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The idealised theory for the quasi-static flow of granular materials which satisfy the
Coulomb-Mohr hypothesis is considered. This theory arises in the limit that the an-
gle of internal friction approaches 7/2, and accordingly these materials may be referred
to as being ‘highly frictional’. In this limit, the stress field for both two-dimensional and
axially symmetric flows may be formulated in terms of a single nonlinear second order
partial differential equation for the stress angle. To obtain an accompanying velocity field,
a flow rule must be employed. Assuming the non-dilatant double-shearing flow rule, a
further partial differential equation may be derived in each case, this time for the stream-
function. Using Lie symmetry methods, a complete set of group-invariant solutions is
derived for both systems, and through this process new exact solutions are constructed.
Only a limited number of exact solutions for gravity driven granular flows are known, so
these results are potentially important in many practical applications. The problem of

mass flow through a two-dimensional wedge hopper is examined as an illustration.
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1 Introduction

The statics and dynamics of granular materials have been studied extensively through
the use of continuum mechanics modelling. With this approach, governing equations
for the stress and velocity fields are formulated by coupling the conservation of mass
and momentum equations with appropriate constitutive laws and flow rules. For rapid
granular flow, the behaviour of particles is determined by inelastic collisions with one
another, in a way analogous to dense gases. Accordingly, it is appropriate in this case to
use constitutive laws which are similar to those employed in the field of fluid mechanics (see
Campbell 1990 for example). For slow granular flows, the dominating mechanics involved
is quite different. Here particles are continually sliding and rolling past each other, and
it is friction between these particles which is the dominant force. This behaviour is often
modelled with theories which involve a yield condition similar to that used in metal
plasticity; one such condition, the Coulomb-Mohr hypothesis, is discussed below, and is
used as the basis for the present study. The regime somewhere between rapid and slow
granular flow may be referred to as the intermediate flow regime. Here the challenge
is to determine constitutive equations which also describe rapid and slow flows in the
appropriate asymptotic limits. Such a recent study is given in Tarbos, McNamara & Talu
(2003). We also note that there are other continuum mechanics models which are designed
to model the flow of granular materials in either the slow or intermediate regimes. One
sophisticated theory is hypoplasticity. The details of this theory can be very complicated,
and so while it may have the capacity to accurately describe granular deformations under
many circumstances, it is often intractable in terms of mathematical analysis. Discussions
on hypoplasticity, and illustrations of its use, may be found in the collection of papers
edited by Kolymbas (2003), and references therein.

As mentioned above, we consider the flow of granular materials that satisfy the

Coulomb-Mohr yield condition. This condition postulates that
Tp < optane +c (1)

at each point and on every surface within the material, where o,, is the normal compressive



component of the traction vector on the surface, 7, is the magnitude of the tangential
component, and ¢ and ¢ are two mechanical properties of the material. The angle of
internal friction ¢ is a measure of the friction between granular particles as they slide
across each other, while the cohesion ¢ can be thought of as a measure of the “stickiness”
between particles. Here we consider only slowly flowing materials, and we assume that
the inertial terms in the momentum equations can be ignored, the flow referred to as
being quasi-static. With this assumption, the equations for the stresses (the equilibrium
equations plus the yield condition) decouple from those which describe the velocity field.
We note that real-life slow granular flows rarely reach a precise steady-state. Instead
there is usually some oscillation in the both the stress and velocity fields, the magnitude
of which can be significant at very low velocities. This phenomena is sometimes referred
to as ‘slip-stick’. However, in many situations, such as mass-flow in industrial hoppers,
the magnitude of the oscillations is small, and a steady-state flow field proves to be an
accurate description of the time-averaged situation.

The equations for quasi-static flow of Coulomb-Mohr materials have attracted much
interest, although much of the work to date has neglected the effects of gravity. Perhaps
the most studied gravity-driven flow is that through a vertical wedge or cone, which is
primarily used to model flow from a hopper. In the neighbourhood of the hopper outlet,
such flows are described by similarity solutions, which are often referred to as describing
the ‘radial stress field’. These solutions were first considered by both Jenike (1964) and
Sokolovskii (1965), and examples of further study are contained in Johanson (1964),
Jenike (1965), Spencer & Bradley (1996), and many more. After substitution of the
functional forms for the similarity solutions, the governing equations reduce to nonlinear
ordinary differential equations, which must be solved numerically. Some exact solutions
to various simple problems which include gravitational effects are given in Sokolovskii
(1965), O’Mahony and Spencer (1985) and Spencer & Bradley (1992,2002). We emphasise
that even with the assumptions behind the quasi-static flow of Coulomb-Mohr materials,
analytical solutions to gravity-driven problems are still difficult to determine.

The equations for the stresses in quasi-static flow are quite widely accepted, and



predict stress levels which are well in accord with experimental results. However, the
correct formulation of the accompanying velocity equations is still controversial. Initially,
the coaxial flow rule was used, which was originally proposed by R. Hill (1950) for metal
plasticity and then adopted by Drucker & Prager (1952) for granular materials. This
approach assumes the principal axes of stress and strain-rate coincide. An alternative is
the double-shearing theory originally proposed by Spencer (1964,1982). In this theory
the characteristic curves for the stresses and velocities coincide, and every deformation is
assumed to consist of simultaneous shears along the two families of stress characteristics.

Here, we are particularly concerned with the idealised theory which arises by con-
sidering materials which are characterised by the limiting value for the angle of internal
friction ¢ = 7/2. Materials with this property may be referred to as being ‘highly fric-
tional’. Of course care must be taken when interpreting results obtained from such an
idealised theory. This caution notwithstanding, there are many reasons to pursue studies
of highly frictional materials. Firstly, the governing equations for the quasi-static flow
of a Coulomb-Mohr material depend explicitly on 8 = sin ¢ (see equations (14)-(17) for
plane strain, and equations (25)-(28) for axially symmetric strain). So even for moder-
ately large values of the angle of internal friction, the value of § is close to unity, and the
approximation 8 = 1 is quite reasonable. We therefore use this idealised theory to provide
approximate or limiting behaviour of real granular materials which have moderately large
values of the angle of internal friction. Alternately, we may view the equations derived for
¢ = /2 as describing the first term in a regular perturbation, where the correction terms
(not considered here) are of order 1 — . For specific granular materials with moderately
high values of the angle of internal friction, the reader is referred to Sture (1999), for
example.

Secondly, the theory for highly frictional granular materials happens to be far more
tractable than that for materials with general internal friction values. A consequence is
that we are able to determine exact solutions to highly nonlinear granular flow problems,
which we are unable to find otherwise. These exact solutions can therefore be used as a

benchmark for numerical schemes devised to solve more general problems. For example,



Hill & Cox (2001) and Cox & Hill (2004) revisit the quasi-static flow in a converging
wedge in an attempt to model flow out of a hopper (the ‘radial stress field’). Here the
numerical scheme (which was used for various values of @) was successfully tested against
an exact solution for ¢ = 7/2. Furthermore, the fact that we are able to compute exact
solutions to gravity-driven granular flow problems is important, because generally such
solutions are rare.

