are (relatively) simple:

the weight of an edge (𝑢, 𝑣), where𝑢 is the parent of 𝑣 , is the average

distance between a randomly sampled point of 𝐴 ∪ 𝐵 within the

region of𝑢 and a randomly sampled point of𝐴∪𝐵 within the region

of 𝑣 . However, the fact these data-dependent edge weights yield an

improved upper bound on the cost of𝑀 constitutes the bulk of the

work.

Unfortunately, the introduction of data-dependent edge weights

breaks Step 2. Now, approximating the cost of 𝑀 with the data-

dependent weights is no longer as simple as an ℓ1-computation. The

coordinates of the vector remain the same, however, the scaling

of each coordinate depends on additional structure of the points.

Importantly, data-dependent edge weights do not result in an ℓ1-

embedding, and we cannot use known ℓ1-sketching algorithns. This

takes us to our algorithmic contribution, where we design the

sketching algorithms for Step 2 with data-dependent edge weights.

More generally, we introduce a two-step template for transforming

data-dependent costs in the Quadtree into streaming algorithms.

Conceptually, the approach generalizes the well-known ℓ𝑝 sampling

problem [4, 24, 25, 31] to ℓ𝑝 -sampling with meta-data. For EMD,

the high-level idea is the following: first, sample a coordinate of

the vector proportional to the ℓ1-distribution (i.e., the ℓ1-sampling

problem), and second, estimate the data-dependent edge weight for

the coordinate sampled (the meta-data), so that we can scale the

contribution of that coordinate appropriately.

1.2.2 Implementing Step 1:QuadtreeMatching with Data-Dependent

Edge Weights. We begin by describing our improved analysis of the

randomized space partitioning algorithm, Quadtree. For the sake

of simplicity, we focus on its analysis in the context of approxi-

mating EMD; the same ideas work similarly for MST. We begin

by more formally introducing the Quadtree in high-dimensional

spaces. In what follows, we focus on the case when the metric space

is the hypercube with the Hamming distance, i.e.𝐴, 𝐵 ⊂ {0, 1}𝑑 and

𝑑 (𝑝, 𝑞) = ∥𝑝 − 𝑞∥1 for 𝑝, 𝑞 ∈ {0, 1}𝑑 . For the approximation, this

is without loss of generality: one may embed (R𝑑 , ℓ𝑝 ) into {0, 1}𝑑

by increasing the dimension. The new dimensionality is propor-

tional to the dimension 𝑑 , log𝑛, and the łaspect ratiož (maximum

distance divided by minimum distance); since our space will have

poly-logarithmic dependence on the dimension, the embedding

introduces a logarithmic dependence on the aspect ratio which will

also be incurred in the additive error of Theorem 1.3.

Quadtree. The Quadtree algorithm creates a randomized tree

T with depth ℎ := log2 2𝑑 by recursively sub-dividing the hyper-

cube {0, 1}𝑑 . Therefore, each node 𝑢 in T will be associated with a

subcube 𝑆𝑢 ⊆ {0, 1}𝑑 , where the root 𝑟 has 𝑆𝑟 = {0, 1}𝑑 . To create

these subcubes, each internal node 𝑢 of T at depth 𝑗 < ℎ is labeled

with an ordered tuple of 2𝑗 coordinates (𝑖1, . . . , 𝑖2𝑗 ) ∈ [𝑑] (which

are not necessarily distinct), and has 22
𝑗
children. Each of the 22

𝑗

children of 𝑢 will uniquely correspond to one of the 22
𝑗
fixings of

the coordinates (𝑖1, . . . , 𝑖2𝑗 ) ∈ {0, 1}2
𝑗
. Specifically, each child 𝑣 of

𝑢 is assigned a unique bit-string (𝑏1, . . . , 𝑏2𝑗 ) ∈ {0, 1}2
𝑗
. The child

𝑣 then corresponds to the subcube 𝑆𝑣 ⊆ 𝑆𝑢 obtained by fixing the

𝑖𝑡 -th coordinate to 𝑏𝑡 , for each 𝑡 = 1, . . . , 2𝑗 . We now describe the

procedure for generating a random Quadtree T:

(1) Uniformly sampling a tuple (𝑖1, . . . , 𝑖2𝑗 ) ∈ [𝑑]2
𝑗
of 2𝑗

coordinates independently for each node 𝑢 at depth

𝑗 ∈ {0, 1, . . . , ℎ − 2} to use as its label.

(2) Setting (1, . . . , 𝑑) as the label of every node at depth ℎ − 1.

A Quadtree T defines a map 𝜑 from {0, 1}𝑑 to leaves of T: 𝜑 (𝑝) =

𝑣 if 𝑝 ∈ 𝑆𝑣 . Given 𝐴 and 𝐵, we write 𝐴𝑣 and 𝐵𝑣 to denote 𝐴 ∩ 𝑆𝑣
and 𝐵 ∩ 𝑆𝑣 for each node 𝑣 in T.

Quadtrees in [3, 8]. Both works of [3, 8] use a tree structure that

is very similar to the Quadtree used in this paper. In particular, they

consider a slightly different algorithm which at depth 𝑖 , samples

2𝑖 coordinates from [𝑑] and divides into 22
𝑖
branches according

to settings of {0, 1} to these 2𝑖 coordinates (instead of each vertex

independently sampling 2𝑖 coordinates). For the sake of the analysis

in Section 3, there will be no difference between independently

sampling coordinates for each vertex in a level, and using the same

sampled coordinates for each level. Thus, our analysis apply to trees

of [3, 8] as well as the Quadtrees defined here.

Depth-greedy Matching from Quadtree. Given a random

Quadtree T, one obtains a natural depth-greedymatching as follows:

We first map all points in 𝐶 = 𝐴 ∪ 𝐵 to leaves of T using 𝜑 . Then,

we greedily match points between 𝐴 and 𝐵 in a bottom up fashion,

by walking each point up the tree level-by-level, and at each node

one arbitrarily matches as many of the unmatched points from 𝐴

and 𝐵 as possible. LetM be any depth-greedy matching obtained

from T in this fashion. The goal of our improved analysis of the

Quadtree for EMD is to show that

EMD(𝐴, 𝐵) ≤ Cost(M)
def
=

∑︁

(𝑎,𝑏 ) ∈M

∥𝑎 − 𝑏∥1

≤ �̃� (log𝑛) · EMD(𝐴, 𝐵)

with high probability (over the randomness of T). Note that the

first inequality is trivial.

Analysis of Quadtree via Tree Embeddings. Before present-

ing an overview of our new techniques, it will be helpful to begin

with a recap of the analysis of [3] which can be used to show that

Cost(M) ≤ 𝑂 (log𝑛 log𝑑) · EMD(𝐴, 𝐵). The analysis of [3] starts

by assigning a weight of 𝑑/2𝑖 to each edge from a node at depth

𝑖 to a node at depth 𝑖 + 1 in T. This defines a metric embedding

𝜑 : 𝐴 ∪ 𝐵 → T by mapping each point to a leaf of T. The choice

of edge weights is motivated by the observation that two points

𝑥,𝑦 ∈ {0, 1}𝑑 with ∥𝑥 −𝑦∥1 = 𝑑/2𝑖 are expected to have their paths

diverge for the first time at depth 𝑖 . If this is indeed the case then

𝑑T (𝜑 (𝑥), 𝜑 (𝑦)) would capture ∥𝑥 − 𝑦∥1 up to a constant.

To upperbound Cost(M), one studies the distortion of this em-

bedding. Firstly, for any 𝜆 > 1 and 𝑥,𝑦 ∈ {0, 1}𝑑 , it is easy to verify
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that distances in the tree metric do not contract much:

Pr
T

[
𝑑T (𝜑 (𝑥), 𝜑 (𝑦)) <

1

𝜆
· ∥𝑥 − 𝑦∥1

]

≤

(
1 −

∥𝑥 − 𝑦∥1

𝑑

)1+2+···+2
⌊
log2

(
𝜆𝑑

∥𝑥−𝑦∥1

)⌋

≤ 2−Ω (𝜆) .

