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Abstract. A system of two nonlinear differential equations with an irregular type
singularity not satisfying the Poincaré condition is studied. A two-parameter family of
bounded solutions is constructed by the fixed point technique. The domain of holomorphy
of the set of functions appearing in the fixed point technique is to be given by a family
of the product of two circles over every point in a domain of independent variable. The
radius of one circle depends on the argument of the independent variable only, while
that of the other essentially depends on the independent variable itself.

1. Introduction.

1°.  Assumptions. In a previous paper [6], the author studies a system of two
nonlinear differential equations of the form ’
T T A P R o S LA N ey S

dx dx

under the assumptions that

(1) xis an independent variable;

(i1) u and v are positive numbers and their ratio is irrational;

(ili) « and B are complex constants and there is a positive quantity x satisfying
the inequalities

(1.1 U+ kRa>0, —v+xkRP>0;
(iv) f(x, y, z) and g(x, y, z) are holomorphic and bounded functions of (x, y, z) for
(1.2) Ix|<a, |yi<b, |zI<b,

and their Taylor series expansions in (y, z) contain neither the constant terms nor the
linear terms, where a and b are small positive constants.

2°. Review of a previous result. Under these assumptions, the following was
proved:

PROPOSITION 1. Let ¢, be a preassinged sufficiently small positive number. There
exists a formal transformation of the form
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(1.3) y=u+ Z ij(x)ujvka z=v+ Z ‘]jk(x)“jvk,

jtkz2 jtkz2
which formally changes the equations (A) to the linear equations
du

d
(A" x?—=(u+oax)u, x2l=(—v+ﬁx)v.
dx dx

The coefficients p(x) and q;(x) are holomorphic and bounded functions of x for a domain

of the form

(1.4.F) <m—g,, O<|x|<a’

$n
argx ¥ —
8 2

and admit asymptotic expansions in powers of x as x tends to zero through the sector
(1.4.F). a’ is a small positive constant.

For the proof of the convergence of the formal transformation (1.3), the following
proposition played an important role. Namely the double power series appearing in
(1.3) has the particular property which is clarified in the proposition below:

PROPOSITION 2.  For each fixed j, the power series in a single variable ) ;"_ . p(x)v*

and Z,ﬁ"zoqjk(x)u" are uniformly convergent for

(1.5.F) argx$%|<n—ao, O<|x|<a', |ul<b',

where a’ and b' are small positive constants depending on j. Similarily, for each fixed k,
the power series Z;’O:o pax)u’ and Z;‘;O g (X)u’ in u are uniformly convergent for
<m—gg, O0<|x|<a', |ul<b',

(1.5.F) argxi%

where a’ and b’ are small positive constants depending on k.

By the help of this proposition, [6] has introduced truncated differential equations
of special type. After proving the existence of a solution for these equations, we have
obtained the following main theorem.

THEOREM A. Let g, be a preassigned sufficiently small positive number. The formal
transformation (1.3) is uniformly convergent for (x, u, v) in a domain of the form

(1.6.F) <m—gy, O<|x|<ay, |ul<by, |vl<bg,

ar x?n
& 2

where a, and by are small positive constants. Namely, there exists a transformation

(1.7 y=9(x, u, v), z=¥(x,u,v),
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which changes the equations (A) to the linear equations (A') in the domain (1.6.F). The
Taylor expansions of the functions ®(x,u,v) and ¥Y(x,u,v) coincide with the power
series expressions (1.3).

3°.  nnonlinear equations. In order to extend Theorem A to the case of n nonlinear
differential equations, we consider the case where y and z are vectors and, in particular,
the y, v, « and § are diagonal matrices. Such equations are written simply in the form

(B) x? é@:(lnwnxln(a»y 1)
X

Here, x is a complex independent variable; y is an n-vector; 1,(u) and 1,(a) are n by n
diagonal matrices, respectively, with diagonal entries {y;} and {a;} which coincide with
the entries of the n-vectors u and o; f(x, y) is an n-vector with entries holomorphic and
bounded in (x, y) for a domain of the form
|x|<a, [|yll=max |y;|<b
15jsn
and their Taylor series expansions in powers of y begin with terms of degree at least

2. We assume that
(i) the y; are nonzero real numbers independent over the field Q of all rational

numbers;
(i) the a; are complex numbers and there is a positive quantity x such that
(1.8) i+ Ro;>0 for all j.

REMARK. When a factor x appearsin the nonlinear term, such a system of nonlinear
equations was already studied in [5].

For an arrangement (p,, p,, - - *, p,) of nonnegative integers p; and an n-vector z
with entries {z;}, let |p|=p;+p,+ - +p, and zP=25'z5>- - -zE» In the same way as
in Proposition 1, it is not difficult to prove the following:

PROPOSITION 3. There exists a formal transformation of the form

(1.9) y=u+ ), gxu”,

Iplz2
which formally changes the equations (B) to the linear system
d
®) x2S (1, + X1
dx
The coefficients g ,(x) are holomorphic and bounded functions of x in a domain of the form

(1.10.F) <T—¢&p, 0<|x|<ay,

$TL’
arg x + —
8X+5
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and admit asymptotic expansions in powers of x as x tends to zero through the sector (1.10).