There has been some recent interest in the quasi-static flow of highly frictional mate-
rials, with particular attention given to constructing exact solutions. In this special limit
the problem for the stress field reduces to solving a single second-order nonlinear partial

differential equation, which for plane flow is given by
Bayw — 2hhyy + h*hyy = 0, (2)
while for axially symmetric flow is given by
by — 2hhes + K2, — %(hr ~ hhy) = 0. (3)

Here the dependent variable is h = cot 1), where 1) is the stress angle (see Section 2 for
details). The first exact solution to (2), found by Hill & Cox (2001), is a special case of
the ‘radial stress field’ solutions discussed above (for values of ¢ # 7/2 there are no exact
solutions). This similarity solution was extended to axially symmetric deformations in
Cox & Hill (2003), and both solutions were used to model sandpiles and flow through
hoppers in Cox & Hill (2003) and Hill & Cox (2002). Other families of exact group-
invariant solutions have since been derived by Thamwattana & Hill (2003a,b). Using the
double-shearing theory, the velocity fields for highly frictional materials are described by

Xzz — Qthy + hQny = thy - hme (4)
in two dimensions, and
1
Xrr — Qthz + h2Xzz - ;(X’I’ - th) = thz - thz (5)

for axially-symmetric flows, where x is a streamfunction, defined in equations (18) and

(29). Exact solutions to these equations have been published by Cox & Hill (2004) for
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hopper flow and by Thamwattana & Hill (2003a) for other special functional forms. The
purpose of the current study to use Lie point symmetry methods to determine the complete
set of group-invariant solutions to both (2),(4) and (3),(5). This set includes the solutions
just mentioned, as well as a number of exact solutions not previously considered.

We mention that for the case of plane strain, a related study has recently been under-
taken by the authors in Johnpillai, McCue & Hill (2004), where an alternate mathematical
formulation for the stresses is employed, which makes use of the Airy stress function. A
complete set of group-invariant solutions for two-dimensional stress fields is derived using
Lie symmetry methods, and it can be shown that these solutions are equivalent to ones
derived here. In this sense the set of solutions presented here for equation (2) are not
new, although many of them are expressed in terms of the stress angle ¢ for the first
time. We emphasise that when deriving the complete set of group-invariant solutions for
the system (2),(4), the results equivalent to Johnpillai et al. (2004), which are for stress
fields only, are found as part of the analysis. Furthermore, the approach undertaken by
Johnpillai et al. works for two-dimensional deformations only, and does not contain any
results relevant to the system (3),(5).

As mentioned above, in this study we employ the incompressible (or non-dilatant)
double-shearing theory (Spencer 1964,1982) to determine velocity fields. Of course, gran-
ular materials are compressible, and initial granular deformations are usually accompanied
by dilatation or compaction. However, in fully developed slow granular flows, the mag-
nitude of the dilatation or compaction is often small, in which case the assumption of
incompressibility is reasonable. In any event, Spencer’s theory has been extended to in-
clude compressible flows by Mehrabadi & Cowin (1978), whose theory can be referred to
as being the dilatant double-shearing theory. A similar study could be undertaken for
this theory, at least in principle.

The plan of the paper is as follows. In the following section we present the governing
equations for the incompressible quasi-static flow of a Coulomb-Mohr material, subject to
the double-shearing flow rule. For the special case in which the angle of internal friction

becomes ¢ = m/2, we derive the partial differential equations (2)-(5). In Section 3 we



use the Lie point symmetries admitted by the systems (2), (4) and (3), (5) to derive
optimal systems of group-invariant solutions for each case. As noted above, some of these
solutions have been considered previously, but for the new functional forms describing
stress fields we determine the corresponding exact solutions in Sections 4. There has been
some success in finding exact solutions for the velocity fields, and we give some examples
in Section 5. In Section 6 we illustrate the results with reference to the problem of mass
flow through a two-dimensional hopper, and show how the high friction angle results
compare favourably to those with more realistic angles of internal friction. Finally, we

close the paper in Section 7 with a brief discussion.

2 (Governing equations

In this section we derive the partial differential equations (2)-(5) which govern the quasi-
static flow of a highly frictional Coulomb-Mohr granular material for both plane strain

and axially symmetric strain, given the double-shearing flow rule.

2.1 Equations for plane strain

We consider here two-dimensional granular flow in the (z,y)-plane with gravity acting in
the negative y-direction. The components of the stress tensor in Cartesian coordinates
are denoted by 04, 04, and oy, and the principal components of stress by o, o;; and
orrr- These principal stresses are ordered so that o; > o057 > o777, and we adopt the
convention that stresses are assumed positive in tension, so the maximum principal stress
or is (most often) the one which is smallest in magnitude (since granular materials are
rarely in tension).

The stress angle v is defined by the relationship

and is the angle between the positive z-axis and the axis corresponding to o;. It follows



that the stress components can be written as

Ogz = —P + qcos 2, Ogy = gsin 29, Oyy = —P — qCOS 2, (6)

where p and q are stress invariants, given by
p= —%(014‘0111) = _%(Uxx+0-yy)a (7)

1/2
q9= %(01 —oqr) = % {(Umw - ayy)2 + 4a§y} / . (8)

Physically, p represents an average pressure, while ¢ is the maximum shear stress.
Consider an arbitrary surface whose unit normal n makes the angle § with the positive
z-axis, and thus is given by n = cosdi + sin Jj. The normal compressive component and

the magnitude of the tangential component of the traction vector are given by

On=p—qcos2(0 —v), T, =q|sin2(0 — 1),
so that the quantity 7, — 0, tan ¢ attains is maximum when
0 =1+ (37— 59). (9)
For these special values of §, we denote o, by ¢ and 7, by 7, so that

oc=p—gqsing, T =qcosap. (10)

These results are now used to interpret the yield condition (1).

The Coulomb-Mohr yield hypothesis states that slip may occur on the arbitrary surface
element if the condition (1) holds with equality. In this case § must be the special angle
(9), so that

T =o0tan¢ + c, (11)

or equivalently

g = psin ¢ + ccos ¢. (12)

We recall that 0 < ¢ < 7/2 is the angle of internal friction, and ¢ > 0 is the coefficient of

cohesion, and assume that both of these the quantities are constants.
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As discussed in the Introduction, for quasi-static flow the stresses are completely
specified by the yield condition (12) and the equilibrium equations

00y O0gy 004y n 0oy,

ox oy ox oy
where p is the bulk density and g is the acceleration due to gravity. The latter are the

=0, = pg, (13)

(steady) momentum equations without the inertial terms, which may be ignored since we
are only interested in slow granular flows. By assuming the density p is a constant, and
substituting (6) and (12) into (13), we may eliminate p to give

g—i = ﬁQﬁ_ : {2q1), sin 2¢p — 2qup, (B + cos 2¢) + pgBsin 24}, (14)

GL = e (2a0a(B — cos20) — 20,20+ pg(1 - eos2)}, (19

which are the governing partial differential equations for arbitrary values of the angle of

internal friction ¢. For convenience we have introduce the parameter 3, which is simply
B = sin ¢.

