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Abstract: Supersymmetric field theories can be studied exactly on off-shell “localiz-

ing” supergravity backgrounds. We show that these supergravity configurations can be

identified with BRST invariant configurations of background topological gravity coupled

to background topological gauge multiplets. We apply this topological point of view to

two-dimensional N = (2, 2) supersymmetric matter theories to obtain, in a simple and

straightforward way, a complete classification of localizing supersymmetric backgrounds in

two dimensions. We recover all known localizing backgrounds and (infinitely) many more

that have not been explored so far. The newly found localizing backgrounds are charac-

terized by quantized fluxes for both graviphotons of the N = (2, 2) supergravity multiplet.

The BRST invariant topological backgrounds are parametrized by both Killing vectors and

S1-equivariant cohomology of the two-dimensional spacetime. We completely reconstruct

the supergravity backgrounds from the topological data: some of the supergravity fields

are twisted versions of the topological backgrounds, but others are composite, in that they

are nonlinear functionals of topological fields. Moreover, we show that the supersymmetric

Ω-deformation is nothing but the background value of the ghost-for-ghost of topological

gravity, a result which holds for higher dimensions too.
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1 Introduction and summary

The localization technique refers to an exact WKB method by virtue of which the semi-

classical approximation becomes exact. It has been extensively studied for a broad class of

quantum field theories that admit Lagrangian descriptions, in particular, supersymmetric

or topological quantum field theories. For instance, the topological quantum field theo-

ries (TQFTs) whose action is BRST-exact1 are semi-classically exact since their coupling

constant is a gauge parameter which can be taken arbitrarily small. A traditional route

for constructing TQFTs is by topologically twisting supersymmetric quantum field theo-

ries (SQFTs) by means of a conserved R-symmetry. Hence, the localization technique has

frequently been associated to SQFTs since the early days.

1These TQFTs are commonly known as “of cohomological type”.
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Recently, starting from the work [1], localization technique has been revived for various

SQFTs, without connecting it to TQFTs in any explicit manner. Rather, in this point of

view, localization is the consequence of the existence of a global (nilpotent on physical

states) supercharge when the SQFT is defined on specific external backgrounds. These

external backgrounds may be identified, as done first in [2], with an off-shell configuration

of a supergravity (SG) multiplet that the SQFT can couple to. Global supercharges of

the SQFT are in correspondence with generalized covariantly constant spinors that set the

supersymmetry variations of fermionic fields of the SG multiplet to zero.

The generalized covariantly constant spinor must satisfy integrability conditions which

put stringent constraints on the bosonic fields of the SG multiplet. These fields include

the spacetime metric and also, in theories with extended supersymmetries, vector fields

of gauged R-symmetries as well as off-shell auxiliary fields. It turns out that, in general,

the bosonic fields of the SG multiplet must be switched on for the SQFT to be put super-

symmetrically on a — compact or noncompact — curved manifold supporting generalized

covariantly constant spinors. The background bosonic fields are external sources for asso-

ciated conserved current operators of the SQFT, thus parametrize the space of deformed

SQFT. Hereafter, we shall refer to this space of SQFTs as the matter SQFT.

Generalized covariantly constant spinors depend on the spacetime dimensions and also

on the specific SG to which the matter SQFT is coupled. The localization technique

to matter SQFT is applicable when the space of generalized covariantly constant spinors

is non-empty. A complete classification of generalized covariantly constant spinors is a

complicated problem. Although explicit solutions have been obtained case by case in

various spacetime dimensions, there is no general strategy for constructing the covariantly

constant spinors and for classifying the background spacetime metrics and gauge fields

which support them.

In this paper, we put forward a new approach for finding localizing backgrounds for

matter SQFTs. The strategy of our approach — which was already introduced by two of

the authors of the present paper in the context of three-dimensional N = 2 supersymmetric

gauge theories [3] — is the following: one starts from a SQFT and twists it to obtain a

corresponding topological matter theory which is then coupled to topological gravity (TG)

backgrounds. One then seeks for BRST-invariant backgrounds: each BRST-invariant back-

ground is associated with a topological matter theory. The trivial background, of course,

corresponds to the original topological matter theory. Non-trivial topological backgrounds

define new topological matter theories whose deformations are associated to the geometrical

structures parametrizing the BRST-invariant backgrounds.