In order to prove the convergence of the formal transformation (1.9) by utilizing
the method as in the proof of Theorem A, the following problem will have to be solved:

PROBLEM. For any fixed p;, the power series in the entries of the (n—1)-vector

z2=(zy, U Zi1s Ziwts T s Zy)

(111) Z gp(x)éﬁ for ﬁz(pls ”'apj—lﬂpj+1’ '.'¢pn)

Bplz2

is convergent for

(1.12.F) <n—g, O<|x|<a”, |Zll<b”.

ar in
xI
& 2

Here a" and b" are small positive constants depending on the suffix j and the power
exponenis p;.

If we could solve this problem, then the proof of the convergence of the formal
transformation (1.9) would be carried out in the same way as for the case of n=2. For
n=3, however, it seems to be very difficult to solve this problem directly. So, we are
forced to study a different method for the proof of the convergence of even the formal
transformation (1.3).

In this paper, we prove Theorem A by a different method which will be applicable
to the proof of the convergence for the case of n=3.

2. New arrangement of a formal solution. The equations (A) are given by

d d.
@2.D xzd—i:(,u+ax)y+f(x,y,z), xzd—iz(—v+ﬁx)z+g(x,y,z).

We have already proved the following:

THEOREM 1. There exists a formal transformation of the form

(2.2) y=u+ Z ij(x)ujvk, z=v+ ) qjk(x)ujvka

jtkz2 jrkz2

which formally changes the equations (2.1) to the linear equations

d d
(2.3) xz—uz(u+ax)u, xz—liz(—v+ﬂx)v.
dx dx
The coefficients p (x) and q;(x) are holomorphic and bounded functions in x for a domain

of the form
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(24.7) argxizzr—‘<n—ao, O0<|x|<r

and admit asymptotic expansions in powers of x as x tends to the origin through the sector
(24.7), r’ being a small constant.

We rearrange (2.2) in powers of u:

(2.5) y=u+ Y Px, o', z=v+ .ZO Q;(x, v)u?
=

j=o0

where the coefficients P,(x, v) and Q/(x, v) are expressed as power series in v:

(2.6+)) Pix,0)= Y puv*,  Qilx )= X quvt.

kj+k22 kj+kz2
We prove the following:

THEOREM 2. The coefficients Pj(x,v) and Q;(x,v) are holomorphic and bounded
functions of (x, v) for a domain of the form

2.7.F) <MT—¢gy, O<|xi<ry, |vl<ry,

i7t
argx¥—
g 2

so that the power series (2.6-j) are uniformly convergent. The ry and r, are independent
of J.

To prove this, regard (4, v) as a holomorphic general solution (U(x), M(x)) of the
equations (2.3) such that (U(x,), V(xo))=(uy, vg), where x, has to be restricted to the
domain (2.4. F). Substitute (2.5) for {y, z} into the equations (2.1) and rearrange both
sides of the resulting equations in powers of u. Then one can find the differential
equations which determine those coefficients. The equations for the pair {Py(x, V(x)),
Qo(x, V(x))} are nonlinear, while the pairs {P;(x, V(x)), Q;(x, V(x))} for j=1 are linear
equations.

In order to derive those equations, observe that

d au & dP.(x, V ] du )
2 2y Y <x2 ~—’(Q+Pj(x, V)-Lx2 —)U’
dx dx j=o dx U dx

(2.8)

=(u+ax)U+ i (x2 ﬁ.%K)—+j(u+ooc)Pj(x, V)> U,
; X

i=0

(u+ax)y+f(x,y, 2)=(u+oax)U

+ i (n+oax)Pi(x, VYU +f(x, Po(x, V), V+ Qo(x, V))
=0

(2.9)
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s

+ 2 (C(x, VIPi(x, V)+ D(x, V)Q,(x, V)+G;(x, V))U’ .

it

ji=1

Here,

C(X, U):’sl (X, Po(x’ U)a U+ QO(X’ U)) k]
(2.10) Y
D(x, v)=g (x, Py(x, v), v+ Qo(x, 1))
z

and, in particular,

(2.11) C(x,0=0, D(x,0)=0.
The Gj(x,v) are linear forms of the functions (3% f]dy“dz°)(x, Po(x, v), v+ Qq(x, v))
for a+b<j whose coefficients are polynomials in {Q,(x,v), - -, Q;_(x,v), Py(x, ),

++, Pi_y(x,v)}. In quite a similar way, we can derive similar equations, by differ-
entiating the second power series expression of (2.5), from the second equation of (2.1)
by defining the functions E(x, v), F(x, v) and H;(x, v), which are respectively similar to
the functions C(x, v), D(x, v) and G;(x, v).

Hence, the pair {Py(x, V(x)), Qo(x, V(x))} has to satisfy the nonlinear differential
equations

dP
x2 dx° =(u+ax)Po+ f(x, Po, V(x)+ Q) ,

d
x? _dQToz(—wrﬁX)Qo+g(x, Po, V(x)+ Qo) -

(2.12)

For j=1, the pairs {P;(x, V(x)), Q;(x, V(x))} are solutions of the linear equations

By anp,
dx
2.134) + Clx, V(x))P;+ D(x, V(x))Q;+G(x, V(x)),

x2 idQL':(—v—ju—F(ﬁ—j“)x)Qj
X

+ E(x, V(x))P;+ Flx, V(x))Q;+ H;(x, V(x)) .