Thus by a union bound, for all 𝑥,𝑦 ∈ 𝐴 ∪ 𝐵 we have

∥𝑥 − 𝑦∥1 ≤ 𝑂 (log𝑛) · 𝑑T (𝜑 (𝑥), 𝜑 (𝑦)) (1)

with probability at least 1 − 1/poly(𝑛), which essentially means

that we can assume (1) in the worst case. As a result, we have

Cost(M) =
∑︁

(𝑥,𝑦) ∈M

∥𝑥 − 𝑦∥1 ≤ 𝑂 (log𝑛)
∑︁

(𝑥,𝑦) ∈M

𝑑T (𝜑 (𝑥), 𝜑 (𝑦))

≤ 𝑂 (log𝑛)
∑︁

(𝑥,𝑦) ∈𝑀∗

𝑑T (𝜑 (𝑥), 𝜑 (𝑦)),

where the last inequality holds for any matching𝑀∗ between𝐴 and

𝐵 given that the depth-greedy matching is optimal under the tree

metric. Setting 𝑀∗ to be the optimal matching between 𝐴 and 𝐵

under the original ℓ1 metric, we finish the proof by upperbounding

𝑑T (𝜑 (𝑥), 𝜑 (𝑦)) using 𝑂 (log𝑑) ∥𝑥 − 𝑦∥1. To see this, when ∥𝑥 −

𝑦∥1 = Θ(𝑑/2𝑗 ), the probability that paths of 𝑥,𝑦 diverge at level

𝑗 − 𝑘 is Θ(2−𝑘 ) for each 𝑘 , and when it does, 𝑑T (𝜑 (𝑥), 𝜑 (𝑦)) =

∥𝑥 − 𝑦∥1 · Θ(2𝑘 ). Since 𝑗 ≤ ℎ = 𝑂 (log𝑑),

E
[
𝑑T (𝜑 (𝑥), 𝜑 (𝑦))

]
≤ ∥𝑥 − 𝑦∥1 +

𝑗∑︁

𝑘=0

Θ(2−𝑘 ) · ∥𝑥 − 𝑦∥1 · Θ(2𝑘 )

= 𝑂 (log𝑑) · ∥𝑥 − 𝑦∥1 . (2)

Together they yield the aforementioned𝑂 (log𝑛 log𝑑) · EMD(𝐴, 𝐵)

upper bound for Cost(M).5

Tree Embeddings with Data-dependent Edge Weights. We

show how to go beyond the distortion arguments of [3] by studying

a tree embedding with data-dependent edge weights. In what fol-

lows, for any vertex 𝑢 ∈ T, let𝐶𝑢 = 𝐴𝑢 ∪ 𝐵𝑢 be the set of all points

which map through 𝑢 (recall 𝐶 = 𝐴 ∪ 𝐵). The weight we assign to

each edge (𝑢, 𝑣)6 of T will no longer be a fixed number 𝑑/2𝑖 but

avg𝑢,𝑣
def
= E

c∼𝐶𝑢
c
′∼𝐶𝑣

[
∥c − c

′∥1
]
,

i.e., the average distance between a point drawn randomly from

𝐶𝑢 and a point drawn randomly from 𝐶𝑣 ; when 𝐶𝑣 = ∅ we define

avg𝑢,𝑣 = 0 by default. Let 𝑑∗
T
denote the tree metric under this new

set of weights. Again, the depth-greedy matchingM we are inter-

ested in is optimal and the cost ofM under the new tree embedding

can be expressed as

ValueT (𝐴, 𝐵)
def
=

∑︁

(𝑢,𝑣) ∈𝐸𝑇

��|𝐴𝑣 | − |𝐵𝑣 |
�� · avg𝑢,𝑣 .

5The reason that this analysis can achieve approximation𝑂 (min{log𝑛, log𝑑 } log𝑛) ,
as opposed to 𝑂 (log𝑛 log𝑑 ) is that with probability 1 − 1/𝑛, every 𝑥, 𝑦 ∈ 𝐴 ∪ 𝐵

with ∥𝑥 − 𝑦 ∥1 = Θ(𝑑/2𝑗 ) diverges at depth after 𝑗 −𝑂 (log𝑛) .
6We always use 𝑢 in (𝑢, 𝑣) to denote the parent and 𝑣 to denote the child.

where 𝐸𝑇 is the set of edges of 𝑇 .7 On the one hand, ValueT (𝐴, 𝐵)

is at least Cost(M) given that for any 𝑥,𝑦 ∈ 𝐶 , we always have

∥𝑥 − 𝑦∥1 ≤ 𝑑∗
T
(𝜑 (𝑥), 𝜑 (𝑦)) by triangle inequality. On the other

hand, ValueT (𝐴, 𝐵) is at most
∑

(𝑎,𝑏 ) ∈𝑀∗ 𝑑∗
T
(𝜑 (𝑎), 𝜑 (𝑏)) for any

matching𝑀 and in particular, the optimal matching𝑀∗ under the

ℓ1 metric. As a result, it suffices to upperbound the cost of𝑀∗ under

the data-dependent tree embedding by �̃� (log𝑛) · Cost(𝑀∗) given

that Cost(𝑀∗) = EMD(𝐴, 𝐵). To this end it suffices to show that

the expectation of 𝑑∗
T
(𝜑 (𝑎), 𝜑 (𝑏)) for any 𝑎, 𝑏 ∈ 𝐶 can be bounded

from above by �̃� (log𝑛) · ∥𝑎 − 𝑏∥1.

Inspector Payment. Fix 𝑎, 𝑏 ∈ 𝐶 . We introduce the follow-

ing quantity as the inspector payment of (𝑎, 𝑏) with respect to

the Quadtree T. (We imagine the process as first drawing the

Quadtree and then an łinspectorž who examines the tree to track

down 𝑎 and 𝑏, making payments accordingly.) Formally we let

(v0 (𝑥), v1 (𝑥), . . . , vℎ (𝑥)) denote the root-to-leaf path of 𝑥 in a

Quadtree T. Then

PayT (𝑎, 𝑏)
def
=

∑︁

𝑖∈[ℎ]

1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}

·

(
E

c∼𝐶v𝑖−1 (𝑎)

[
∥𝑎 − c∥1

]
+ E
c∼𝐶v𝑖−1 (𝑏)

[
∥𝑏 − c∥1

]
)
. (3)

Intuitively, this payment scheme corresponds to an inspector who

tracks down 𝑎 and 𝑏 from the root of 𝑇 , and whenever 𝑎 and 𝑏

first diverge in the tree at node 𝑢, pays for 𝑎 the average distance

between 𝑎 and a random point drawn from𝐶𝑣 for every node along

the 𝑢-to-leaf path (including 𝑢); the inspector pays for 𝑏 similarly. It

again follows from triangle inequality that 2 · PayT (𝑎, 𝑏) is at least

𝑑∗
T
(𝜑 (𝑎), 𝜑 (𝑏)). So it suffices to bound the expectation ofPayT (𝑎, 𝑏)

by �̃� (log𝑛) · ∥𝑎 − 𝑏∥1.

Before giving a sketch of this proof, which is themost challenging

part of our Quadtree analysis, we note that the inspector payment

(3) depends on the data 𝐴 and 𝐵, as well as the Quadtree T in two

ways. The first is the depth when 𝑎 and 𝑏 first diverge, captured by

the indicator 1{v𝑖 (𝑎) ≠ v𝑖 (𝑏)}. The second is the average distance

between 𝑎 and 𝐶𝑣 , which not only depends on 𝑎, but also on global

properties of 𝐶 = 𝐴 ∪ 𝐵. At a high level, incorporating this second

aspect is the main novelty, since the average distance between 𝑎

and 𝐶𝑣 is an average notion of radii at 𝑣 . Therefore, if the inspector

pays a large amount, then an average point in 𝐶𝑣 is far from 𝑎 (as

opposed to the farthest point implied by worst-case radii).

Bounding Inspector Payments. Consider fixed 𝑎, 𝑏 ∈ 𝐶 at

distance ∥𝑎 − 𝑏∥1 = Θ(𝑑/2𝑗 ), and we give some intuition behind

our upper bound on the expectation of the 𝑎-part of the payment:
∑︁

𝑖∈[ℎ]

1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}
· avg𝑎,𝑖−1, where

avg𝑎,𝑖−1
def
= E

c∼𝐶v𝑖−1 (𝑎)

[
∥𝑎 − c∥1

]
.

We will ignore the indicator random variable 1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}

and use linearity of expectation to focus on ET [avg𝑎,𝑖 ]. (With the

7We remark that one can define an analogous quantity for the case of MST, where

given a single set 𝑋 ⊂ [Δ]𝑑 , we set ValueT (𝑋 ) =
∑

(𝑢,𝑣) ∈𝐸𝑇
1( |𝑋𝑣 | ) · avg𝑢,𝑣 ,

where 1 : R→ {0, 1} is the indicator function (i.e., 1(𝑥 ) = 0 if and only if 𝑥 = 0). It
is this quantity that we will analyze in our results forMST.
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indicator random variable, we need to consider the expectation

of avg𝑎,𝑖 conditioning on the event that 𝑎, 𝑏 have diverged. The

conditioning will not heavily influence the geometric intuition, so

we will ignore this for the rest of this overview).

Let v𝑖 = v𝑖 (𝑎). Similar to worst-case bounds on radii, ET [avg𝑎,𝑖 ]

can still be 𝑑/2𝑖 ·Ω(log𝑛). As an example, let 𝑖1 be a relatively large

depth and for some small 𝜖 ≈ 10−6, consider a set 𝑃1 of 𝑛
𝜖 many

points at distance 𝜖 log𝑛 · 𝑑/2𝑖1 around 𝑎. Then, at depth 𝑖1 of a

random Quadtree T, a point in 𝑃1 traverses down to node v𝑖1 with

non-negligible probability, roughly 1/𝑛−𝜖 . If no other points lie

closer to 𝑎 than those in 𝑃1, then ET [avg𝑎,𝑖1 ] = 𝑑/2𝑖1 · Ω(𝜖 log𝑛),

since it is likely that some points of 𝑃1make it to v𝑖1 and significantly

increase the average distance between 𝑎 and 𝐶v𝑖1
. If this happened

on 𝑎 for every depth 𝑖 , the inspector would be in trouble, as there

are 𝑂 (log𝑑) levels and a similar argument to that of worst-case

radii would mean a payment of 𝑂 (log𝑑 log𝑛) · ∥𝑎 − 𝑏∥1.