In the present paper, we apply this topological approach to two-dimensional matter

SQFT and we elaborate on its general features. We will see that the equations for covari-

antly constant spinors of two-dimensional N = (2, 2) supergravity are recast in the topo-

logical framework as cohomological equations. Specifically, we show that the generalized

covariantly constant spinors are expressed in terms of S1-equivariant de Rham cohomology

of the underlying spacetime. The cohomological formulation incorporates automatically the

concept of gauge equivalent topological gravity backgrounds. We work out the explicit map

between the BRST invariant topological backgrounds and the supersymmetry-preserving
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two-dimensional N = (2, 2) supergravity backgrounds: this map allows therefore to iden-

tify supergravity backgrounds which are equivalent for localization purposes. To the best

of our knowledge, the concept of equivalent generalized covariantly constant spinors is new

and appears to be one major benefit of our approach. We also explicitly construct all

the inequivalent localizing SG backgrounds. We recover the solutions found in previous

works [4] -[7] and also many more new ones: in fact, infinitely many more.

The equations for the BRST invariant topological backgrounds are the topological

counterpart of the equations for the generalized covariantly constant spinors of SG. How-

ever, contrary to the näıve expectation, the topological gravity system which is relevant in

our framework is not a topological twist of the supergravity of the standard approach. In

fact, the relation that we uncover between the generalized covariantly constant spinors of

the supergravity approach and the solutions of the cohomological equations of the topolog-

ical approach is non-trivial. Most of topological bosonic background fields are not, in any

sense, bosonic fields of topologically twisted SG. Several of the BRST invariant topological

backgrounds are bilinears of the covariantly constant spinors of supergravity. For exam-

ple, the ghost-for-ghost field2 of TG is identified with the spinorial bilinear which defines

the Killing vector of the spacetime metric. Conversely, the SG fields which correspond

to a BRST invariant topological background are, in general, non-linear functionals of the

fields of TG. In this work, we explicitly construct these functionals for the specific case of

two-dimensional N = (2, 2) SG.

The construction we introduce, which is in essence based on general properties of

Fierz identities, is in principle generalizable to higher dimensions and to higher extended

supersymmetry. However, the specific topological background systems to which one has

to couple the topological matter depend on the dimension and on the particular matter

system one considers. For example, we found previously in [3] that the supersymmetric

backgrounds of three-dimensional N = 2 supergravity were described by pure topological

gravity. In the present paper we find instead that the topological description of localizations

of two-dimensional N = (2, 2) supergravity requires, beyond topological gravity, also a

topological background abelian multiplet. At the moment, we do not have yet an a priori

way to identify the correct topological gravity backgrounds which describe localizations of a

given matter supersymmetric system: this remains an interesting open problem. We should

also add that in our approach we are restricted to the case with at least two supercharges,

which corresponds to backgrounds that satisfy a reality condition. This case is the one

for which the complex conjugate of the (generalized) covariantly constant spinor is also

covariantly constant. This is sometimes referred to as the real case in the literature.

The paper is organized as follows:

In section 2, we look for a topological counterpart of N = (2, 2) supersymmetric

gauge theory which can be coupled to two-dimensional TG. To this end, we revisit the

topological formulation of two-dimensional Yang-Mills (YM2) theory [8],3 which forms the

2The ghost-for-ghosts of topological gauge and gravity theories are also referred to as super-ghosts.
3For self-contained presentation, we recapitulate in appendix A connection between standard and topo-

logical YM2 theories.
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vector multiplet part of the matter SQFTs.4 We end up with a topological version of two-

dimensional standard YM theory coupled to a topological U(1) field strength background,

which can be alternatively thought of as a twisted version of two-dimensional N = (2, 2)

vector multiplet.

In section 3, we find the consistent coupling of this matter topological YM theory

to background TG. The resulting theory depends now on two topological backgrounds:

the TG background and the topological U(1) field strength background. We also iden-

tify the associated BRST transformations for both matter fields and backgrounds which

close off-shell.