The following facts should be noted:
(i) The equations (2.12) are nonlinear, while the equations (2.13-f) are linear;
(ii) x=0 is an irregular singular point;
(iii) The equations (2.12) and (2.13-j) possess formal solutions which are expressed
as the power series (2.6-7) with v=V(x).
A theorem due to Malmquist [7] or Iwano [3] implies that the power series (2.6-0)



CONVERGENCE OF A FORMAL TRANSFORMATION 481

with v=V|(x) are uniformly convergent whenever the values of (x, V(x)), considered as points
in the (x, v)-space, belong to a domain of the form (2.7.F), so that the pair {Py(x, V(x)),
Qolx, V(x))} of the sums becomes a solution of the equations (2.12) for the values of
(x, V(x)) in the domain (2.7.F). vy and r| are small positive constants.

Obviously,

(2.14) Po(x, )=0(Vx)*),  Qolx, V(x)=0(V(x)?) .

When we consider (x, ¥(x)) as independent variables, the Po(x, v) and Q(x,v) are
holomorphic and bounded functions of (x, v) for the domain (2.7. F). By virtue of (2.14),
these functions vanish at v=0. Hence, the condition (2.11) is satisfied.

The coeflicients appearing in the equations (2.13-1) become known holomorphic
and bounded functions of (x, ¥(x)), considered as independent variables, for the domain
(2.7.%F). In order to prove the convergence of the formal solution (2.6-1) with v= F{(x),
again apply the theorem mentioned above.

In this manner, we can prove that the pairs { P;(x, V(x)), Q;(x, V(x))} are successively
and uniquely determined as solutions of the linear equations (2.13-j) in such a way that
P;(x, v) and Q(x, v) are holomorphic and bounded functions of (x, v) in the domain (2.7.F)
and admit the power series (2.6-j) as their Taylor series expansions in powers of v. This
proves Theorem 2.

3. New truncated differential equations. For any positive integer N, set
" 2N ) R 2N )
3.1) P, u,v)=u+ Y, Pix, 0!, Ol u,v)=v+ ), Ox, vjul.
j=o0 j=0
Apply the change of variables
(3.2) y=Ppxm 0,  z2=0mwxm 0.

When the pair {y, z} is expressed as the power series (2.5), it is easy to verify that
the pair {1, {} defined by the equations (3.2) is expressed as power series in u of the form

(3.3) n=u+ i é,(x, v’ , {=v+ i Y (x, v,
j=2N+1 j=2N

where ¢ (x, v) and ;(x, v) are holomorphic and bounded functions in (x, v) for a domain

of the form

71. ’
(B34.7) argx$7‘<n——so, O<ix|<ry, |vi<ri,

ry and r| being sufficiently small positive constants.
By noticing this fact, the equations satisfied by the pair {5, {} are written as
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x2%=(u+axm+n2”“f1(x, 7,0,
X
(3.5)
2 dc _ 2Nz
X ~—-(—v+ﬁx)(+i1 gl(x7 ", C)
dx

Here the f;(x, %, {) and §,(x, 5, {) are holomorphic and bounded functions of (x, #, {) in
a domain of the form

(3.6.F)

_ T
argx+?'<n_805 O<IxI<rg)N)9 ln'<r(1N)7 |C|<r(1N),

where r§" and r{" are sufficiently small positive constants depending on N.

To see this, observe that, when the pair {u, v} is considered as solutions of the
equations (2.3), the power series (3.3) form a formal solution of the equations (3.5).
Insert (3.3) for {n, {} in the equations (3.5). Then the expression x?(dn/dx)—(u+ax)n
satisfies the order condition O(u™ * !} and does not involve any term with negative powers
in v. If the f;(x, #, {) were not holomorphic in (7, {), it would involve a term with either
negative power in # or in {. Hence, the #2V¥*1 , will contain either a term with degree less
than 2N+1 in u, or a term of negative degree in v will appear in the expression
n2¥*17 (x,n, ). This is a contradiction. The same argument can be applied to the
second one in (3.5) for the proof of the holomorphy of the §,(x, #, {).

Put

(.7) Ax)=—+plogx, logl=0
X

and let {U(x), ¥(x)} be a holomorphic general solution of the equations (2.3). Make the
change of variables
U(x)

(3.8) n=—ry, = V(x)+e49Z .

A simple calculation gives
dn Ulx) dy
x? o =utaxt e x?
g eIt T

yA
52 B (v V) +e1Z) 2
dx I

Hence, the equations which the pair {Y, Z} satisfies become
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dy Ux)*™ ., < U(x) >
2 e s s V + A(x)Z s
o oy i\ oy T

dZ e A9y(x)2 U
_ e (X) A1<x’ 1 (X))/’ V(x)+€A(x)Z> .