For quasi-steady granular flow, the equations for the stresses decouple from those
which describe the velocity field. The choice of the correct flow rule for the accompa-
nying velocity field is rather controversial; here we use Spencer’s double-shearing theory
(1964,1982). The velocity components acting in the z- and y-direction are denoted by
u(z,y) and v(z,y) respectively, and it follows that the conservation of mass equation for
incompressible flow is

ou Ov

ou _ ov_ 1
833+8y 0 (16)

The system is closed by the double-shearing equation
ou v ou Ov ou Ov
—+ — 2 — | — — =— ] sin2 — —— 420 =0 17
(ay+a$)cos¢ (695 ay)sm ¢+B<ay 5 T ) , (17)
where for steady flow €2 is given by
op oY
Q=u— —.
u@x oy

The two equations (16) and (17) can be reduced to one by introducing the streamfunction

Xx(z,y) defined by

+v

Ox x (18)

Ty’ VT T



Equation (16) is now identically satisfied, and (17) becomes

Xaz (B — €08 21)) — 2X 4y SIN 29 + Xyy (B + €08 200) + 28(huxy — YyXz) =0,  (19)

where here subscripts denote partial differentiation. We are left to solve the three equa-

tions (14), (15) and (19) for the three unknowns ¢, ¥ and x.

2.2 Plane strain equations for ¢ = 7/2

The above formulation is standard, and follows closely the argument given by Spencer
(1982). We now wish to consider the limiting case of ¢ = 7/2 (or equivalently, § = 1). In
this limit the yield condition (12) becomes ¢ = p, or alternately

2 _
Ogy = OzzOyy-

At first it appears that (11) implies the shear 7 becomes infinite as ¢ — /2, however
from (10) it is seen that this is untrue. In fact, both 7 and ¢ vanish in this limit in such
a way that (11) holds. That is to say that through every point in the material there is a
particular surface upon which both the normal and shear stresses are zero. This surface is
the one whose normal vector points in the direction of the maximum principal stress (see
(9)). It follows from this argument and also from (7)-(8) with ¢ = p that the maximum
principal stress oy is zero in this limit.

By rewriting (14)-(15) as

(B-1) (cos wg—z + sin w%) = pgBsin ) + 28q(1, sinp — 1, cos ), (20)

0 0
(B+1) <sin d’é — cos ¢a—z) = pgBcostp — 20q(1h, cos + 1, sin ), (21)

it is clear that for the special case of § = 1 (that is, for highly frictional materials with

¢ = m/2) we have

__P9 1
2 (g — Py cotyp)’

2(gsin®), = pgcostp + 2(qcos ),.
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These two equations may be combined to give (2), where h = cot ¢). The stresses may be

recovered from h with the use of

Py 1+ h? B 1
T 2 hhy — k' 7 PR, — Ry

o h B h?
Oo = P —hy T T PR, — by

By substituting the value 8 = 1 into (19), we find

Xaz = 2Xay €Ot Y + Xyy cOt* ¥ + cosec® (Yuxy — PyXa) = 0,

which, with the further substitution h = cot v, simplifies to (4).

2.3 Equations for axially symmetric strain

For axially symmetric granular flow it is appropriate to use cylindrical polar coordinates
(r, , z), with gravity acting in the negative z-direction, and all quantities independent of

the variable ¢. We define the stress angle to be

physically 1) is the angle between the maximum principal stress axis and the r-direction.

It follows that three of the stress components may be written as
O = —p+ qcos2y, o,, =¢qsin2y, o,, =—p— qcos 2, (22)
where p and ¢ are given by
p=—tom+0.), g=1{(0m—0..)"+402}". (23)

We also require the Haar-von Karmann hypothesis, which states that the hoop stress,
which is a principal stress, be equal to one of the other two principal stresses. We choose

01 = 0ypp =011 Z OrIr, and it follows that

Opp = —D+q. (24)
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As with the plane strain case considered previously, the governing equations consist
of the equilibrium equations

aarr n 8O'rz i Orr — Ogpyp =0, Gam 80zz + % = pg,
or 0z r or 0z "

together with the Coulomb-Mohr yield condition (12), where this time p and ¢ are defined

in (23). For axially symmetric flow we need the extra condition (24), and we may combine

these equations, with the use of (22), to give the two coupled equations

% = 752’3_ . {qur sin 29 — 2qyp, (B + cos 24) + pgfsin 2 + a(8 = 1)((;05 2 —1) } , (25)
% = % {2(]%(5 — cos 2vp) — 2q1p, sin 2¢p + pg(1 — B cos 2¢) + A 17') = 21[)} , (26)

for the two dependent variables ¢ and . Again, this formulation is standard for arbitrary
values of the angle of internal friction, and the reader is referred to Spencer (1982) for
further details.
For axially-symmetric flow, we denote the velocity components in the r- and z-
directions by u(r, z) and v(r, z) respectively. The equation of mass is written as
ou u Ov
T e
while the double-shearing equation is

0z Or z r

=0, (27)

or 0z 0 0

where
oy oy
Q=u— —.
“ or T 0z
As in the plane-strain case, we introduce a streamfunction, this time defined by
10x 10x
= —— = 2
Y= e Y r or (29)

Conservation of mass (27) is now automatically satisfied, and the double-shearing equation

(28) becomes
Xrr (B — €08 200) — 2, Sin 200 + X, (B + cos 2¢)) — %Xr(ﬁ — cos 29))

x50 20+ 980 s — ) = 0 (30)
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2.4 Axially symmetric strain equations for ¢ = 7/2

We can rearrange (25) and (26) in an analogous way to (20)-(21), so that for the special
case of f =1 we may solve for ¢ in terms of

g1
2 (wr - wz cot ’1/1)’

with h = cot v left to satisfy the second order nonlinear partial differential equation (3).

(31)

With h determined, the stresses may be recovered with

pg 1+ h? 1
TP T, —h O T P, —hy
h h?
Ors = —PYT— T e =PI

For highly frictional materials with 8 = 1, the double-shearing equation (30) becomes

1 1
Xrr — 2sz cot Tﬁ + Xzz COtQ w - ;Xr + ;Xz cot ¢ + COSQCQw(erz - szr) = 0.

By substituting h = cot ¢ into this equation we arrive at (5).

3 Lie symmetry analysis

In this section we present Lie symmetries for the systems (2), (4) and (3), (5) and for

each case derive the optimal system of group-invariant solutions.