In section 4, we classify the topological BRST invariant backgrounds. As it is familiar

from SG, the BRST invariant topological backgrounds are specified by the BRST transfor-

mations rules for the backgrounds only: they are independent of the specific matter TQFT

which couples to them. In the TG approach the equations which specify the invariant back-

grounds are obtained by setting to zero the BRST variations of the two fermionic fields,

i.e. the topological gravitino ψµν and gaugino ψ(1). The BRST variation of the topological

gravitino of TG provides an equation for the metric and the bosonic ghost-for-ghost γµ of

the TG multiplet

S ψµν = Dµ γν +Dν γµ = 0. (1.1)

Simply put, these equations state that the ghost-for-ghost background is a Killing vector

of the metric. In two dimensions, non-trivial solutions of (1.1) exist only if the euclidean

spacetime manifold is either a 2-sphere S2 or a 2-torus T2, equipped with a metric possessing

at least one isometry V µ. Different topologies of the spacetime manifold only support

the trivial solution γµ = 0 which corresponds to the Witten topological twist [9]. The

equation (1.1) is universal, in the sense that holds for any topological gravity system, in

any dimension. We mentioned above that in two dimensions we must consider a topological

gravity system which includes also a topological U(1) multiplet background. Therefore, we

obtain one more equation from the BRST variation of the topological U(1) background

gaugino ψ(1):

S ψ(1) = d γ(0) − iγ f (2) = 0, (1.2)

where γ(0) is the bosonic superghost of the U(1) gauge multiplet background and f (2) is

the U(1) field strength.

Eq. (1.2) is the simplest and most extensively studied example of equivariant cohomol-

ogy: it states that the U(1) topological backgrounds (γ(0), f (2)) are equivariant classes of

the S1-equivariant cohomology on the S2 or T2 euclidean spacetime. The interesting case

is the one of the 2-sphere, S2. It is well-known that the S1-equivariant cohomology of the

sphere is the polynomial ring generated by two classes x and y of ghost number 2, subject

to the hypersurface relation

x2 − y2 = 0 . (1.3)

We describe these classes in detail in section 4. They parametrize the moduli space of

inequivalent SG backgrounds that lead to supersymmetric localization.

4We do not describe in this paper the topological twist of supersymmetric chiral matter, since finding

the correct coupling to topological gravity of the vector multiplet is sufficient for the goal of finding the

localizing backgrounds.
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In section 5, we explain the map between BRST invariant backgrounds and localizing

backgrounds of N = (2, 2) SG. This SG multiplet contains two graviphotons. The 2-form

f (2) is identified with the field strength of one of them. The superghost fields — both

the vector γµ of TG and the scalar γ(0) of the topological U(1) gauge multiplet — which

solve (1.1) and (1.2) coincide with the independent bilinears of the covariantly constant

spinors of SG. In two dimensions, there is another scalar spinorial bilinear, c0, which is

determined by the independent bilinears by means of a quadratic relation. This scalar

bilinear turns out to be related, via an equation which is identical in form to (1.2), to the

field strength G(2) of the second graviphoton: this second graviphoton of SG is therefore

a “composite” field in terms of the topological variables. We will provide the explicit

expression for the second graviphoton field strength in terms of the topological fields.

Finally, we will also write down the field strength of the U(1)R — the R-symmetry of the

supersymmetric matter theory — in terms of the topological backgrounds. In this way,

all the bosonic fields of the SG multiplet which support generalized covariantly constant

spinors are reconstructed in terms of the topological backgrounds solving (1.1) and (1.2).

In section 6, we analyze in detail the case of the two-sphere S2.5 We recover all the

known localizing solutions which have been described in the literature. We also uncover an

infinite number of new solutions. The structure of the space of supersymmetric backgrounds

is qualitatively different for vanishing and non-vanishing superghost background γµ(x).

When γµ(x) = 0, our equations imply that the two graviphoton field strengths f and

G are equal, f = G. We will see that this, in turn, forces the U(1)R field strength FR
to coincide with half of the two-dimensional spacetime curvature R. These supersym-

metric backgrounds correspond therefore to the old A-twisted topological matter models

introduced by Witten long ago [9]. These backgrounds exists for any topology of the

two-dimensional spacetime.

When γµ(x) = εΩ V
µ(x) 6= 0, where V µ(x) the isometry of the sphere and εΩ is

the degree-two generator of the ring of S1-equivariant cohomology, the space of localizing

backgrounds acquires new branches. In figure 1 the supersymmetric solutions are labelled

by the quantized fluxes (n,m) of the two graviphotons field stregths (f,G). The solutions

with f = G and thus with FR = ±1
2 R have now necessarily zero fluxes n = m = 0.

These solutions, corresponding to the green dot of figure 1, are the Ω-deformed sphere

backgrounds of [6] and [7].