(3.9)
2

x - =
dx  (—ypv ¢

This system of equations can be written as

dy
x2 72 U(x)ZNFN(xa U(x), V(x)a Yﬂ eA(x)z) s
X
(3.10)
dz _
x?2 d—:e AR (x)2¥Gplx, U(x), Nx), Y, e192Z) .
X

When the variables x, U(x), ¥V(x), Y, e*®Z are considered as independent variables,
the Fy(x,u,v, Y,S) and Guy(x, u,v, Y, S) are holomorphic and bounded functions of
(x,u,v, Y, S)in a domain of the form

<m—t&g, O<|x|<r®, |ul<r™, |vj<r®,

_ T
argxF—
(3.11.F) 2

[ Yi<ri™, |S|<ri?,

r® r™ and r" being sufficiently small constants depending on N. These functions
satisfy inequalities of the form

(3.12) | Fy(x, u,v, Y, 8)|S Ly,  [Gy(x,u,0, ¥, S)|SLy

and

(3 13) {'FN(X9 u, v, Yl’ Sl)_FN(x’ U, v, YZ’ S2)|§£‘N(| Yl_Y2|+|S1_S2 l)s
|Gyl(x, u, 0, Y1, 81)—Gylx, u, 0, Ys, S2) IS Ly Y =Y, |+]8,-5,))

for the arguments belonging to the domain (3.11.F), where Ly is a constant depending
on N.

4. Stable domains. In order to simplify the description, we utilize some results
which were already obtained in Iwano [6]. The pair {U(x), ¥(x)} is a holomorphic
general solution of the equations (2.3), namely,

@.1) xzﬂz(uﬁxx)u, xzﬁz(—v+ﬁx)v.
dx dx

It is assumed that there is a positive constant x satisfying the inequalities
4.2) vi(K)=pu+xRa>0, K)=—v+xRE>0.
Let M be the least integer such that
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4.3) va(K)=Myv,(K)—v,(1)>0 .

The function Ey(x)=e~ 4@ U(x)M° satisfies the linear equation
2 déO

4.4) x . =(Myu+v+(Myoa—p)x)e,

which satisfies the condition (4.3).
According to the discussion which was developed in Section 4 in Iwano [6], we put
A =max{y, v, Mop+v}=Mou+v,
0]l =max{| Jal, | S|, | MoIa—3B 1},
(4.5) loll =max{| Ral, |RBI, | MoRa—RB 1},
V)l =max{v, (i), va(k), Mov(x)—v,(x)} ,
V()" =min{v,(x), va(k), Mov, (k) —va(k)}
and define the angle Q by the formula
_ 8+ Dol +8(Il 41 + llof) + 6 v()[|”
Ive)l’
Let ry, ¥, and Ay be positive constants depending on N. Then, the stable domain is
given by one of the following two domains in the (x, u, v)-space:

(4.6) tan Q2

T
argx+7’<n—so ,

0<|x|<ryw(argx),
4.7.F)
|ul¥ <4yl x|xMargx), |vl<ryxglargx),

where the (1), x4(t) and y™(z) are strictly positive valued and continuous functions
defined in the t-interval [—#n/2+4¢&g, 3n/2—gy] or [ —37/2+¢&,, n/2—¢,]. The w(r) is
given by

Q
C_OS , for ril SE—Q,
sin &g 2 2
(4.8) on=1{
|c.osr| s for £~Q< r+—’§n—so
singg
The y,(t) and x™(z) are expressed as
(cos Q)%F | for |t—"|<™_q,
2 2
4.9) 20 =1 (cos)Me(~Tt b for ——%+80§‘E§Q,

3n
fcosT|Me(ttn-DI for n—Q§r§7—eo
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and
(1, for r—% g%—g,
NRa~1
(4.10) x(”>(r>=<<c°3;~> ol—rH N for —2 +astse,
COSs

NRa—1
(ICOSTI e(TTTTTONIa for n—Q§r§3i—£o.
[\ cosQ 2

For the t-interval [ —37/2+¢,, 1/2—¢0], the y,(7) and y*™(z) are to be defined in a sim-
ilar manner. The constant 4y appearing in the domain (4.7.F) must be so chosen that
the minimum of the function 4yy™(z) for |t Fn/2|<n—¢, is not less than the unity.

5. The curve ['(x;) and the stability theorem. A curve I'(x,) consists generally of
two parts I'" and I'"".
If jarg x, F /2| < /2 — Q, the curve I'(x,) consists of part I'" only. Let xo = A4,+iB,,

i=./—1. Put

A B
5.1 A=—"2, =0
[ X0 | Xo

-
The variable point x=x,(s) on I'’ is expressed by the formula

1
5.2) —=A+0—iBe* for 0<o<w.
x
If fargxq Fn/2|>n/2—Q, the curve I'(x,) consists of two parts I'" and I'”. The
variable point x =x,(t) on the I'"” is expressed by

X, | cos .
(5.3) x=<ik‘[>-e”, (0, =arg x,) ,
cosf,
in either case of 0, <7<Q or 1 -2 <1 <6,,.
At the ending point of I'”, namely at either 1= or t=n—Q, this curve must be
switched to a curve of the form (5.2), where the starting point of the curve I'’ is given by
_ | xolcos?Q B _|xolcosQsinQ

0

5.4 A )
(54) 0 cos 8, |cos B |

The properties of the curve I'(x,) are studied in Theorem 5 in Iwano [4]. The meaning
of stable domain will be clarified in the following theorem:

THEOREM 3. Let (xq, uy, vy) be an arbitrary point in the domain (4.7.F). Denote
by (U(x), V(x)) a holomorphic general solution of the equations (4.1) satisfying an initial
condition (U, VY=(uy, vy) at x=x,, where x, belongs to the sector largx ¥ /2| <m—¢,.
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Then, as x travels on the curve I'(x,), the values of the functions (x, U(x), V(x)),
considered as points in the (x, u, v)-space, stay in the domain (4.7.F).