3.1 Plane strain

We are concerned here with solutions to the system of equations (2), (4), which for

convenience we rewrite:
hzz — 2hhgy + hzhyy = 0,
Xzz — 2R Xzy + hzxyy = hyXy — hyXa-

It can be shown using classical Lie group analysis that this system admits an 8-parameter

Lie transformation group with the 8 associated linearly independent operators

e L VLA
or oy

r, — 9
! oz Yoy ay " "on
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0 0 0 0 0
F5_x8_y_%’ FG—&, F7—h&, PS—X& (32)

(these generators were derived with the algebraic package DIMSYM). For any linear
combination of these operators we may determine three invariants of the particular trans-
formation group and hence derive functional forms for h and x. There are infinitely many
of these linear combinations, so we seek to classify the set of all functional forms into
families whose members are all equivalent to each other.

We define a relation between two invariant solutions to hold true if the first one
can be mapped to the other by applying a transformation group generated by a linear
combination of the operators in (32). Since these mappings are reflexive, symmetric and
transitive, the relation is an equivalence relation, which induces a natural partition on
the set of all group-invariant solutions into equivalence classes. We need only present one
solution from each equivalence class (as the rest may be found by applying appropriate
group symmetries); a complete set of such solutions is referred to as an ‘optimal system’
of group-invariant solutions.

The problem of deriving an optimal system of group-invariant solutions is equivalent to
finding an optimal system of generators (or subalgebras spanned by these operators). The
method used here is that given by Olver (1986), which basically consists of taking linear
combinations of the generators in (32), and reducing them to their simplest equivalent

form by applying carefully chosen adjoint transformations
Ad(exp(el)T; = Ty — €T3, T, + %GZ[D, 0] = ...
Here [I';, '] is the usual commutator, given by
[[;,Ty] = I, — I,Ty;

the list of adjoint operators is shown in Table 1. For brevity we omit the details, and just

state the result that an optimal system of generators is
{Fl + bF6, Fl + bF6 + F7, Fl + Fg, FQ + bF(;, FQ + F7, FQ + Fg, F3 + G,F4 + ng,
F3+GF4:|:F6, F3+(1,(F4+F8):|:F7, F4+G,F1+ng, F4+(1,F1:EF6, F4+GF1+F8:|:F7, F5,

14



T, Ty Ty T, Ts Ts . Ty
| I, Iy Ti3—ely, Ty Ts—ely Ty S Ty
T,| I, Ty [3—ely Tu—ely T Ts S Ty
Ty | ey €T, T4 I, T's Ts |\ Ty
.| Iy €T, T4 I, eTs T eIy Ty
Ts [T+l Ty Iy Ty—els T Te TD;+els Ty
Ig| I, Ty Iy Iy T's Ts I';  Dg— el
r,| I, Ty Iy Tu+ey Ts—elg T I';  Tg—ely
Ty| I, Ty Ty T, s  eTe el Ty

Table 1: Table of adjoint operators. The (7, j)th entry is Ad(exp(el’;))I';, where the I';
are given by (32).

Ts+Tg, Ts+Ty D[3—Ty2tTy+bly, Ty—T,+Ty+T, [3—T4+Ty+T;—T,
[34l5+00s, [3T5£l;, Ts+Dy, [3+T+0s, [sxDi£Dy, T, Tz, Teh (33)

It is straightforward to derive the corresponding functional forms (again, the reader is
referred to Olver (1986), or any standard text on Lie symmetry methods applied to dif-
ferential equations). These functional forms are listed in Table 2. Note that for each
symmetry which contains a plus-or-minus sign, we have taken the plus sign when com-
puting the functional forms. The functional forms corresponding to the minus sign can
be obtained via appropriate discrete symmetries. We also note that the symmetries I,
['; and I's do not correspond to group-invariant solutions. With the unknown functions f
and g determined, the list of functional forms for h(z,y) and x(z,y) in Table 2 represents

an optimal system of group-invariant solutions to the system (2), (4).

15



Operator h(z,y) x(z,y) &
Iy + bl f() bz + g(y) Yy
Ty + 006 £T7 b+ f)z+9()

Iy +Tg e*g(y)

[y + bl f(z) by + g(x) T

IS yf(z) +g(z)

Iy, + Ty eVg(x)

Iy +al'y +0I's z* f(€) z°g(&) y/zH
T3+ aly+ T logz + g(¢)

I3 +a(ly+Ts) £17 249(£), a # —1

[3— (04 +Tg) £ z ' f(y) 2logzf(y) + 29(y) y
T4+ al'y + 0l yf (&) ) z —alogy
Ly+al; £ T logy + g(&)

Ts+aly+Tg+ Ty ylogy f(§) +yg(§)

s —y/z+ f(z) 9(z) z
s+ Ty e¥/%g(x)

I's 1y %f(a:)—%-{—g(z)
[3—-T4+Ty+00g 1) z’g(€) y—logz
I3 —Ty+Ty+£T logz + ¢(&)

I3 — Dyl +T7— Ty 29(€)
I3 +T5 + bl —logz + f(§) zbg(€) y/z —logx
[3+T5+T; —Llog’z+ [1f(&)dx+ g(¢)
Iy T4 —z + f(§) 9(§) y —2%/2
[s+ T +Tg e*g(£)
I3+ 1y —52° + [ f(€) dz + g(¢)
I, I'7, I'g N/A N/A N/A

Table 2: Optimal system of operators and functional forms for plane strain.
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3.2 Axially symmetric strain
We consider the system (3), (5) and reproduce it here for convenience,

Ber — 2hh,, + h*h,, — —(h, — hh,) = 0,

IFES | =

Xrr — 2hX'r'z + hQXzz - (X?‘ - hXZ) = hTXZ - hZXT'

It can be shown that the Lie point symmetries of this system are spanned by the seven

basis vectors

0 0 0 0 0
Ty=,-, Ta=r—+z—, Tg=z—-+hy
e R R R L P T
o 0 0 0 0
F4 = 7’& - %a F5 - &, FG - h&a F7 - Xa’ (34)

for which the corresponding adjoint operators are shown in Table 3.2. Employing the

T, Ty Ty T, Ts Te T,
| Ty, Ty—el, Ty3—ey, Ty Ts Te T,
Ty | ey Ty Ty I, T's Te Iy
Ty [ ey Ty Ty ey Ty e <Tg Iy
r,| I, I, TDy—ely T Is Teg+els Ty
Ts | Iy Ty Ty T, Ts I's  Dy—els
T | Ty Ty Ta+els Ty—els T I's  DIy— el
r, | T, Ty Ty T, eTs T T,

Table 3: Table of adjoint operators. The (7, j)th entry is Ad(exp(el’;))I';, where the I';

are given by (34).

method used by Olver (1986), an optimal system of one-dimensional subalgebras of (34)

is found to be generated by

{Fl —1—bF5, F1:|:F6, F1:|:F7, F2+aF3+bF7, F2+CLF3:EF5, F2+CL(F3+F7) :i:re,,
Fg +bF7, F3 :i:rg,, F3+F7:|:F6, F4+GF1, F4:|:F7+GF1, F4+GF1 :|:F6,
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Fg—ng:F1+aF7, FQ—PgirliP5, PQ—ngrl—P7iF6, FQZ‘ZF4+GF7,
F2 + 1—‘4 + F67 F57 F67 F7}’ (35)

where a and b are arbitrary constants. The corresponding functional forms are presented
in Table 4, where it is noted that, as with the plane strain case, we only take the plus
option whenever there is a plus-or-minus sign. The other functional forms may be found

by applying appropriate discrete symmetries.