However, we claim if the arrangement of 𝑃1 resulted in

ET [avg𝑎,𝑖1 ] = 𝑑/2𝑖1 · Ω(𝜖 log𝑛), the same situation will be a lot

more difficult to orchestrate for depth 𝑖2 ≤ 𝑖1 −𝑂 (log log𝑛). In par-

ticular, at depth 𝑖2, in order to have ET [avg𝑎,𝑖2 ] = 𝑑/2𝑖2 ·Ω(𝜖 log𝑛),

there must be a set of points 𝑃2 at distance 𝑑/2
𝑖2 · Ω(𝜖 log𝑛) which

cause avg𝑎,𝑖2 to be large. However, it is no longer enough to have

|𝑃2 | = 𝑛𝜖 . The reason is that points of 𝑃1 in v𝑖2 will help bring down

the average distance. Since points in 𝑃1 are at distance 𝜖 log𝑛 ·

𝑑/2𝑖1 ≪ 𝑑/2𝑖2 from 𝑎, there will oftentimes be Ω(𝑛𝜖 ) points from

𝑃1 in v𝑖2 . In order to significantly increase the average distance, v𝑖2
must oftentimes have at least 𝑛𝜖/polylog(𝑛) points from 𝑃2; oth-

erwise, avg𝑎,𝑖2 will be mostly the average distance between 𝑎 and

points in 𝑃1. Since any given point from 𝑃2 traverses down to v𝑖2
with probability roughly 1/𝑛𝜖 , we must have |𝑃2 | ≥ 𝑛2𝜖/polylog(𝑛).

This argument can only proceed for at most 𝑂 (1/𝜖) depths before

|𝑃𝑂 (1/𝜖 ) | > 2𝑛, in which case we obtain a contradiction, since all

points are in 𝐴 ∪ 𝐵.

Generally, in order to increase the average distance between 𝑎

and 𝐶v𝑖 multiple times as the depth 𝑖 goes down, the number of

points around 𝑎 at increasing distances must grow very rapidly.

More specifically, we show that if a depth 𝑖 is łbad,ž meaning that

ET [avg𝑎,𝑖 ] ≥ 𝛼 · 𝑑/2𝑖 for some 𝛼 = 𝜔 (log log𝑛), then the number

of points within a ball of radius 𝑑/(2𝑖 log𝑛) around 𝑎 and within a

larger ball of radius 𝑂 (log𝑛 · 𝑑/2𝑖 ) around 𝑎 must have increased

by a factor of exp(Ω(𝛼)); this means the number of such depths

𝑖 is at most ((log𝑛)/𝛼) · poly(log log𝑛). Combining this analysis

and the fact that 𝑎 and 𝑏 must diverge in order to incur payment

from the inspector, we obtain our upper bound that the expectation

of PayT (𝑎, 𝑏) is at most �̃� (log𝑛) · ∥𝑎 − 𝑏∥1.

1.2.3 Implementing Step 2: From Quadtree to Sketching Algorithms.

By the prior discussion, after sampling a Quadtree T, we know that

the quantity ValueT (𝐴, 𝐵) is a �̃� (log𝑛) approximation of the true

cost EMD(𝐴, 𝐵). Specifically, we have:

EMD(𝐴, 𝐵) ≤ ValueT (𝐴, 𝐵) ≤ �̃� (log𝑛) · EMD(𝐴, 𝐵) (4)

Thus, the approach of our sketching algorithm is simply to approxi-

mate ValueT (𝐴, 𝐵). We will decompose ValueT (𝐴, 𝐵) based on its

level: ValueT (𝐴, 𝐵) =
∑ℎ
𝑖=1 ValueT,𝑖 (𝐴, 𝐵), where

ValueT,𝑖 (𝐴, 𝐵)
def
=

∑︁

(𝑢,𝑣) ∈𝐸𝑇
depth(𝑢,𝑣)=𝑖

��|𝐴𝑣 | − |𝐵𝑣 |
�� · avg𝑢,𝑣

where depth(𝑒) for an edge 𝑒 ∈ T is the depth of the child vertex in

𝑒 . We will attempt to estimate each ValueT,𝑖 (𝐴, 𝐵) independently

for each 𝑖 , so in what follows we now fix any level 𝑖 ∈ [ℎ].

We start with some notation. For any (non-root) vertex 𝑣 ∈ T, let

𝜋 (𝑣) be the parent of 𝑣 in T. We then define the discrepancy vector

for level 𝑖 , denoted Δ
𝑖 , by Δ

𝑖
𝑣 = |𝐴𝑣 | − |𝐵𝑣 | for every vertex 𝑣 at

depth 𝑖 of the tree (i.e., Δ𝑖 has a coordinate Δ
𝑖
𝑣 for each vertex 𝑣

at depth 𝑖). Next, for any vector 𝑥 ∈ R𝑁 and any 𝑝 ≥ 0, we define

the ℓ𝑝 distribution D𝑝 (𝑥) over the coordinates of 𝑥 via D𝑝 (𝑥) =(
|𝑥1 |

𝑝

∥𝑥 ∥
𝑝
𝑝

,
|𝑥2 |

𝑝

∥𝑥 ∥
𝑝
𝑝

, . . . ,
|𝑥𝑁 |𝑝

∥𝑥 ∥
𝑝
𝑝

)
for 𝑝 > 0, and for 𝑝 = 0 we define D0 (𝑥)

to be the uniform distribution over the support of 𝑥 . Now observe:8

ValueT,𝑖 (𝐴, 𝐵) = ∥Δ𝑖 ∥1 · E
v∼D1 (Δ𝑖 )

[
avg𝜋 (v),v

]

Thus, we can write ValueT,𝑖 (𝐴, 𝐵) as the ℓ1 norm of Δ𝑖 , multiplied

by the expected value of avg𝜋 (v),v taken over drawing a vertex v

in level 𝑖 with probability proportional to |Δv | =
��|𝐴v | − |𝐵v |

��. Note
that the norm ∥Δ𝑖 ∥1 can be easily estimated using the ℓ1 sketches of

Indyk [21]. Thus, this simple manipulation motivates the following

approach: (1) sample a vertex v from level 𝑖 from the distribution

D1 (Δ
𝑖 ), (2) recover the value avg𝜋 (v),v, (3) repeat enough times

so that the empirical mean of the variables avg𝜋 (v),v is a good

approximation of the expectation Ev∼D1 (Δ𝑖 )

[
avg𝜋 (v),v

]
.

For the last step, we note that it will be straightforward to bound

the standard deviation of the variable avg𝜋 (v),v by 𝑂 (𝑑 log𝑛/2𝑖 ),

which is within a𝑂 (log𝑛) factor of the error to which we will need

to estimate the expectation. Thus, if we can carry out steps (1) and

(2) which sample avg𝜋 (v),v from the correct distribution, we need

only repeat them polylog(𝑛) times to estimate ValueT,𝑖 (𝐴, 𝐵) to

sufficiently small error.

Two-Pass Streaming Algorithms.We first describe how the

above two steps can be carried out in two-passes over the data-

stream. Perhaps unsurprisingly, our approach will be to carry out

(1) on the first pass, obtaining a set of vertices 𝑣 sampled from the

correct distribution D1 (Δ
𝑖 ), and carry out (2) on the second pass,

where we recover the actual value of avg𝜋 (𝑣),𝑣 for the vertices 𝑣

that were sampled.

More formally, our two-pass streaming algorithm proceeds as

follows. First we draw a Quadtree T (for which we may assume

(4) holds) and then for each 𝑖 ∈ [ℎ], we estimate ValueT,𝑖 (𝐴, 𝐵)

as follows. In the first pass we can estimate ∥Δ𝑖 ∥1 to error (1 ±

1/2) with an ℓ1-sketch [22], and we also can sample v ∼ D1 (Δ
𝑖 )

via known algorithms for ℓ1-sampling [4, 24, 25]. Furthermore,

once a vertex 𝑣 is fixed, we may estimate avg𝜋 (v),v in the second

round by a point in 𝐶𝜋 (𝑣) and in 𝐶𝑣 (via standard sub-sampling

8We remark that for the case ofMST, the relevant quantity ValueT,𝑖 (𝑋 ) below can

be written as ∥Δ𝑖 ∥0 · E𝑣∼D0 (Δ
𝑖 )

[
avg𝜋 (𝑣),𝑣

]
. Namely, we simply replace the ℓ1 norm

in both the scaling and the distribution by the ℓ0 norm. Thus, the high-level approach
to sketchingMST will be similar. However, due to using the ℓ0 instead of the ℓ1 norm,
an entirely different set of techniques will be required to implement each of the steps.
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techniques) and approximating their distance using ℓ1 sketches. By

concurrently repeating this process polylog(𝑛) times, we obtain

our desired approximation

The remaining challenge, however, is to produce v ∼ D1 (Δ
𝑖 )

and an estimate of avg𝜋 (v),v simultaneously in a single pass over

the data. This task is a special case of a problem we call sampling

with meta-data, since the quantity avg𝜋 (v),v will be the meta-data

of the sample v ∼ D1 (Δ
𝑖 ) needed to estimate ValueT,𝑖 (𝐴, 𝐵).