PrRoOF. The case when |argx, Fn/2|<n/2—Q. Then curve I'(x,) is made of the
curve I'' only. As was already shown in Section 4 in Iwano [6], we have the inequalities

I dU)| 3v() | 1
|Ux)|  ds, ~ 5k |x|’
1 dIVx)|_ 3vy6) 1
(5-5) [V(x)|  ds, = s x|’
L dlE)]  3vslx) | 1
1o ds, T Sk x|

as x moves on the curve I'". s, denotes the arclength of this curve measured from the
origin to the variable point x. Moreover, it was shown that

2 dx| 3
<

<7
5./2 ds, 2
From the second inequality in (5.5) we see that the function | ¥(x)| is steadily
increasing in s, on the part I'. Hence, the inequality | ¥(x)|<r,x4(arg x) continues to
hold as long as this one does at the starting point x,,.
By utilizing the first inequality in (5.5) and inequality (5.6), we have

d {1%)1”}2 300 (UM 3 U

(5.6) for xel’.

(5.7)

ds, | x| T 5k | x1? 2 |x)?
_ 3Q2Nvi()—5Kk) | UX)N
10x |x2
If N satisfies the inequality
(5.8) N> F
2v,(x)

we see that the function | U(x)|"/| x| is steadily increasing in s,. Hence, if the inequality
[ U(x) |N < dy| x |y ™(arg x) is satisfied at the starting point x,, then this inequality is true
on the curve I'’, because the function y™(arg x)is constant for |arg x F /2| < 7/2 — Q.

The case where |arg x, ¥ 7/2|>n/2—Q. Consider the case —m/2+¢,<argx,<Q.

Observe that
V(xX)=vq exp( - ) cxg b exp<v> -xF.

Assume that
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(5.9) 'Uo|<"1Xp(argxo)=”1(Cos eo)mﬂe(_eﬁmsﬁ s (8o =argx,) .

Since

Xo|COST .
x= Ixolcose e, 0,<12Q,
cos 8,

we have

(5.10) iR(i): m<L)= cosfy
X Xo [ X0

Hence, on the curve I'”,

00—1)3 x |
| V(x)l<r1Xﬂ(90)3( R
Xo
Rp
<7 (cos B Ml 00+ D3B go-03p .| €T
cos 8,

=ri(cost)M e TTTNH =y yargx)  for 0,<T<Q.

It turns out that, aslong as (5.9) holds, we have | V(x)| < r, x4(arg x) on the curve I'(x,).
Let us assume that

(.11 |l uo [N < Ay] x|y Marg x,) -

Observe that

(512) U(x):uo exp(_‘u_> . x&“exp(—.’i) e x*.
By virtue of (5.11), we have
| Ux) [ —Juy IV NmeN(oo-r)iRa L
I X | Xo | XI
<AN<COS90>Nma_1e(—90+Q)N3a ( cost >Nma—le(90“f)N3a
cos 2 cosf,

NRa—1

COST

=AN e(~r+ﬂ)NSa=ANX(N)(argx)
cos 2

on the curve I'”. Hence, the inequality | U(x) |V < 45| x |x™(arg x) holds as x moves on
the curve I'(x,) as long as it does at the starting point. g.ed.

6. Estimation of the integrals of the kernel functions along the curve I'(x,). When
we prove the existence of solutions for the equations (3.10) by utilizing the fixed point
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technique, it is essential to make a good estimation of the two integrals
so Ux 2N so . UX 2N

6.1 J % ds, and f e~ () % ds, ,
0 | x| 0 | x|

where s, is the arclength of the curve I'(x,). The functions |U(x){*V/|x|* and
e~ ®A® | U(x)|*M/| x|?* will play a role of the kernels in the integral equations appearing
in Section 7 which are derived from the differential equations (3.10).

THEOREM 4. We have the estimates

so | U(x) |2V 2N
f URPY o g1l
0 [ x| [ X0

(6.2)

s

S 2N 2N
f ° o~ A IU(X)2| ds, < M~ FAC0 | 4o |
0 [ x] [ x|

where M| and M, are defined by the formulas (6.28) and (6.30).

1°.  The estimation of the integrals (6.1) on the curve I'’. Put

Ui 2N
(6.3) ="
x
This function satisfies the linear equation
dsf
(6.9) x2 = =(QNp+Q2No—1)x).of .
dx
A direct calculation shows
dl(x)| _d {IU(X)IZN}
ds, B ds, | x|
_oN | U121 d|Ux)| U d]x]
| x| ds Ix? ds,
(3 6N o 3 |
TN NG T
S5k | x| 2 x|
_ 12Nvi(k)— 15K | A (x)]
10k x|

Hence, by integrating this inequality along the curve I'’, we get

f o | U(x) PN o < 10x | Ulxo) IPY
o Ix]? T 12Nvi(k)— 15« |xo|

(6.6)

Set
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6.7) B(x)=e 1. M .
x

This function is a solution of the linear equation
d#
(6.8) x27=(2N,u+v+(2Noc——ﬂ—l)x)%.
X
Let M, be the number defined by the condition (4.3). Write %(x) as