4 Exact solutions for the stress fields

As mentioned earlier, for quasi-static flow the equations for the stress field decouple
from those which describe the velocity field. As a consequence, (2) and (3) may be solved
without reference to the velocity equations. In this section we consider the optimal system
of group-invariant solutions to each of (2) and (3) separately, and derive exact solutions

which have not been considered previously in the literature.

4.1 Plane strain

It is clear from Table 2 that the optimal system of group-invariant solutions to (2) have

the corresponding functional forms

1. h=f(y), 2. h=f(x), 3. h=2f (xayﬂ) , 4. h=yf(x—alogy)
Y 1 Y
5. h:—g—i—f(x), 6. hz;f(y—logx), 7. h:—logx—i—f(;—logx),

8. h=—z+ f(y— iz%). (36)

Some of the exact solutions for the functional forms in families 1-5 have been determined
previously and for these we simply state the results. The rest are yet to be explicitly
considered (as noted in the Introduction, families equivalent to 1-8 have been examined

by Johnpillai et al. 2004 using a different formulation), and we do so below.

Family 1. The solution here is f(y) = Cyy + Cs, where C; and C, are constants
(Thamwattana & Hill, 2003a).
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Operator h(r, z) x(r, 2) '3
N f(r) bz + g(r) r
Ty + T 2f(r) +9(r)
r,+Iy e*g(r)
Iy +al's + bI'7 rf(€) r’g(€) z[ret
Ty +als £ T logr +g(¢)
Iy +a(ls+T7) £l r’g(€), a # -1
[y — (T3 +Ty) + T r=1f(z2) Llogrf(z) + tg(z) z
T + bI 2f(r) 2g(r) r
'3+ T log z + g(r)
s+ 74T zlogzf(r) + zg(r)
[y +aly —z/(r+a)+ f(r) g9(r) T
Ty+aly £T e/ rta) g ()
Iy+alt +T% r%ﬂf(r)—ﬁ—kg(r)
[y — 3£y + 00y 11(&) rbg(€) z—logr
Iy —T3+T) T logr +g(¢)
[o—Ty+T —T7£Ty r9(8)
[y £ Ty + 00y —logr + f(&) rbg (&) z/r —logr
[y+T,+Tg —Llog®r + [1f(&)dr+g(¢)
['s, I'g, I'7 N/A N/A N/A

Table 4: Optimal system of operators and functional forms for axial symmetry.
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Family 2. The solution here is f(z) = Cix + Cy, where C; and C, are constants
(Thamwattana & Hill, 2003a).

Family 3. In what follows s is a parameter, I(s) is the integral

s 65/2
I(s) = / “ds+ (37)

51/2

and C; and C, are constants of integration. For this family the function f(&) satisfies the

nonlinear ordinary differential equation

[f + @+ DEPf" +[2f = (a—2)(a+ DElf +ala—1)f =0, (38)

where & = y/x%"1. This equation can be solved exactly for four different values of a. For
a =—1, h = f(y)/x, where f is given by the parametric solution (Thamwattana & Hill,
2003a)

f=Cys?e?, y = —2CoI(s). (39)

For a = 0, we have h = f(y/x), and f is given by (Hill & Cox 2001)

r=ci), e=Y=c,(%7-109). (40

SHES

and for a = 1, the functional form is h = zf(y/x?), where f is given parametrically by

(Thamwattana & Hill, 2003b)
2e°/? y 2e%2 11—
f=0s (517_](8))’ §:p:_%cz (W'i‘—l(s))- (41)

For @ = 2, the invariant solutions are of the form h = z? f(y/x?). This family is new,

and f satisfies the equation

(f+3)°f"+2f1+ f)=0, (42)

which admits the single Lie point symmetry £ 9/0¢ + f0/0f. It follows that we may
reduce (42) to
2

a*T dT
(T + 3)2ﬁ + (T +3)*+ 27|z + 2T(T +1) =0,
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with the use of the canonical variables T = f/¢, S = log&. By making the substitution
T'(S)+T(S)+1=n(T), we arrive at

d
(T +3)%(n—T — 1)d—;+2Tn:0,

which, after introducing the new variable « via T = —3k/(1 + k), becomes

de  —k(n+2)+1-n

d_n N 2nk
The further substitution kK = —u — %17 gives rise to the Bernoulli-type equation
dn 2u |
— = n= .
du 2u+1 2u+1

This equation is easily integrated, and by working backwards we obtain, after some alge-

bra, the parametric solution

s/ _ — s/ —
f=02<26—2+1 SI(S)), 52_%02[2(5 2)e 2+3 8[(8),

s1/2 s
where I(s) is given above by (37).

Family 4. These are invariant solutions of the form h = yf(z — alogy), where f must

satisfy the equation
' +af)? = ff(2+af) =0,

and primes are used to denote differentiation with respect to £ = x —alogy. By applying

the transformation u(f) = f'(£), we arrive at

du _ (2+af)f
df  (1+af)?

which is integrated to give
__ [ 2
u = 1 T af -+ Cl?

where ('] is an arbitrary constant. Further integration reveals the solution

2012 2
€ = baloglf* +C2(1+af) 4 — oL {t (M) - g} O (43)
1

Ci1\/4 — a2C? Ci\/4 — a2C?
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where C, is another constant. This solution is valid provided a®?C? < 4, however for values
of C; outside this range we may rewrite (43) accordingly. We note that for a = 0 the

solution simplifies significantly to

f(.fC) = 01 tan(Cla: — 0102).

Family 5. The solution here is f(z) = C;/x + Coz?, where C; and C, are constants
(Thamwattana & Hill, 2003a).

Family 6. These are solutions to (2) of the form
1
h=—f(y—logx),
x
which correspond to family 6 in (36). Here f satisfies the ordinary differential equation
(f+D* "+ @f +3)f +2f =0,

where the primes denote differentiation with respect to the variable ¢ = y — logz. By
making the substitution u(f) = f'(£) we obtain

(f+1)2ufi—;f+(2f+3)u+2f:0,

which, upon making the further substitution w = f + 1, may be rewritten as

du 1 2 1
il —~)=o0. 44
u(dw+w2>+w<u+1 w) 0 (44)

Now the quantity within the first set of brackets in (44) is the derivative of the quantity
in the second set, so further simplifications can be made by setting s = u+1 — 1/w. The

result is the linear equation

dw n s—1
_ w = —
ds 2s 2s’
which has the solution
f=w—1=-2+41s2e72](s), (45)

where I(s) is the integral defined in (37). It follows from
¢ w

ds  2s
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that the parametric solution is completed by

s ,—t/2

e
g:y—logx:—%logs—i-i/ Wl(t)dt-l-cz, (46)

where (5 is a constant of integration.