Sampling with Meta-Data and One-Pass Streaming The

key task of sampling with meta-data is the following: for 𝑛, 𝑘 ∈ N,

we are given a vector 𝑥 ∈ R𝑛 and collection of meta-data vectors

𝜆1, 𝜆2, . . . , 𝜆𝑛 ∈ R𝑘 , and the goal is to sample 𝑖 ∈ [𝑛] with proba-

bility |𝑥𝑖 |/∥𝑥 ∥1 (or more generally, |𝑥𝑖 |
𝑝/∥𝑥 ∥

𝑝
𝑝 ), and output both 𝑖

and an approximation 𝜆𝑖 ∈ R
𝑘 of the vector 𝜆𝑖 . The challenge is

to solve this problem with a small-space linear sketches of 𝑥 and

the meta-data vectors 𝜆1, . . . , 𝜆𝑛 . It is not hard to see that sampling

with meta-data is exactly the problem we seek to solve for linear

sketching of EMD.9

Our algorithm builds on a powerful sketching technique known

as precision sampling [4, 24, 25] for sampling an index 𝑖 ∈ [𝑛]

proportional to |𝑥𝑖 |/∥𝑥 ∥1 for a vector 𝑥 ∈ R𝑛 (or more generally, for

|𝑥𝑖 |
𝑝/∥𝑥 ∥

𝑝
𝑝 , but we focus on 𝑝 = 1). The idea is to produce, for each

𝑖 ∈ [𝑛] an independent exponential random variable 𝒕𝑖 ∼ Exp(1),

and construct a łscaled vectorž 𝒛 ∈ R𝑛 with coordinates 𝒛𝑖 = 𝑥𝑖/𝒕𝑖 .

One then attempts to return the index 𝑖max = argmax𝑖∈[𝑛] 𝒛𝑖 , since

Pr
𝒕1,...,𝒕𝑛∼Exp(1)

[
argmax
𝑖′∈[𝑛]

|𝑥𝑖′ |

𝒕𝑖′
= 𝑖

]
=

|𝑥𝑖 |

∥𝑥 ∥1
.

To find the index 𝑖max with a linear sketch, we can use a łheavy-

hittersž algorithm, such as the Count-Sketch of [14].10 Specifically,

Count-Sketch with error 𝜖 ∈ (0, 1) allows us to recover an estimate

�̃� to 𝒛 satisfying (roughly) ∥�̃� − 𝒛∥∞ ≤ 𝜖 ∥𝒛∥2. Then one can show

that argmax𝑖′∈[𝑛] |�̃�𝑖′ | is close to being distributed as |𝑥𝑖 |/∥𝑥 ∥1.

In order to sample with meta-data, our sketch similarly samples

independent exponential 𝒕1, . . . , 𝒕𝑛 ∼ Exp(1) and applies a Count-

Sketch data structure on 𝒛 ∈ R𝑛 , where 𝒛𝑖 = 𝑥𝑖/𝒕𝑖 , and obtains an

estimate �̃� of 𝒛. In addition, we apply a Count-Sketch data structure

with error 𝜖 for the vector𝒘 with coordinates given by the values

𝜆𝑖/𝒕𝑖 , namely 𝒘𝑖 = 𝜆𝑖/𝒕𝑖 (recall that we are assuming that the

meta-data 𝜆𝑖 are scalars for this discussion). From this we obtain an

estimate �̃� of𝒘 . The insight is the following: suppose the sample

produced is 𝑖∗ ∈ [𝑛], whichmeans it satisfies �̃�𝑖∗ ≈ max𝑖∈[𝑛] |𝑥𝑖 |/𝒕𝑖 .

Then the value 𝒕𝑖∗ should be relatively small: in particular, one

can show that we expect 𝒕𝑖∗ to be Θ( |𝑥𝑖∗ |/∥𝑥 ∥1), so that 𝒛𝑖∗ ≈

Θ(∥𝑥 ∥1) = Θ(∥Δ𝑖 ∥1). When this occurs, for each ℓ ∈ [𝑘], the

9Namely, 𝑥 is the vector Δ𝑖 , and the meta-data vectors 𝜆𝑣 are 𝑘 = polylog(𝑛)-
dimensional ℓ1 sketches of the values of avg𝜋 (𝑣),𝑣 . In the following discussion, for

simplicity we omit the details on the ℓ1 sketches for avg𝜋 (𝑣),𝑣 , since they proceed via

somewhat standard techniques, and instead assume that the meta-data is exactly given
by the scalars 𝜆v ≈ avg𝜋 (𝑣),𝑣 .
10We do not explicitly use count-sketch in our one-pass algorithms, and instead apply
a sketching procedure closely inspired by Count-Sketch.

guarantees of Count-Sketch imply that the estimate 𝒕𝑖∗ ·�̃�
ℓ
𝑖∗ satisfies

|𝒕𝑖∗ · �̃�𝑖∗ − 𝜆𝑖∗ | = 𝒕𝑖∗ |�̃�𝑖∗ −𝒘𝑖∗ |

≤ 𝜖𝒕𝑖∗ ∥𝒘 ∥2

(
= 𝑂

(
𝜖 |𝑥𝑖∗ | ·

∥𝜆∥1

∥𝑥 ∥1

)
in expectation

)

where 𝜆 ∈ R𝑛 is the vector with coordinates given by the meta-data

𝜆1, . . . , 𝜆𝑛 . In other words, if the size of 𝜆𝑖∗ is comparable to |𝑥𝑖∗ |,

and if the ratio ∥𝜆∥1/∥𝑥 ∥1 of the meta-data norms to the norm of

𝑥 is bounded, then 𝒕𝑖∗�̃�
ℓ
𝑖∗ is a relatively good approximation to 𝜆𝑖∗ .

Unfortunately, in our application, the above will not always be

the case. In particular, the norm of the meta-data ∥𝜆∥1 may be

much, even poly(𝑛), larger than ∥𝑥 ∥1 = ∥Δ𝑖 ∥1. Intuitively, the

issue is that each coordinate 𝜆𝑣 is a sketch of avg𝜋 (𝑣),𝑣 , which is a

function both of the points in 𝐶𝜋 (𝑣) and 𝐶𝑣 . Thus, the size of the

sketch of avg𝜋 (𝑣),𝑣 depends on all the points in 𝐶𝜋 (𝑣) . Moreover,

for every other sibling 𝑣 ′ of 𝑣 (meaning that 𝜋 (𝑣 ′) = 𝜋 (𝑣)), the

sketch of avg𝜋 (𝑣′ ),𝑣′ will also have to take into account the same

information from 𝐶𝜋 (𝑣) . Thus, this information is duplicated in

the sketches of the meta-data, by a number of times equal to the

number of children of 𝜋 (𝑣). This duplication, or repetition of the

same information in the sketch, results in a blow-up of the norm

of 𝜆 so that ∥𝜆∥1 = Ω(𝜅 · ∥Δ𝑖 ∥1), where 𝜅 is the maximum number

of non-empty children of any parent in level 𝑖 − 1. Since 𝜅 can be

poly(𝑛), this is an non-trivial challenge.

Our solution to this, at a high level, is to develop a two-step

precision sampling with meta-data algorithm to avoid duplication

of meta-data. Instead of sampling the vertex v
∗ directly, we first

sample a parent 𝒖∗ from level 𝑖 − 1 with probability proportional

to the ℓ1-norm of Δ𝑖 restricted to coordinates corresponding to the

children of 𝒖∗; namely, we sample 𝒖∗ with probability proportional

to
∑

𝑣:𝜋 (𝑣)=𝒖∗ |Δ𝑖𝑣 |. Then, we use the precision sampling sketch

which recovered 𝒖∗ to recover a sketch of the a randomly selected

point in 𝐶𝒖∗ . Next, once we have 𝒖∗, we apply precision sampling

with meta-data once more, to sample a child v
∗ of 𝒖∗ proportional

to |Δ𝑖
v∗
|, and then recover a sketch of a randomly selected point in

𝐶v∗ . One can then put the two sketches from 𝐶𝒖∗ ,𝐶v∗ together to

estimate avg
𝒖∗,v∗ .

To accomplish this two-part precision sampling scheme, we must

generate a second set of exponentials {𝒕𝑣}𝑣 , one for each child node

𝑣 at depth 𝑖 . In order to ensure that the sample produced by the

second sketch actually returns a child v
∗ of 𝒖∗, and not a child of

some other node, we crucially must scale the vector Δ𝑖 by both

the child exponentials {𝒕𝑣}𝑣 as well as the parent exponentials

{𝒕𝑢 }𝑢 from the first sketch. Thus, in the second sketch we analyze

the twice-scale vector 𝒛 with coordinates 𝒛𝑣 = Δ
𝑖
𝑣/(𝒕𝜋 (𝑣) 𝒕𝑣), and

attempt to find the largest coordinate of 𝒛. Importantly, notice that

this makes the scaling factors in 𝒛𝑣 no longer independent: two

children of the same parent share one of their scaling factors. Thus,

executing this plan requires a careful analysis of the behavior of

norms of vectors scaled by several non-independent variables with

heavy-tailed distributions.