U(X)ZN_MO ) U(x)ZN—Mo

X

B(x)=e "PU(x)Me - =Eo(x)
By utilizing the last one in the inequalities (5.5) and the inequality (6.5), (where 2N
must be replaced by 2N— M), we get at once

d|Bx)| _ dIZx)| UM d (|Ux)P¥ "M
- : F1E)| - (R
ds ds, [ x| ds, | x|

X

L 3va() [5o(0)] | U)o

T | x| | x|
12N —6M v, (k) — 15k Ulx) 2N~ Mo
L =I5 | U
10% | x]
>< 3v;(k) + (12N—6M0)v1(x)—15;<> | B(x)|
=\ e 10x x|

Thanks to the definition of v;(x) in (4.3), the constant factor of the function | #(x)|/| x|
is equal to
3(Myvi(k)—va(K)) + (I2ZN—=6M)v,(x)— 15k 12Nv (k) —3v,(k)— 15K
Sk 10x 10x '

We assume, besides (5.8), that N satisfies

(6.9) N>max{ oK ’ vz(’<)+5;c}’
2v,(x) 4v,(x)
Then,
(6.10) dIB()| , 12Nv,(09—3v,(0) 15 | B3|

ds 10k [ x|

X

By integrating this differential inequality along the curve I'’, we have immediately
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(6.11) J‘sOe_‘RA(x) |U(X)|2N ds. < 10k o RAGo) |U(xo)|2N .
0 | x|? = 12Nv, (k) — 3v,(x)— 15k N

2°. The estimation of the integrals (6.1) on the curve I'”’. Since the variable point
x on I'" is given by the formula (5.3), we have

(6.12) ~dfi=i<—|x°| )eZ"
dt cos f,
and
— |%| s for 0,=1<Q,
6.13) ds, B cosf,
de ~M~, for n—Q<1=0,,
cosf,

where s, is the arclength of the curve I'"” measured from its ending point x; to the
variable point x.
As is shown in (5.10), on the curve ', the function R(u/x) is unchanged. Since

X a
(6.14) U(x>=uo-exp(—“+“>-(> :
X Xq Xq
we have
o (x Ux)[*N  Ju|®Y x [PV
LX) _ | ()ZI _ | ol2 expl —avm( - P )| | erve-tom
| x| [x| | x| X X Xo
2N 2NRa-—-2
6.15) _ Lol | cos ¢2N 0093
[ X0l cos B,
Rlaf—
< Iu()lZZN 1 ZN%R|a| zezN(n—.Q'H:o)lS:zl
= x01?* \sing, ’

because of the inequalities [cosf,|=sing, and m—Q+ey=|0,—1|. Since ds,=
—(] %o |/cos 8g)dr and | cos 8, | = sin &4, the integration of the inequality (6.15), excluding
the middle terms, gives

2N 2N 2NRa—1
(6.16) f | V)| ds. < [ 4ol < ! > g+ @2NE=2+50)| 3a|
r

X7 x| \sing

By the notation (4.5), this inequality implies

2N 2N 2N (o]l -1
| U(x)| ds, < |4 | 1 cqp e e2Nnldl
|x|2 |x0| Sin80

(6.16-bis) f
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On the other hand, we have on the curve I'"”

o~ R exp(— m(")) o\ x| RBerI8
X
=exp<— iR<L>> “|xg | etk
Xo

Rp
er— 00 38

Xo
(6.17) = ¢~ Rdlxo) (0038
Xo
—Rp
— o~ B | _COST (16038
cosf,
1 | RB|
ée—ﬂm(xo) : e(m—2+e0) 36| ,
sin g,
which, by the help of (6.15), implies
18| _—qua | U P
| x| | x|?
(6.18)
| |2N 1 2N|Ra|+|RB| 2
< o~ Rdlxo) | Ho o(n—2+e0)2N| Sl +|361)
- [x0]2 \ singg

By integrating this inequality along the curve I'”, namely from 6, to Q or from n—Q
to 8,, we have at once

f s U
r

| x|?

(6.19)

|u IZN 1 2N| Ra|+|RB|—-1
ée—‘RA(xo) 9 < ) .n.e("'9+€0)(2N|3t1|+|3ﬂ|)'

EN sin g,

By the notation (4.5),

2N
J e‘iRA(x) I U(x)l dS
r

x? T
(6.19-bis)
g |2V 1 (2N+1)|[v] —1
< ¢~ Ralxq) 170 cqr e e@NFDulloll
a [xo| \singg

3°.  The estimation of the integrals (6.1) on the curve I'(x,).
When [0, F /2| £7/2—Q, we have I'(x,)=TI". Hence, by virtue of (6.6) and (6.11),

we have at once
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(6.20) J | Ulx) 12N . < 10x | Ulxo) 12V
(xo) |x|2 = 12Nv (k)— 15« [ xo1
and
(6.21) f ~acy LU s < 10k ¢~ RAxo0) 10 7
’ Fso) | x|? = 12Nv, (k)= 3v,(k)— 15K EN

When {8, F#/2|>nr/2—Q, we have I'(x,)=I"uI'". The starting point xg of the
part I'’ is given by