We note there is a particular solution v + 1 — 1/w = 0, which corresponds to

y+logx =logf— f+Cs.

Family 7. These are group-invariant solutions of the form
_ Y
h=—logx + f (— —logx) ,
x
where f satisfies the ordinary differential equation
(f+E+D2 "+ (2f +26+1)f +1=0,

with primes denoting differentiation with respect to & = y/x — logz. To simplify this
equation we first set w = f + £ 4+ 1, which yields

w'w® + (2w — 1w’ —2(w — 1) =0,

and then introduce the function u(w) = w'(§), so that

du 1 2 1
u(%—ﬁ)—l-E(u—l-l—E)—O. (47)

This ordinary differential equation is of the same form as (44), and the solution method

is the same. The resulting parametric solution is

fo—tm14 S0, = [ CordeeC
- 251/2 ) — T 13/2 2

where C; and C, are constants, and I(s) is the integral defined in (37).

We note the particular solution ¢ = — f+Cse™f, with C5 a constant, which corresponds

tou—1+1/w=0.

Family 8. We consider here invariant solutions h = —x + f(y — %:L'Q), corresponding to

family 8 in (36). The function f satisfies the ordinary differential equation f”f? — f' = 0,
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with primes denoting differentiation with respect to & =y — %xz. This equation is easily
solved by setting u(f) = f'(£), so that «'f2 = 1. Straight-forward integration leads to the
implicit solution

£= -(f +1og|Cf — 1) + s
1

where both C; and Cs are constants of integration.

4.2 Axially symmetric strain

The optimal system of group-invariant solutions of (3) consists of the functional forms

(see the second column of Table 4)

. z _ _ %
1. h=f(r), 2. h=r f<—ra+1), 3. h=2f(r), 4 h=———t]r),
1
5. h=-f(z—1logr), 6. h:—logr+f<f—logr). (48)
r r
Here the families 1, 2 (with ¢ = —1,0,2) and 4 (with ¢ = 0) have been considered

previously. The rest are new, and we consider them in detail below.

Family 1. The solution here is f(r) = Cir? 4+ Cy, where C; and C, are constants
(Thamwattana & Hill, 2003a).

Family 2. For this family the function f satisfies

[f +(a+ D&+ [3f = (a—3)(a+1)Ef +ala—2)f =0, (49)
where & = 2/r%"l. In the following solutions for the values a = —1,0,2,3 we use the
integrals

s 63/3 s 65/3
Kl(S) :/ ﬁds—i-Cl, KQ(S) :/ mdS'f—Cl, (50)

where (' is a constant of integration.
For a = —1 we have h = f(2)/r, where f is given parametrically by (Thamwattana &
Hill, 2003a)
f=0Cys'Be?, 2= —10,Ky(s).
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For a = 0, the functional form is h = f(z/r), and f is given by (Cox & Hill 2003)

365/2
r=cmis), e=0 (20— ki)

The functional form for a = 2 is h = r?f(z/r*). Here the solution for f is (Thamwattana

& Hill, 2003b)
3es/3 2 L 3¢ 25
f=0C (W - KQ(S)) , =5 =—30 (W + TK2(5)> :
The solution for @ = 3 is new. Here, the corresponding functional form is h = 73 f(z/r*)

and the ordinary differential equation (49) is just

(f+4)°f"+3f1+ f')=0.

This equation is almost identical to (42), and the solution procedure is the same. We

omit the details, and just state the parametric solution

3¢t/ 1—s 3(s—3)e 44—
f = CQ (SlT + TKI(S)) y é-: _iCQ ( ( 84/3) + Kl(S)) y

where K(s) is defined in (50).

Family 3. For this family h = zf(r), where [ satisfies

"= @f+1/r)f + P r=0. (51)

We observe that on multiplying equation (51) by 1/r, the equation may be integrated to
yield the Riccatti equation
J==Cir+ f,

which may be solved in the usual way to obtain (Polyanin & Zaitsev 1995)
f(r)=1d'(r)/u(r), wu(r)=CyAi(Cir)+ Bi(Cir),
where Ai(z) and Bi(z) are Airy functions (Abramowitz & Stegun 1970).

Family 4. The functional form for the operator I'y + al'y is h(r, 2) = —z/(r +a) + f(r).

Upon substitution of this functional form into (3), we arrive at the linear equation
(r+a)2[rf" — ] (3r + a)f = 0. (52)
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On using MAPLE, the solution of (52) is given by

_ Cy +Cy(3r® + 8ar + 6a°)r?
N T+ a

f(r)

: (53)
where '] and Cy arbitrary constants of integration.

Family 5. We consider the functional form
1
h(r,z) = ;f(z +logr)

from family 5 in (48), and after substituting it into the partial differential equation (3),
we arrive at

(f =12+ @Bf —4)f +3f =0, (54)
where the primes denote differentiation with respect to the variable £ = z + logr. This
example is evidently analogous to family 6 in Section 4.1, and we treat it the same way.

Equation (54) may be transformed into
w?w" + (3w — )w' +3(w+1) =0

by making the substitution w(§) = f — 1, which itself may be reduced to

du 1 3 1
-2 el 14— =
u (dw w2> + ” <u+ + w) 0, (55)

by setting u(w) = w'(€). A further transformation s = v + 1+ 1/w is used to derive the

linear equation

dw n s—1

- w = —,
ds 3s 3s

which has the solution

f=w+1=1s8ePK(s),

where K1(s) is the integral defined in (50)). By integrating

s _1-g
ds  3s ’

we derive
s ,—t/3

§=z+logr=3logs— é/ etQTKl(t)dtnLCz,
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where (5 is a constant of integration.

We note there is a particular solution v + 1 + 1/w = 0, which corresponds to

z+logr=logf— f+ Cs.

Family 6. Here group-invariant solutions

h:—logr—%f(z—logr),
r

from family 6 in (48) are considered. The function f satisfies the ordinary differential
equation

(FHE+D2 "+ BfF+364+2)f +2=0,

where primes denote differentiation with respect to £ = z/r — logr. This equation may
be transformed into

w'w® + (3w — 1w’ — 3(w — 1) =0,

with w = f+ £+ 1, and then to

du 1 3 1
ul>——-——]+—({u—-1+—]=0
dw w2 w w

with u(w) = w'(§). Again, this ordinary differential equation is very similar to (44), (47)
and (55). By using analogous solution methods, it is found that the parametric solution
consists of the two relations

675/3 . s e—t/3
f:—€—1+—381/3K2(3)’ 5:—5/ —t4/3 Kg(t) dt+02,
where Cy is a constant, and Kj(s) is the integral defined in (50).