The advantage of this two-part scheme is that now there is no

duplication of meta-data, since in the first step there is only one

𝜆𝑢 for each parent 𝑢, and in the second step, by conditioning on

the parent exponential 𝒕𝒖∗ being sufficiently small, we ensure that

the only meta-data that contributes non-trivially to the error of the
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sketch are the 𝜆𝑣 for children 𝑣 of 𝒖∗. This allows us, ultimately, to

obtain our guarantees for one-pass streaming algorithms for EMD.

The case ofMST is similar at a high-level, however implementing

the two-part precision sampling scheme requires an entirely differ-

ent set of sketching tools, resulting from the fact that we now need

to sample a vertex 𝑣 from the ℓ0 distribution D0 (Δ
𝑖 ).

1.3 Organization

Due to space constraints, we focus on the analysis of quadtrees for

EMD andMST in the conference version of the paper (i.e., Step 1 as

sketched in Section 1.2.2. Proofs of our main results can be found

in the full version [15].

2 PRELIMINARIES

Given 𝑛 ≥ 1 we write [𝑛] to denote {1, . . . , 𝑛}. Given a vector

𝑥 ∈ R𝑛 and a real number 𝑡 ≥ 0, we define 𝑥−𝑡 ∈ R
𝑛 to be the vector

obtained by setting the largest ⌊𝑡⌋ coordinates of 𝑥 in magnitude

equal to 0 (breaking ties by using coordinates with smaller indices).

For 𝑎, 𝑏 ∈ R and 𝜖 ∈ (0, 1), we use the notation 𝑎 = (1 ± 𝜖)𝑏 to

denote the containment of 𝑎 ∈ [(1 − 𝜖)𝑏, (1 + 𝜖)𝑏].

For convenience, we will assume without loss of generality that

𝑑 is always a power of 2 and write ℎ := log2 2𝑑 = log2 𝑑 + 1. Given

a node 𝑣 in a rooted tree 𝑇 , when 𝑣 is not the root we use 𝜋 (𝑣) to

denote the parent node of 𝑣 in 𝑇 .

Next we give a formal definition of Quadtrees used in this paper:

Definition 2.1 (Quadtrees). Fix 𝑑 ∈ N. A quadtree is a rooted

tree 𝑇 of depth ℎ := log2 2𝑑 . We say a node 𝑣 of 𝑇 is at depth 𝑗 if

there are 𝑗 + 1 nodes on the root-to-𝑣 path in 𝑇 (so the root is at

depth 0 and its leaves are at depth ℎ). Each internal node 𝑣 of 𝑇

at depth 𝑗 < ℎ is labelled with an ordered tuple of 2𝑗 coordinates

𝑖1, . . . , 𝑖2𝑗 ∈ [𝑑] (which are not necessarily distinct), and has 22
𝑗

children, each of which we refer to as the (𝑏1, . . . , 𝑏2𝑗 )-child of 𝑣

with 𝑏1, . . . , 𝑏2𝑗 ∈ {0, 1}. Every node at depth ℎ − 1 is labelled with

(1, . . . , 𝑑). We write 𝐸𝑇 to denote the edge set of 𝑇 . Whenever we

refer to an edge (𝑢, 𝑣) ∈ 𝐸𝑇 , 𝑢 is always the parent and 𝑣 is the

child. A random quadtree T is drawn by (1) sampling a tuple of 2𝑗

coordinates uniformly and independently from [𝑑] for each node

at depth 𝑗 < ℎ − 1 as its label; and (2) use (1, 2, . . . , 𝑑) as the label

of every node at depth ℎ − 1. We use T to denote this distribution

of random quadtrees.

Given a quadtree𝑇 , each point 𝑥 ∈ {0, 1}𝑑 induces a root-to-leaf

path by starting at the root and repeatedly going down the tree as

follows: If the current node 𝑣 is at depth 𝑗 < ℎ and is labelled with

(𝑖1, . . . , 𝑖2𝑗 ), then we go down to the (𝑥𝑖1 , . . . , 𝑥𝑖2𝑗 )-child of 𝑣 . We

write

v0,𝑇 (𝑥), v1,𝑇 (𝑥), . . . , vℎ,𝑇 (𝑥)

to denote this root-to-leaf path, where each v𝑗,𝑇 is a map from

{0, 1}𝑑 to nodes of𝑇 at depth 𝑗 .We usually drop𝑇 from the subscript

when it is clear from the context.

Alternatively we define a subcube 𝑆𝑣,𝑇 ⊆ {0, 1}𝑑 for each 𝑣 : The

set of the root is {0, 1}𝑑 ; If (𝑢, 𝑣) is an edge, 𝑢 is at depth 𝑗 and is

labelled with 𝑖1, . . . , 𝑖2𝑗 , and 𝑣 is the (𝑏1, . . . , 𝑏2𝑗 )-child of 𝑢, then

𝑆𝑣,𝑇 =

{
𝑥 ∈ 𝑆𝑢,𝑇 : (𝑥𝑖1 , . . . , 𝑥𝑖2𝑗 ) = (𝑏1, . . . , 𝑏2𝑗 )

}
.

Note that 𝑆𝑣,𝑇 ’s of nodes 𝑣 at the same depth form a partition of

{0, 1}𝑛 . The root-to-leaf path for 𝑥 ∈ {0, 1}𝑑 can be equivalently

defined as the sequence of nodes 𝑣 that have 𝑥 ∈ 𝑆𝑣,𝑇 .

3 ANALYSIS OF QUADTREES FOR EMD AND
MST

Our goal in this section is to obtain expressions based on quadtrees

that are good approximations of EMD andMST. They will serve as

the starting point of our sketches for EMD andMST later.

3.1 Approximation of EMD using Quadtrees

Fix 𝑛,𝑑 ∈ N and let 𝑇 be a quadtree of depth ℎ = log2 2𝑑 . Let 𝐴 and

𝐵 be two multisets of points from {0, 1}𝑑 of size 𝑛 each. For each

node 𝑣 in 𝑇 , we define

𝐴𝑣,𝑇
def
= {𝑎 ∈ 𝐴 : v𝑖,𝑇 (𝑎) = 𝑣} and 𝐵𝑣,𝑇

def
= {𝑏 ∈ 𝐵 : v𝑖,𝑇 (𝑏) = 𝑣}.

Equivalently we have𝐴𝑣,𝑇 = 𝐴∩𝑆𝑣,𝑇 and 𝐵𝑣,𝑇 = 𝐵∩𝑆𝑣,𝑇 . Let𝐶𝑣,𝑇 =

𝐴𝑣,𝑇 ∪ 𝐵𝑣,𝑇 . We give the definition of depth-greedy matchings.

Definition 3.1. Let 𝑇 be a quadtree. For any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, let

depth𝑇 (𝑎, 𝑏)
def
= depth of the least-common

ancestor of leaves of 𝑎, 𝑏 in 𝑇 .

The class of depth-greedymatchings, denoted byM𝑇 (𝐴, 𝐵), is the set

of all matchings𝑀 ⊆ 𝐴×𝐵 whichmaximize the sum of depth𝑇 (𝑎, 𝑏)

over all pairs (𝑎, 𝑏) ∈ 𝑀 . We write

Cost(𝑀) =
∑︁

(𝑎,𝑏 ) ∈𝑀

∥𝑎 − 𝑏∥1

to denote the cost of a matching 𝑀 between 𝐴 and 𝐵. Recall that

EMD(𝐴, 𝐵) is defined as the minimum of Cost(𝑀) over all match-

ings between 𝐴 and 𝐵.

For each edge (𝑢, 𝑣) ∈ 𝐸𝑇 , we use avg𝑢,𝑣,𝑇 to denote the average

distance between points of 𝐶𝑢,𝑇 and 𝐶𝑣,𝑇 :

avg𝑢,𝑣,𝑇
def
= E

c∼𝐶𝑢,𝑇

c
′∼𝐶𝑣,𝑇

[
∥c − c

′∥1
]
,

where both c and c′ are drawn uniformly at random; we set avg𝑢,𝑣,𝑇
to be 0 by default when𝐶𝑣,𝑇 is empty. For notational simplicity, we

will suppress𝑇 from the subscript when it is clear from the context.

We are now ready to define the value of (𝐴, 𝐵) in a quadtree 𝑇 :

Definition 3.2. Let 𝑇 be a quadtree. The value of (𝐴, 𝐵) in 𝑇 is

defined as

Value𝑇 (𝐴, 𝐵)
def
=

∑︁

(𝑢,𝑣) ∈𝐸𝑇

��|𝐴𝑣 | − |𝐵𝑣 |
�� · avg𝑢,𝑣 . (5)

We note that the right-hand side of (5) is data-dependent in two

respects: the discrepancy between |𝐴𝑣 | and |𝐵𝑣 | and the average

distance avg𝑢,𝑣 between points in 𝐶𝑢 and 𝐶𝑣 .