2\ .
(&) 60<Q.
cosf,

<m—lx° [cos(n—Q))ei(n_Q)’ Oo>n—Q.
cos 8,

(6.22) X=

The estimation of the integrals on the part I'’ is immediately obtained from (6.6) and
(6.11), where x, should be replaced by the point x5. We see from (6.14) that

0=t -exp( —L L) (22 )
Xo Xo Xo

Hence, on the part I'”, we have for >0,

Ra Ra
_ cos 2 _
@0~ DT _ lug |+ ( > elfo— D3

cos b,

Xo

| Ulxo)|=uol -

Xo

1 ol
<|ug| | — erlolt
SIN &g

This inequality holds also for 8, >n—Q. Since

(6.23)

, | x| cos Q
lxo =
|cos |
we have
(6.24) 1 =|00500| 1 < 1 1 < .1 1
[xo|l cosQ |xo| cosQ |xo| singg |Xgl
and
(6.25) Fole 1| Zle L
Xo sin g X sin g,

On the other hand, we see, by utilizing (5.10), that
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e—ﬂ%A(xé])zexp(_m(L]+ﬁ]0gx'()>>=exp<—m(L-{-ﬁlngl()))
X9 Xo
v Xo g
=exp| —R| —+flogxe } ||| —
Xo Xo

Rp ,
e(arg Xo—argxo)Jp

_ Xo
— ¢~ Rd(x0) :

Xo

(6.26)

% 1\ %sl _
e~ Raxo) . o (@~ 80} 381 (90 < Q) ,
sin g,

= 1 R
e~ Rdxo) : ello—n+ D38| Bo>n—Q),
singg

‘ 1o\
§e_}“(x°) : en”é” .
sin gg

It follows from (6.6) and (6.16-bis) that

2N 2N
(6.27) j TURIFT o <, 10V
I'(xo0)

| x]? | x|

where M, has the form

2N|jv] -1 2N|o +1
M1:< ! > e e2Nmlal 4 10% ( ! ) o2V l8]
sin g, 12Nv,(k)— 15k \ sing,
(6.28)

:< 1 >2N”u”_lezmll&|l<n+ 10« ( L >2>
sing, 12Nv(k)— 15 \ sing,

We have from (6.11) and (6.19-bis)

2N 2N
(6.29) J e~ awy UV 5 o M e~ Ao Ll
¢ x =
I'(xo) [x|? [ xo |

where M, is given by

I 2N+ 1)|[v] -1
M,= .- 2N+ D8]

sin g,
@N+D)jjo) +1
N 10x ( 1 > lro) Jr—
12Nv (k) —3v,(x)— 15k \ sing,

1 2N+ 1)||v]| -1
_ 2N+ x8]]
sin g

(6.30)
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(b s L) )
X| T+ . .
12Nv (k) —3v,(x)— 15k \ sing,

The inequality (6.27) with (6.28) and the inequality (6.29) with (6.30) prove Theorem
4. g.ed.

7. Existence of a solution by the fixed point technique. To prove the existence of
solutions for the equations (3.10) by the fixed point technique (for example, Hukuhara
[1], [2]), we consider a stable domain of the form (4.7.F), namely,

T
argx+2'<n_80 )

0<|x|<ryom(argx),
(7.1-N.F) {

lul"<Ay|x|-xMargx),  [v<riyargx),

where the functions w(t), x,(7) and () are defined by (4.8), (4.9) and (4.10). Here the
constants rg, 7y and 4y, depending on N, are to be so chosen as to satisfy inequalities

of the form

rogmaxo(t)<rd™,
T

1/N
(7.2) rymax y(t)<r{, <ANmax ¥ ™(7)  rymax w(t)) <rM,
T T T

Aymin y™()>1,

in the t-interval [ — /2 +&,, 3n/2—¢o] or [ —3n/2+ &g, n/2—¢,], where the r™ and r{V
are the same as those appearing in (3.11. F).

We consider a family & of pairs {¢, ¥} of functions ¢(x, u, v) and Y(x, u, v), which
are holomorphic and bounded in (x, u, v) for the domain (7.1-N.F) and, moreover,
satisfy inequalities of the form
(7.3) |p0x, u, o) |[SKylul®, (e u, 0)| < Kye™ %4 u N

Here the constant Ky, depending on N, must satisfy inequalities of the form

T

Ky rgmaxw(t)<ri Ky - rgmax o(t) - dymax y™(r)<ri™,
(7.4) ’ !

4Ly M, - Aymax y™(1)< Ky, 4Ly M, - Aymaxy™(1) < Ky

for the t-interval. These inequalities will be obviously satisfied if we first take the value
of Ky sufficiently large and then that of ry sufficiently small. Hence,
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| o(x, Ulx), V)| <r,  |e'™(x, Ulx), V(x)I<r§?,
Uux)|v 1 Uux)|¥ 1
(1.5) Lo, YOE e 1URIT 1 g
| x| 4 [x]
Ky Ux)|N<ri <1
as long as the values of (x, U(x), V(x)) belong to the domain (7.1-N.F).