We note there is a particular solution &€ = —f + Cse™/, with C; a constant, which

comes from u — 1+ 1/w = 0.

5 Some velocity fields

The previous section was concerned with the optimal system of group-invariant solutions

to each of the single nonlinear partial differential equations (2) and (3). These equations
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govern the stress fields for two-dimensional and axially symmetric granular flows for highly
frictional materials. For each of these solutions there are group-invariant solutions for the
velocity fields, the functional forms for which are presented in Tables 2 and 4 (assuming the
velocities are governed by the double-shearing theory). We may substitute these functional
forms for the velocity fields into (4) or (5) (along with the appropriate solution for ) to
yield ordinary differential equations, which are linear with non-constant coefficients, and
are often too difficult to solve analytically. In this section we study some examples of
these velocity fields, indicating typical differential equations which are encountered, and
solving them where possible. We emphasise that examples of velocity fields have been
chosen here, and that it is possible to solve for some of the functional forms not presented

below.

5.1 Plane strain

Here we consider the accompanying velocity field for families 3 and 6 of (36), where the
functional forms for these fields are given in table 2. For family 3 we have success in

solving the resulting differential equations exactly, while for family 6 we do not.

Family 3 with y = 2°¢(¢). First we consider the pair of functional forms h = 2% (),
x = 2°g(€), where & = y/z*"!. Here f satisfies (38), while g satisfies the linear ordinary

differential equation
[f+ (a+1)EPg" + (a—2b+2)[f + (a+ 1)E]g' + b(f' +b—1)g =0, (56)

where the dashes denote differentiation with respect to £&. In the Section 4.1 we presented

solutions to (38) for the special values a = —1,0,1,2. We list the corresponding solutions

to (56) here, which are found with the help of the symbolic manipulation package MAPLE.
For a = —1, f is given by (39), and (56) reduces to

452@

T 2s(s — 2b)@ —b(s—b+2)g=0,

ds
which has the solution

g = S_b/2(0365/2 + 04)
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For a = 0, the functional form f is now given by (40). The differential equation (56)

becomes

2
432% —2s(s —2b— 1)% —b(s—b+1)g=0,

which can be solved to give

g=s"CsI(s) + Cy). (57)

For a = 1 the ordinary differential equation is

& d
4521 (s) 5 + 25[(2b+ 1)1 (5) — 225/ 22 - bl(b — 1)I(s) — 2¢°/252)g = 0,

and the solution is given by
g =5 2[C5(2e*? — s21(s)) + C4].
Similarly, for a = 2 (56) becomes

d’g dg
2 0.8/2.-1/2 _ 5/2 —1/2
45°[1(s) — 2€°/*s ]d82 +4s[bI(s) — (2b+ 1)e*/=s ]ds

+b[(b — 2)I(s) — 2(b—1)e*/2s71/?]g = 0,
and the solution is

g =s""2[C5(25"%e*? + (1 — 5)I(s)) + C4).

The solutions for a = 1 and a = 2 can be checked by substitution (with MAPLE, for

example).

Family 3 with xy = logz+g¢(£). Now we consider the pair of functional forms h = z°f (),
x = logz + g(&), where & = y/z%"! The function f satisfies (38), but in this case g is

given by the solution to
[f +(a+1)Pg" + (@+2)[f + (a+1)&lg' + f =1 =0, (58)

where, again, the dashes denote differentiation with respect to £. We solve (58) for

a = —1,0,1,2 by integrating directly, since (58) is first order in ¢'.
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For a = —1 the functional form g satisfies

d? d
4s2d—sg — 252d—§ =542,

which implies g is given by
g=—3logs+ Cse*? + C,4

For a = 0 equation (58) reduces to
d*g dg
2 _ :
4ds @—28(8—1)%—8—%1,
here the solution for g is
g= —%logs + Cs31(s) + Cy
For a =1 we have

4521(5)@ +2s[I(s) — 265/251/2]@ = I(s) + 2¢*/25"/?
ds? ds ’

with
g=—1logs— Cs(s"%I(s) — 2¢°/*) + C4

and finally, for a = 2 (58) becomes

d? d
25%[1(s) — 263/28_1/2]d_sg _ 26s/281/2d_g = I(5) — e¥/2571/2,

which can be solved to give

g=—3logs+ Cs(sI(s) —I(s) — 252e5/%) + (.

Family 3 with x = logzf(y)/x + g(y)/z. There is one more functional form y =
logzf(y)/x + g(y)/z, which corresponds to a = —1 (see Table 2). Here g is the solution
to

F29" +3fg = (f'=2)g— f(f' +3) =0, (59)

where f is given by (39). With this solution for f, the linear equation (59) reduces to
2

d d
452d—§ —2s(s+ 2)d_g +(s+3)g=—(s—2)s"%er/?
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which has the solution (MAPLE)

g =s"%e?(=Llog s + C3) + Cys'/2.

Family 6 with x = 2°¢(¢) and x = logz + g(£). For family 6 the functional form for
his h = f(&)/x, where £ = y — logz, and f is given by (45)-(46). We may investigate

solutions for the streamfunction of the form y = 2°¢(£), where g satisfies

d? d
4s2[1(s)e %2512 — 2)d—§ + 25[(2b — s+ 2)I(s)e /252 + 2(s — 2b — 1)]d—g

+b[(b+ 5 — 2)I(s)e %252 —2(b+5—1)]g =0
and solutions of the form xy = logz + g(&), where g satisfies

d? d
452[I(s)e=*/?s1/? — Q)d—sg +25[2(s — 1) — (s — 2)1(8)675/281/2]d_.z

=2(s—1) — (s — 2)I(s)e */%s'/2, (60)

In this example the differential equations appear too difficult to solve exactly, due to the

complexity of the coefficients, although we may certainly integrate (60) once to give
b y ) g y y g g

. (s =2)I(s) — 25'/%e%/? e’l? /S I(t)
— 2¢5/?)

- _ ~t/2
283/2(s1/21(s) — 2e5/2)  s1/2(s1/21(s) 2 © dt+ Cs.

5.2 Axially symmetric strain

Here we consider the accompanying velocity field for family 4 of (48). The functional

forms for these fields are given in Table 4.

Family 4 with x = g(r). The equation for g in this case is simply
r(r+a)g”" — (2r+a)g =0,

which has the exact solution g = C3(2r® + 3ar?) + Cy.

Family 4 with x = /"t ¢(r). This functional form is more complex than the previous

one. Here, the governing equation for g is
r(r+a)’g" — (r+a)2f +r+a+1)g' +[rf*+ @Br+a)f —r(r+a)f]=0,
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where f is given by (53). Even with the help of MAPLE we are unable to solve this

equation exactly.