Our main lemma for EMD shows that the value of (𝐴, 𝐵) in a

randomly chosen quadtree T ∼ T and the cost of any depth-greedy

matching are all �̃� (log𝑛)-approximations to EMD(𝐴, 𝐵).
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Lemma 3.3 (Quadtree lemma for EMD). Let (𝐴, 𝐵) be a pair of

multisets of points from {0, 1}𝑑 of size 𝑛 each. Let T ∼ T . Then with

probability at least 0.99, every𝑀 ∈ MT (𝐴, 𝐵) satisfies we have

EMD(𝐴, 𝐵) ≤ Cost(𝑀) ≤ ValueT (𝐴, 𝐵) ≤ �̃� (log𝑛) · EMD(𝐴, 𝐵) .

(6)

We start with the left-most inequality in (6). Indeed we will show

that EMD(𝐴, 𝐵) ≤ Value𝑇 (𝐴, 𝐵) for any quadtree 𝑇 (Lemma 3.4).

To this end we prove that Cost(𝑀) ≤ Value𝑇 (𝐴, 𝐵) for any depth-

greedy matching between 𝐴 and 𝐵 obtained from 𝑇 ; the latter by

definition is at least EMD(𝐴, 𝐵).

Lemma 3.4. Let𝑇 be any quadtree. ThenCost(𝑀) ≤ Value𝑇 (𝐴, 𝐵)

for any𝑀 ∈ M𝑇 (𝐴, 𝐵).

Proof: Given an𝑀 ∈ M𝑇 (𝐴, 𝐵) and a pair (𝑎, 𝑏) ∈ 𝑀 , we write 𝑣

and𝑤 to denote the leaves of 𝑎 and 𝑏 and use 𝑣 = 𝑢1, 𝑢2, . . . , 𝑢𝑘 = 𝑤

to denote the path from 𝑣 to𝑤 in 𝑇 . By triangle inequality,

∥𝑎 − 𝑏∥1 ≤ E
c𝑖∼𝐶𝑢𝑖

[
∥𝑎 − c1∥1 + ∥c1 − c2∥1 + · · · + ∥c𝑘 − 𝑏∥1

]

= avg𝑢1,𝑢2
+ · · · + avg𝑢𝑘−1,𝑢𝑘 ,

where the equation follows from the fact the label of every node

at depth ℎ − 1 is (1, 2, . . . , 𝑑) and thus, all points at a leaf must be

identical. Summing up these inequalities over all (𝑎, 𝑏) ∈ 𝑀 gives

exactly Value𝑇 (𝐴, 𝐵) on the right hand side. For this, observe that

every𝑀 inM𝑇 (𝐴, 𝐵) has the property that, for any edge (𝑢, 𝑣) in

𝑇 , the number of (𝑎, 𝑏) ∈ 𝑀 such that the path between their leaves

contains (𝑢, 𝑣) is exactly | |𝐴𝑣 | − |𝐵𝑣 | |.

Now it suffices to upperbound ValueT (𝐴, 𝐵) by

�̃� (log𝑛) · EMD(𝐴, 𝐵) with probability at least 0.9 for a random

quadtree T ∼ T . For this purpose we let 𝐶 = 𝐴 ∪ 𝐵 and define

an inspector payment for any pair of points 𝑎, 𝑏 ∈ 𝐶11 based on a

quadtree. Given 𝑎, 𝑏 ∈ 𝐶 , we let

Pay𝑇 (𝑎, 𝑏)
def
=

∑︁

𝑖∈[ℎ]

1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}
·
(
avg𝑎,𝑖−1 + avg𝑏,𝑖−1

)
(7)

where

avg𝑎,𝑖−1
def
= E

c∼𝐶v𝑖−1 (𝑎)

[
∥𝑎 − c∥1

]
and

avg𝑏,𝑖−1
def
= E

c∼𝐶v𝑖−1 (𝑏)

[
∥𝑏 − c∥1

]
.

Intuitively Pay𝑇 (𝑎, 𝑏) pays for the average distance between 𝑎 (or

𝑏) and points in𝐶v𝑖 (𝑎) (or𝐶v𝑖 (𝑏 ) ) along its root-to-leaf path but the

payment only starts at the least-common ancestor of leaves of 𝑎

and 𝑏. Note that Pay𝑇 (𝑎, 𝑏) = 0 trivially if 𝑎 = 𝑏.

We show that for any matching𝑀 between 𝐴 and 𝐵, the total in-

spector payment from (𝑎, 𝑏) ∈ 𝑀 is enough to cover Value𝑇 (𝐴, 𝐵):

Lemma 3.5. Let𝑇 be any quadtree and𝑀 be anymatching between

𝐴 and 𝐵. Then we have

Value𝑇 (𝐴, 𝐵) ≤ 2
∑︁

(𝑎,𝑏 ) ∈𝑀

Pay𝑇 (𝑎, 𝑏). (8)

11While we will always have 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 in this subsection, this more general
setting allows us to apply what we prove in this subsection to work on MST later.

Proof: Using the definition of Value𝑇 (𝐴, 𝐵), it suffices to show

that
∑︁

(𝑢,𝑣) ∈𝐸𝑇

��|𝐴𝑣 | − |𝐵𝑣 |
�� · avg𝑢,𝑣 ≤ 2

∑︁

(𝑎,𝑏 ) ∈𝑀

Pay𝑇 (𝑎, 𝑏) .

By triangle inequality (and avg𝑎,ℎ = 0 because every point in𝐶vℎ (𝑎)

is identical to 𝑎)

2 · Pay𝑇 (𝑎, 𝑏)

≥
∑︁

𝑖∈[ℎ]

1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}
·
(
avg𝑎,𝑖−1 + avg𝑎,𝑖 + avg𝑏,𝑖−1 + avg𝑏,𝑖

)

≥
∑︁

𝑖∈[ℎ]

1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}
·
(
avgv𝑖−1 (𝑎),v𝑖 (𝑎) + avgv𝑖−1 (𝑏 ),v𝑖 (𝑏 )

)
,

i.e., 2 · Pay𝑇 (𝑎, 𝑏) is enough to cover avg𝑢,𝑣 for every edge (𝑢, 𝑣)

along the path between the leaf of 𝑢 and the leaf of 𝑣 . The lemma

then follows from the following claim: For every edge (𝑢, 𝑣) in 𝑇 ,

| |𝐴𝑣 | − |𝐵𝑣 | | is at most the number of points 𝑎 ∈ 𝐴𝑣 such that its

matched point in𝑀 is not in 𝐵𝑣 plus the number of points 𝑏 ∈ 𝐵𝑣
such that its matched point in𝑀 is not in𝐴𝑣 . This follows from the

simple fact that every (𝑎, 𝑏) ∈ 𝑀 with 𝑎 ∈ 𝐴𝑣 and 𝑏 ∈ 𝐵𝑣 would get

cancelled in |𝐴𝑣 | − |𝐵𝑣 |. This finishes the proof of the lemma.

By Lemma 3.5 the goal now is to upperbound the total inspector

payment by �̃� (log𝑛) · EMD(𝐴, 𝐵) with probability at least 0.9 over

a randomly picked quadtree T. We consider a slight modification of

the payment scheme given in (7) which we define next; the purpose

is that the latter will be easier to bound in expectation, and most

often exactly equal to (7).

Specifically, given any (𝑎, 𝑏) with 𝑎, 𝑏 ∈ 𝐶 and 𝑖0 ∈ [0 : ℎ − 1],

we let

Pay
∗
𝑖0,𝑇

(𝑎, 𝑏)
def
=

ℎ∑︁

𝑖>𝑖0

1
{
v𝑖 (𝑎) ≠ v𝑖 (𝑏)

}
·
(
avg∗𝑎,𝑖−1 + avg∗

𝑏,𝑖−1

)
,

(9)

where

avg∗𝑎,𝑖
def
= E

c∼𝐶∗
𝑎,𝑖

[
∥𝑎 − c∥1

]
and avg∗

𝑏,𝑖

def
= E

c∼𝐶∗
𝑏,𝑖

[
∥𝑏 − c∥1

]

and 𝐶∗
𝑎,𝑖 contains all points in 𝐶v𝑖 (𝑎) that is not too far away from

𝑎:

𝐶∗
𝑎,𝑖

def
=

{
𝑐 ∈ 𝐶v𝑖 (𝑎) : ∥𝑎 − 𝑐 ∥1 ≤

10𝑑 log𝑛

2𝑖

}
.

The set𝐶∗
𝑏,𝑖

is defined similarly. Roughly speaking, points in𝐶 that

share the same node at depth 𝑖 are expected to have distance around

𝑑/2𝑖 (given they have agreed on 2𝑖 − 1 random coordinates sampled

so far); this is why we refer to points in 𝐶∗
𝑎,𝑖 as those that are not

too far away from 𝑎.

The following is the crucial lemma for upperbounding the total

expected payment according to an optimal matching𝑀∗. Its proof

can be found in the full version [15]. We use it to prove Lemma 3.3.