Choose a point (xg, Uy, Vo) in the domain (7.1-N.F) in an arbitrary manner. Let
{U(x), V(x)} be the solution of the equations (4.1) such that {U(x,), V(xo)} ={uo, vo}-
By the help of Theorem 2 and by the definition of the Ky, we see that the functions
Fu(x) and %y(x) given by the expressions
(7.6) {%(x)sﬂv(x, U(), V(x), §(x, Ux), Vs, e, U, V)

' gN(x)EGN(x, U(x)a V(x)’ ¢(x9 U(x)’ V(x))’ eA(x)l//(x, U(x)s V(x)))

become holomorphic functions of x on the curve I'(x,), because of the conditions (7.2).
Moreover, by virtue of (3.12), they satisfy the inequalities

(7.7) [ZaX)=Ly,  [9nx)|SLy.

is to be defined by

s {B(x, u, v), Y(x, u, v)} > {D(x, u, v), Y(x, u, v)},

where the ®(x, u, v} and ¥(x, u, v) are given by the integrals

U(x)ZN

2

The mapping
(7.8)

9 g

D(xo, Uy, Vo) = Fy(x)dx ,

I(xo)

(1.9)

2N
—AG) Ulx
€ 2

¥(xo, Up, Vo) = Gy(x)dx .

I'(xo)

As was already proved, the integrals of the kernel functions are bounded. Therefore,
the integrals (7.9) are uniformly convergent with respect to (x,, ug, vo). This implies,
after a short reasoning, that the functions &(x, u, v) and ¥(x, u, v) are holomorphic in
(x, u, v) at the point (x,, ¥y, v5) and, consequently, for the domain (7.1-N. F). Moreover,
by virtue of (7.5), these functions are bounded by

2N
ol ” < U g ugl,

|xol — 4

| D(xo, Ug, V)| S LyM, -

(7.10) TR
| W(xo, tho, Vo) | < LyM, - & = R0 07§*sze—m/1(x°)| ug [N .
lxol — 4
Therefore, we see that {®, ¥} e #. According to our standard analysis (for example,
Iwano [5, pp. 124-132]), we can show that the mapping I possesses a fixed point to

which corresponds a solution {®y(x, U(x), V(x)), ¥ x(x, U(x), V(x))} of the equations (3.10).
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By the inequalities (3.13), we can prove that a solution of the equations (3.10) satisfying
the order condition

(7.11) Y=0UxY), Z=0( *“Ux)")

is unique.

In the proof of this assertion, the factor 1/4 appearing in (7.10) will be useful.
To prove this, assume that there exist two solutions. Denote by {d(x, U(x), V(x)),
P(x, U(x), V(x))} their difference. Then we want to prove that, for any integer m,

- 1 - 1
(7.12.m) | D(x, u, U)|§27KNIUIN’ | ¥ (x, u, U)|§FKN6_‘RA(X)|”|N,

which implies &(x, u, v)=¥(x, u, v)=0. However, for m=1, the inequalities follow
immediately from (7.10). Assume that the inequalities (7.12.m) are satisfied. Then, we
see that the last one in the inequalities (7.5) gives

- 1 ~ 1
| P(x, u, ) |S——, | Pl u,v)|S— e T
2" om
It follows from (3.13) and (7.10) that
Ux)|*N |
bt f [ (X)l dx| < KyluolV,
reg X1 2m+l

_1. N

l (p(x05 Up, UO) I é

2m
which proves that the inequalities (7.12.m+ 1) hold.
Taking the transformations (3.2) and (3.8) into account, we see that the pair
{%y, Zy} of the functions #y(x, U(x), V(x)) and Zy(x, U(x), V(x)) defined by

(%, u, v)= P(N)<x v+ e MW (x, u, U)> ,

T1—@ X, U, U ’
(7.13) 6 0)

Zn(x, u, )= 0 ) (x v+ e O y(x, u, v>> ’

T —Dy(x, u, V)
becomes a solution of the equations (2.1), whenever the values of (x, U(x), ¥{(x)),
considered as points in the (x, 4, v)-space, belong to the domain (7.1-N.F). Hence, the
#y(x, u, v) and Zy(x, u, v) are considered as holomorphic and bounded functions of
(x, u, v) for a domain of the form

T4
(7.14.F) argx$3'<nfso, O<|x|<ay, lulM<|x|, |v|<by,

where ay and by depend on N. However, our standard analysis, as was done in Iwano

[6], we have the following:
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PROPOSITION 4.  The solution {#y(x, U(x), V(x)), Zn(x, U(x), V(x))} is independent
of N.

Denote this solution by {®(x, U(x), V(x)), ¥(x, U(x), ¥(x))}. Then, we have the
following:

ProposiTION 5. The functions ®(x,u,v) and ¥Y(x,u,v) become holomorphic in
(x, u, v) for a domain of the form

(7.15.F) <m—&g, O<|x|<ay, |ul<by, |vli<b,.

ar ?n
x JR—
& 2

aq and by are small positive constants independent of N.

Indeed, let (x,, 4y, vo) be an arbitrary point in the domain (7.15.5F). Then, choose
a large positive integer N such that |u,|¥ <|x,|. By the independence of N, we observe
that the relations

(7.16) D(x, u, V) =YN(x, u,v), Y(x, u, v)=Zy(x, u, v)

hold identically in a neighbourhood of the point (x,, u,, v5). This proves our assertion.

Therefore, the functions @(x, u, v) and ¥(x, u, v} admit Taylor series expansions (in
u and consequently) in # and v, which coincide with the power series appearing in the
formal transformation (2.2). This completes the proof of Theorem A.
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