A non-vanishing superghost γµ(x) also allows for solutions with f 6= G. If |n| = |m|
the U(1)R flux is still ±1, but the spin connection cannot be identified with (twice) the

U(1)R gauge field. These solutions, depicted in figure 1 with red and blue dots, depend on

a continuous parameter A — the zero-mode of the gauge scalar superghost γ(0).6

There is a second class of solutions with |n| 6= |m|, for which the zero-mode of γ(0)

is discrete since it is identified with (half of) the flux m of the “composite” graviphoton.

For these solutions m takes integer values in the set {−n,−n+ 1, . . . , n}. These “discrete”

5The torus is also described by our formulas, but since in this case the S1 acts without fixed points, the

equivariant cohomology does not give more information than the standard one.
6In the models for which the matter vector multiplet includes a quadratic twisted superpotential, this

continuous parameter can be identified with its coupling constant.
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solutions have U(1)R flux equal to zero. They are the black dots of figure 1. The solution

with n = −2 and m = 0 is the solution studied in [4] and [5].

We emphasize that the deformation parameter εΩ is non-vanishing for all the solutions

corresponding to the black, red and blu dots: in this sense we can say that these solu-

tions all have non-trivial Omega-background since, in the topological gravity formulation,

the natural definition of Omega-background is the vector superghost γµ background. This

definition includes the standard Omega-deformed S2 as a particular case (the green dot)

when the graviphoton field strengths are equal to each other. But it is more general and

it applies to any spacetime dimensions since the form of the gravitino BRST variation of

TG (1.1) is universal. For example, its relevance in three dimensions was discussed in [3].

In four dimensions, Nekrasov’s Omega-deformation of twisted N = 2 super Yang Mills

theory [10] is also captured by the superghost of the corresponding topological gravity.

One should keep in mind that, because of ghost-number conservation, a non-trivial

dependence of the partition function on the Omega background comes about only if one

considers insertions of suitable operators carrying non-trivial ghost number. This poses

an interesting and nontrivial lesson of our construction, applicable to any dimensions:

in topological models, it is natural — and necessary to describe the full set of localizable

SQFTs — to switch on topological backgrounds with non-vanishing and even ghost number.

In section 7, we describe the action of the non-compact SO(1, 1) duality group of SG

on the localizing backgrounds. This non-compact duality group acts on the central charges

of the supersymmetry algebra and it is an automorphisms of the generalized covariantly

constant spinor equations [6]. In the topological framework, the duality group is the group

of linear automorphism of the ring relation (1.3) which characterizes the BRST invariant

backgrounds. The duality group is non-linearly realized on the topological backgrounds

but it acts linearly on the cohomology classes x and y. It is in general broken by a given

localizing background; however, discrete subsets of duality transformations map localizing

SG backgrounds to different ones. We describe explicitly these discrete subsets for the

various kind of localizing SG backgrounds in section 7. In section 8, we summarize our

main results and discuss issues which may be worth of future investigations.

2 A topological formulation of d = 2 Yang-Mills theory

The bosonic sector of two-dimensional N = (2, 2) supersymmetric gauge theory contains

the YM2 theory.

In this section, we develop a topological formulation of YM2 theory, viewed as a defor-

mation of topological YM2 theory. We consider both theories defined on a smooth manifold

Σ equipped with a metric gµν .

The relation between standard YM2 theory and topological YM2 theory was investi-

gated long ago in [8]. Witten’s reformulation of YM2 theory, although closely related to

the topological theory, is not invariant under reparametrizations: it explicitly depends on

a two-dimensional metric gµν . Here, we revise Witten’s formulation and obtain a matter

TQFT which can be consistently coupled to TG.

– 6 –
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Let us first review Witten’s formulation of YM2 theory, whose bosonic field content

is identical to that of the topological counterpart: it consists of the gauge connection

one-form field A = Aa T a and a scalar field φ = φa T a, both transforming in the adjoint

representation of the gauge group G. T a, with a = 1, . . . dimG, are generators of the Lie

algebra associated to the gauge group G. The theory’s partition function is

Z[g, ε] =

∫
[dAdφ] e−IYM(g,ε).

Here, IYM is the action functional

IYM(g, ε) =

∫
Σ

TrφF + ε

∫
Σ

d2x
√
g

1

2
Trφ2 (2.1)

where F is the field strength two-form

F = dA+A2 .