Lemma 3.6. For any (𝑎, 𝑏) with 𝑎, 𝑏 ∈ 𝐶 , 𝑎 ≠ 𝑏 and 𝑖0 ∈ [0 : ℎ−1]

that satisfies

𝑖0 ≤ ℎ𝑎,𝑏
def
=

⌊
log2

(
𝑑

∥𝑎 − 𝑏∥1

)⌋
, (10)
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we have

E
T∼T

[
Pay

∗
𝑖0,T

(𝑎, 𝑏)
]

≤
(
�̃� (log𝑛) +𝑂 (log log𝑛)

(
ℎ𝑎,𝑏 − 𝑖0

) )
· ∥𝑎 − 𝑏∥1 .

Proof of Lemma 3.3 assuming Lemma 3.6: Let𝑀∗ be an optimal

matching between 𝐴 and 𝐵 that achieves EMD(𝐴, 𝐵). Let T ∼ T .

Then we have from Lemma 3.5 that

ValueT (𝐴, 𝐵) ≤ 2
∑︁

(𝑎,𝑏 ) ∈𝑀∗

𝑎≠𝑏

PayT (𝑎, 𝑏) (11)

given that PayT (𝑎, 𝑏) = 0 when 𝑎 = 𝑏. Below we focus on the

subset𝑀′ of𝑀∗ with (𝑎, 𝑏) ∈ 𝑀∗ and 𝑎 ≠ 𝑏. For each (𝑎, 𝑏) ∈ 𝑀′,

let

0 ≤ ℓ𝑎,𝑏
def
= max

{
0, ℎ𝑎,𝑏 − 2⌈log2 𝑛⌉

}
≤ ℎ𝑎,𝑏 .

We show that with probability at least 1 − 𝑜 (1) over the draw of T,

every (𝑎, 𝑏) ∈ 𝑀′ satisfies

PayT (𝑎, 𝑏) = Pay
∗
ℓ𝑎,𝑏 ,T

(𝑎, 𝑏) . (12)

Combining (11) and (12), we have that with probability at least

1 − 𝑜 (1) over the draw of T,

ValueT (𝐴, 𝐵) ≤ 2
∑︁

(𝑎,𝑏 ) ∈𝑀 ′

Pay
∗
ℓ𝑎,𝑏 ,T

(𝑎, 𝑏) . (13)

By applying Lemma 3.6 to every (𝑎, 𝑏) ∈ 𝑀′ with 𝑖0 = ℓ𝑎,𝑏 , as well

as Markov’s inequality, we have that with probability at least 0.99

over T, the right hand side of (13) is at most

�̃� (log𝑛)
∑︁

(𝑎,𝑏 ) ∈𝑀 ′

∥𝑎 − 𝑏∥1 = �̃� (log𝑛) · EMD(𝐴, 𝐵) .

By a union bound, ValueT (𝐴, 𝐵) ≤ �̃� (log𝑛) · EMD(𝐴, 𝐵) with

probability at least .99 − 𝑜 (1) ≥ 0.9.

It suffices to define an event that implies (12) and then bound its

probability. The first part of the event requires that for every pair

(𝑎, 𝑏) ∈ 𝑀′, v𝑖 (𝑎) = v𝑖 (𝑏) for every 𝑖 : 1 ≤ 𝑖 ≤ ℓ𝑎,𝑏 . The second

part requires that for any two distinct points 𝑥,𝑦 ∈ 𝐴 ∪ 𝐵 (not

necessarily as a pair in 𝑀∗ and not even necessarily in the same

set), we have v𝑖 (𝑥) ≠ v𝑖 (𝑦) for all 𝑖 with

2𝑖 ≥
10𝑑 log𝑛

∥𝑥 − 𝑦∥1
. (14)

By the definition of Pay∗
ℓ𝑎,𝑏 ,T

(𝑎, 𝑏) in (9), the first part of the event

makes sure that we don’t miss any term in the sum; the second

part of the event makes sure that every 𝐶∗
𝑎,𝑖 is exactly the same as

𝐶v𝑖 (𝑎) so that avg∗𝑎,𝑖 = avg𝑎,𝑖 (and the same holds for 𝑏) . It follows

that this event implies (12).

Finally we show that the event occurs with probability at least

1 − 𝑜 (1). First, for every (𝑎, 𝑏) ∈ 𝑀′, if ℓ𝑎,𝑏 = 0 then the first part

of the event trivially holds. If ℓ𝑎,𝑏 > 0 then ℓ𝑎,𝑏 = ℎ𝑎,𝑏 − 2⌈log𝑛⌉.

The probability of v𝑖 (𝑎) ≠ v𝑖 (𝑏) for some 𝑖 : 1 ≤ 𝑖 ≤ ℓ𝑎,𝑏 is at most

1 −

(
1 −

∥𝑎 − 𝑏∥1

𝑑

)2ℓ𝑎,𝑏 −1
≤ 2ℓ𝑎,𝑏 ·

∥𝑎 − 𝑏∥1

𝑑
≤

1

𝑛2
.

Hence, by a union bound over the at most 𝑛 pairs (𝑎, 𝑏) ∈ 𝑀′,

the first part of the event holds with probability at least 1 − 𝑜 (1).

Furthermore, for any two distinct points 𝑥,𝑦 ∈ 𝐴 ∪ 𝐵, let

ℓ∗ =

⌊
log2

(
10𝑑 log𝑛

∥𝑥 − 𝑦∥1

)⌋
.

Then v𝑖 (𝑥) = v𝑖 (𝑦) for some 𝑖 that satisfies (14) would imply

vℓ∗ (𝑥) = vℓ∗ (𝑦) and ℓ∗ ≤ log𝑑 (since vℎ (𝑥) ≠ vℎ (𝑦) given 𝑥 ≠ 𝑦).

The event above happens with probability

(
1 −

∥𝑥 − 𝑦∥1

𝑑

)2ℓ∗−1
≤ exp(−5 log𝑛) =

1

𝑛5
.

Via a union bound over at most (2𝑛)2 many pairs of 𝑥,𝑦, we have

that the second part of the event also happens with probability at

least 1 − 𝑜 (1). This finishes the proof of the lemma.

3.2 Approximation ofMST using Quadtrees

We will follow a similar strategy as we took in the previous subsec-

tion for EMD. Given a quadtree 𝑇 of depth ℎ = log2 2𝑑 , we define

similarly v0 (𝑥), . . . , vℎ (𝑥) as the root-to-leaf path of 𝑥 ∈ {0, 1}𝑑 , and

write 𝑆𝑣 for each node 𝑣 at depth 𝑖 to denote the set of 𝑥 ∈ {0, 1}𝑑

with v𝑖 (𝑥) = 𝑣 .

Let 𝑋 ⊆ {0, 1}𝑑 be a set of 𝑛 points. We define 𝑋𝑣 for each node

𝑣 in 𝑇 as 𝑋 ∩ 𝑆𝑣 , and write 𝐿𝑖 for each depth 𝑖 to denote the set

of nodes 𝑣 at depth 𝑖 such that 𝑋𝑣 ≠ ∅ and will refer to them as

nonempty nodes.

We give the definition of depth-greedy spanning trees.

Definition 3.7. Let 𝑇 be a quadtree, and 𝑋 ⊂ {0, 1}𝑑 . For any

DFS walk of the quadtree 𝑇 starting at the root, let 𝜎 : [𝑛] → 𝑋

denote the order of points in 𝑋 encountered during the walk, so

that vℎ (𝜎 (𝑖)) appears before vℎ (𝜎 (𝑖 + 1)) for every 𝑖 ∈ [𝑛 − 1]. A

depth-greedy spanning tree 𝐺 obtained from a DFS walk is given

by the edges {(𝜎 (𝑖), 𝜎 (𝑖 + 1))}𝑖∈[𝑛−1] . The class of depth-greedy

spanning trees, denoted by G𝑇 (𝑋 ), is the set of all spanning trees

𝐺 of 𝑋 obtained from a DFS walks down the quadtree 𝑇 . For any

spanning tree 𝐺 , we write

Cost(𝐺) =
∑︁

(𝑎,𝑏 ) ∈𝐸 (𝐺 )

∥𝑎 − 𝑏∥1

to denote the cost of a tree𝐺 (with 𝑛 − 1 edges) spanning points in

𝑋 . Recall MST(𝑋 ) is defined as the minimum of Cost(𝐺) over all

spanning trees 𝐺 of 𝑋 .

Similar to the previous subsection, for each edge (𝑢, 𝑣) ∈ 𝐸𝑇 , we

write

avg𝑢,𝑣
def
= E

c∼𝑋𝑢
c
′∼𝑋𝑣

[
∥c − c

′∥1
]
.

when 𝑋𝑣 ≠ ∅, and avg𝑢,𝑣 = 0 when 𝑋𝑣 = ∅. Recall 𝜋 (𝑣) denotes the

parent node of 𝑣 in𝑇 . We are now ready to define the value of 𝑋 in

a quadtree 𝑇 and then state the main lemma:

Definition 3.8. Let𝑇 be a quadtree. The value of𝑋 in𝑇 is defined

as

Value𝑇 (𝑋 )
def
=

∑︁

𝑖∈[ℎ]

1
{
|𝐿𝑖 | > 1

}
·
∑︁

𝑣∈𝐿𝑖

avg𝜋 (𝑣),𝑣 .