Family 4 with x = .2 f(r) - 2(;;—2(1)2 + g(r). For this functional form g satisfies

r(r+a)’g" — (r+a)2r+a)g —3r(r+a)ff' + (2r +a)f* =0,

which is of a similar form to the last equation. However, this time we are able to solve

exactly, with the solution given by

20102@4 + 012 —+ CL8022
2(r + a)?

+1C3r(21r° + 54ar* + 15a°r® — 28a®r® — 15a*r — 6a°).

g = C3(2r® +3ar®) + Cy — — C1Cor(3r + 2a)

6 Application of solutions - flow through a wedge

In this section we briefly illustrate an application of the group-invariant solutions consid-
ered above. The problem is flow through a two-dimensional wedge (see Figure 1), which

can be used to model the discharge of material near the outlet of an industrial hopper.

y

4T

gravity

O=arctan &

Figure 1: Schematic for mass flow through a wedge-shaped hopper

Suppose the discharge is operating under mass flow so that the entire mass of granules

is in motion, as opposed to funnel flow where flow is restricted to a central region. In the
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neighbourhood of the hopper outlet, the stress field can be accurately approximated by
the so-called ‘radial stress field’ (due to Jenike 1964), as mentioned in the Introduction.

The required form of solution is

and after substituting these expressions into (14)-(15), we arrive at a system of two coupled
first order ordinary differential equations in F' and W. The reader is referred to Jenike
(1964) for details, noting that care should be taken with the different coordinate system.

Now suppose that the angle between the hopper wall and the z-axis is v as shown in
Figure 1, and that a Coulomb friction condition holds on the wall, with the angle of wall

friction given by p. It can be shown that the friction boundary condition yields

sin
= 2
sinqﬁ) on ¢ =tan~, (62)

provided that p < ¢. For the special limit ¢ = /2 this condition reduces to

wzv—%,u—%arctan<

V=7 p (63)

The stress and velocity fields are symmetric in the hopper, and thus we need only consider

flow in the range tany < & < co. The condition of symmetry is
Y —7m/2 as € — oo (64)
From (61) it is clear the required functional form for the special case of ¢ = 7/2 is

h=f(&), &=y/z,

which is family 3 in (36) with a = 0. The exact solution is given by (40) with (37), and is
due to Hill & Cox (2001). After applying the boundary conditions (63)-(64) we find that
the constants of integration are given by

tany

Ci=0, Cy=
2e%0/2 /53/% — I(s0)

bl
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where here sy denotes the value of the parameter s corresponding to & = tany, and is the

root of the transcendental equation
[2e%0/258/* — I(s0)] cot(y — ) coty — I(se) = 0. (65)

Again, the reader is referred to Hill & Cox (2001) for further details.

Shown in Figure 2 is the dependence of the stress angle ¢ and the angle arctan ¢ for
three different values of the angle of internal friction ¢ = 7 /6, 7/3 and 7/2. For this figure
the chosen values of v and p are 57/12 and 7 /12 respectively. The plot for ¢ = 7/2 is
taken from the exact solution (40) with the constants C; and C, given by (65). To obtain
the other two plots, the system of equations found by substituting (61) into (14)-(15)
is solved numerically with a shooting method subject to the boundary conditions (62)
and (64). It is seen that even for values of ¢ as low as ¢ = 7/3, the exact solution (40)

corresponding to ¢ = 7/2 provides a good approximation.

1.51

1.4

1.31

1.21

1.3 135 14 1.45 1.5 1.55
arctan E

Figure 2: Typical plots of the stress angle 1) versus the angle arctan& for mass flow
near the outlet of a wedge-shaped hopper. From top to bottom, the plots are drawn for
¢ = m/2, /3 and 7/6 respectively. In all cases the hopper angle v = 57/12 and the angle
of wall friction p = 7/12.
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From Table 2 we see that there are possible velocity fields which have streamfunctions

of the form
x=12'g(§), &=yl (66)
Here g is given exactly by (57), where s is the same parameter used in the stress field

above. For convenience we employ polar coordinates (r, 0), defined by
r= (224 y»)"?, tanf =y/z =¢,

and define the velocity components in the r and # directions to be v, and vy respectively.
With the use of (66) these components can be written as

bg& ) bgx®~1
) 0 — _(

Vp = 2! ((1 + 5)1/291 - (1 n 5)1/2 1+ 5)1/2-

For boundary conditions we wish to have vy vanish both on £ = tan~y and as £ — oo. It
turns out the only nontrivial solution with this property is the one with b = 0, implying

that vy is identically zero, and that v, is given by

V 1 2e%/? 12
U,:ES{C—%—F(SIT—I(S)) . (67)

Here we have set C3 = —V//4C, forcing rv, — V as £ — 0o. The constant V' is arbitrary,
and cannot be determined within the current quasi-static framework. We note that (67)
was first derived in Cox & Hill (2004).

The dependence of rv, on arctan & for three different values of ¢ is shown in Figure
3. The plot for ¢ = /2 is drawn using the exact solution (67), while the other two
curves are computed via a numerical solution to the full equations. The details of the
calculations for general ¢ are straightforward, but are not presented here, and instead we
refer to either Spencer & Bradley (1996) or Cox & Hill (2004). Again, we note that the
exact solution for ¢ = 7/2 is in close agreement with the numerical one for ¢ = 7/3,

which is a more realistic value for the angle of internal friction.
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Figure 3: Typical plots of the quantity rv,/V versus the angle arctan for mass flow
near the outlet of a wedge-shaped hopper. From top to bottom, the plots are drawn for
¢ = m/2, /3 and 7/6 respectively. In all cases the hopper angle v = 57/12 and the angle
of wall friction p = 7/12.

7 Discussion

For a granular material which satisfies the Coulomb-Mohr yield condition, the stress
field for gravity-driven quasi-static flow is governed by a system of two highly nonlinear
coupled partial differential equations for the invariant ¢ and the stress angle 9 (equations
(14)-(15) in plane strain and equations (25)-(26) for axially symmetric flow). With the
added assumption that the flow conforms to the non-dilatant double-shearing theory,
the associated velocity field is governed by a linear partial differential equation (with
non-constant coefficients) for the streamfunction x (equation (19) for plane strain and
(30) for axially symmetric flow). Due to the high level of nonlinearity involved in these
equations, analytic progress is rare, and exact solutions can only be found in the most
simple geometrical cases.

For the limiting case in which the angle of internal friction ¢ = /2, the two equations
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for the stress field can be combined into one (equation (2) for plane strain and (3) for
axially symmetry flow). This equation is still nonlinear, however there are an infinite
number of exact group-invariant solutions which can be found with the use of Lie sym-
metry methods. For each of these solutions for the stress field, there are exact solutions
for the streamfunction. In this paper we systematically classify all these group-invariant
solutions into equivalence classes, and present the minimal set or “optimal system” of
such solutions. In the process we have been able to identify a number of exact solutions
which are new, and to illustrate the potential utility of these solutions, the problem of

mass flow through a two-dimensional wedge shaped hopper is examined.
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