The main lemma forMST shows that the value of𝑋 for a random

quadtree T ∼ T and the cost of any depth-greedy spanning tree

𝐺 ∈ G𝑇 (𝑋 ) are �̃� (log𝑛)-approximations ofMST(𝑋 ).
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Lemma 3.9 (Quadtree lemma for MST). Let 𝑋 ⊆ {0, 1}𝑑 be a

set of size 𝑛, and let T ∼ T . Then with probability at least 0.99, for

any 𝐺 ∈ GT (𝑋 ), we have that

MST(𝑋 )

2
≤

Cost(𝐺)

2
≤ ValueT (𝑋 ) ≤ �̃� (log𝑛) ·MST(𝑋 ).

We start with the lower bound:

Lemma 3.10. Let 𝑇 be any quadtree and any depth-greedy span-

ning tree𝐺 ∈ G𝑇 (𝑋 ). ThenValue𝑇 (𝑋 ) ≥ Cost(𝐺)/2 ≥ MST(𝑋 )/2.

Proof: Let𝑤 be the least common ancestor of leaves vℎ (𝑥), 𝑥 ∈ 𝑋 ,

and let 𝑇 ∗ denote the subtree rooted at 𝑤 that consists of paths

from𝑤 to vℎ (𝑥), 𝑥 ∈ 𝑋 . Using 𝑇 ∗ we can equivalently write

Value𝑇 (𝑋 ) =
∑︁

(𝑢,𝑣) ∈𝐸𝑇 ∗

avg𝑢,𝑣 .

For each node 𝑣 ∈ 𝑇 ∗ (note that 𝑋𝑣 ≠ ∅), we define 𝜌𝑣 to be the

center-of-mass of points in 𝑋𝑣 :

𝜌𝑣
def
=

1

|𝑋𝑣 |

∑︁

𝑥∈𝑋𝑣

𝑥 .

By triangle inequality we have ∥𝜌𝑢 − 𝜌𝑣 ∥1 ≤ avg𝑢,𝑣 for every

(𝑢, 𝑣) ∈ 𝐸𝑇 ∗ and thus,
∑︁

(𝑢,𝑣) ∈𝐸𝑇 ∗

∥𝜌𝑢 − 𝜌𝑣 ∥1 ≤ Value𝑇 (𝑋 ) .

We finish the proof by showing that any depth-greedy spanning

tree 𝐺 of 𝑋 satisfies

Cost(𝐺) ≤ 2
∑︁

(𝑢,𝑣) ∈𝐸𝑇 ∗

∥𝜌𝑢 − 𝜌𝑣 ∥1 .

To this end we take a DFS walk of 𝑇 ∗ from its root 𝑤 and let

𝜎 : [𝑛] → 𝑋 be the order of points in 𝑋 under which

vℎ (𝜎 (1)), . . . , vℎ (𝜎 (𝑛)) appear in the walk. Then we set 𝐺 to be

the spanning tree {(𝜎 (𝑖), 𝜎 (𝑖 + 1))}𝑖∈[𝑛−1] . For each 𝑖 ∈ [𝑛 − 1],

letting 𝑢1, . . . , 𝑢𝑟 be the part of DFS walk from 𝑢1 = vℎ (𝜎 (𝑖)) to

𝑢𝑟 = vℎ (𝜎 (𝑖 + 1)), we have from triangle inequality that

∥𝜎 (𝑖)−𝜎 (𝑖+1)∥1 = ∥𝜌𝑢1−𝜌𝑢𝑟 ∥1 ≤ ∥𝜌𝑢1−𝜌𝑢2 ∥1+· · ·+∥𝜌𝑢𝑟−1−𝜌𝑢𝑟 ∥1 .

The lemma follows from the fact that a DFS walk visits each edge

twice.

Now it suffices to upper boundValueT (𝑋 ) by �̃� (log𝑛) ·MST(𝑋 )

with probability at least 0.9 for a random quadtree T ∼ T . For this

purpose, we use the same inspector payment defined in the last

subsection (the only change is that the set𝐶 is now called 𝑋 which

is a set and has size 𝑛 instead of 2𝑛). Recall that for any two points

𝑥,𝑦 ∈ 𝑋 , we define

Pay𝑇 (𝑥,𝑦)
def
=

∑︁

𝑖∈[ℎ]

1
{
v𝑖 (𝑥) ≠ v𝑖 (𝑦)

}
·
(
avg𝑥,𝑖−1 + avg𝑦,𝑖−1

)
,

(15)

where

avg𝑥,𝑖−1
def
= E

c∼𝑋v𝑖−1 (𝑥 )

[
∥𝑥 − c∥1

]
and

avg𝑦,𝑖−1
def
= E

c∼𝑋v𝑖−1 (𝑦)

[
∥𝑦 − c∥1

]
.

Next we show that the total payment from any spanning tree 𝐺

is enough to cover Value𝑇 (𝑋 ).

Lemma 3.11. Let 𝑇 be any quadtree and 𝐺 be any spanning tree

of 𝑋 . Then we have

Value𝑇 (𝑋 ) ≤ 2
∑︁

(𝑥,𝑦) ∈𝐸 (𝐺 )

Pay𝑇 (𝑥,𝑦). (16)

Proof: Let𝑤 be the least common ancestor of leaves vℎ (𝑥), 𝑥 ∈ 𝑋 ,

and let 𝑇 ∗ denote the subtree rooted at 𝑤 that consists of paths

from𝑤 to vℎ (𝑥), 𝑥 ∈ 𝑋 . It suffices to show that
∑︁

(𝑢,𝑣) ∈𝐸𝑇 ∗

avg𝑢,𝑣 ≤ 2
∑︁

(𝑥,𝑦) ∈𝐸 (𝐺 )

Pay𝑇 (𝑥,𝑦) .

By similar arguments in the proof of Lemma 3.5, 2 · Pay𝑇 (𝑥,𝑦) is

good enough to cover avg𝑢,𝑣 for every edge along the path between

the leaf of 𝑥 and the leaf of 𝑦. The lemma follows by summing over

all (𝑥,𝑦) ∈ 𝐸 (𝐺) and noting that the avg𝑢,𝑣 of each (𝑢, 𝑣) ∈ 𝐸𝑇 ∗ is

counted at least once.

To upperbound the total inspector payment from an optimal

spanning tree by �̃� (log𝑛) · MST(𝑋 ), we similarly consider the

modified payment scheme Pay∗
𝑖0,𝑇

(𝑥,𝑦) as in (9), replacing 𝐶 by 𝑋 .

The same Lemma 3.6 applies and we use it to prove Lemma 3.9:

Proof of Lemma 3.9 assuming Lemma 3.6: The lower bound

follows from Lemma 3.10. For the upper bound, let𝐺∗ be an optimal

spanning tree of 𝑋 and let T ∼ T . By Lemma 3.11 we have

ValueT (𝑋 ) ≤ 2
∑︁

(𝑥,𝑦) ∈𝐸′ (𝐺∗ )

PayT (𝑥,𝑦), (17)

where 𝐸′ (𝐺∗) denotes the set of edges (𝑥,𝑦) in 𝐺∗ with 𝑥 ≠ 𝑦. For

each (𝑥,𝑦) ∈ 𝐸′ (𝐺∗), let

0 ≤ ℓ𝑥,𝑦
def
= max

{
0, ℎ𝑥,𝑦 − 2⌈log2 𝑛⌉

}
≤ ℎ𝑥,𝑦 .

By similar arguments as in the proof of Lemma 3.3, we have with

probability at least 1 − 𝑜 (1) over the draw of T that every (𝑥,𝑦) ∈

𝐸′ (𝐺∗) satisfies

PayT (𝑥,𝑦) = Pay
∗
ℓ𝑥,𝑦 ,T

(𝑥,𝑦) (18)

Combining (17) and (18), we have that with probability at least

1 − 𝑜 (1) over the draw of T,

ValueT (𝑋 ) ≤ 2
∑︁

(𝑥,𝑦) ∈𝐸′ (𝐺∗ )

Pay
∗
ℓ𝑥,𝑦 ,T

(𝑥,𝑦). (19)

By applying Lemma 3.6 to every (𝑥,𝑦) ∈ 𝐸′ (𝐺∗) with 𝑖0 = ℓ𝑥,𝑦 , as

well as Markov’s inequality, we have that with probability at least

0.99 over T, the right hand side of (19) is at most

�̃� (log𝑛)
∑︁

(𝑥,𝑦) ∈𝐸′ (𝐺∗ )

∥𝑥 − 𝑦∥1 = �̃� (log𝑛) ·MST(𝑋 ).

By a union bound, ValueT (𝑋 ) ≤ �̃� (log𝑛) ·MST(𝑋 ) with probabil-

ity at least .99 − 𝑜 (1) ≥ 0.9.
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