Note that the ε-independent part of the action (2.1) coincides with the bosonic part of the

action of the topological YM2 theory. The partition function defines an effective action of

the two-dimensional metric gµν and the deformation parameter ε.

The action (2.1) is invariant under the BRST gauge transformations s:

sgauge c = −c2 ,

sgaugeA = −D c ,

sgauge φ = −[c, φ] . (2.2)

The action IYM is quadratic in the scalar field φ which can therefore be integrated out,

yielding the physical Yang-Mills theory action:

IYM = −1

ε

∫
Σ

d2x
√
g

1

2
TrF 2 . (2.3)

Recalling that ε was initially introduced as a parameter that deforms away from the topo-

logical gauge theory, we see that it is identifiable with the coupling constant of the physical

gauge theory. Conversely, the classical limit of the physical gauge theory is the topological

gauge theory.

The theory (2.1) is neither invariant under diffeomorphisms nor under conformal trans-

formations of the two-dimensional spacetime Σ(g). It is however invariant under area-

preserving diffeomorphisms, w(∞), which span an infinite-dimensional symmetry transfor-

mations. This huge global symmetry is the basis for anticipating exact solvability of the

theory [11, 12].

To further study how the infinite-dimensional global symmetry constrains the theory,

we promote it to a local symmetry by coupling the theory to suitable background fields.

Accordingly, we replace the volume-form
√
g d2x with a topological background given by

a two-form field f (2). This changes the action (2.1) to

Ĩ[f (2)] =

∫
Σ

TrφF −
∫

Σ
f (2) 1

2
Trφ2 . (2.4)

– 7 –
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This action does not have the same physical content as the original action. By Hodge

decomposition, the two-form field f (2) takes the form

f (2) = Ω(2) + d Ω(1) , (2.5)

where Ω(1) is a one-form and

Ω(2) = ε
√
g d2x ,

is a representative of H2(Σ).

For Ĩ[f (2)] to be equivalent to IYM[g, ε], one must remove the degrees of freedom

associated with Ω(1). We can achieve this by letting the background f (2) transform under

the BRST operator as follows

s f (2) = −dψ(1) , (2.6)

where ψ(1) is a fermionic background of ghost number +1. However, the BRST trans-

formation (2.6) is degenerate: we need therefore to further introduce a ghost-for-ghost

background γ(0) of ghost number +2

sψ(1) = −d γ(0) , (2.7)

with

s γ(0) = 0 . (2.8)

Since now the background field is not inert under s, the action (2.3) is no longer BRST

invariant:

s Ĩ = s

(
−
∫

Σ
f (2) 1

2
Trφ2

)
=

∫
Σ

dψ(1) 1

2
Trφ2 = −

∫
Σ
ψ(1) TrφDφ .

To restore the BRST invariance, one must modify the BRST transformation law for the

connection one-form A as

sA = −D c+ ψ(1) φ+ · · · . (2.9)

We see that the BRST variation of the first term in Ĩ cancels the BRST variation of the

second term:

s Ĩ = s

∫
Σ

TrφF −
∫

Σ
ψ(1) TrDφφ = −

∫
Σ

TrφD
(
ψ(1) φ)−

∫
Σ
ψ(1) TrDφφ = 0 .

The problem with the modified transformation (2.9) is that it is no longer nilpotent:

s2A = −d γ(0) φ+ · · · .

To fix this, it is necessary to modify also the BRST transformation rule for the ghost field c

s c = −c2 + γ(0) φ .

One finds that

s2 c = 0 ,

– 8 –
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Moreover, an extra term in s2A cancels the term proportional to d γ(0):

s2A = D
(
γ(0) φ

)
− d γ(0) φ+ · · · = γ(0)Dφ+ · · · .

Although this is still nonzero, the lack of nilpotency is now reduced to a term proportional

to the equations of motion of A:

δĨ

δA
= Dφ = 0.

We conclude that, on-shell, the BRST transformation for A is nilpotent:

s2A ' 0 on-shell .

There is a systematic method to extend the on-shell BRST invariance to off-shell [3].

One starts by introducing a one-form field valued in adjoint representation of the gauge

group G

Ã ≡ Ãaµ T a dxµ , (2.10)

carrying ghost number -1. One also modifies the BRST transformation rule for A by adding

to it a term depending on the newly introduced one-form field Ã:

sA = −D c+ ψ(1) φ+ γ(0) Ã . (2.11)

This modification makes the BRST operator s nilpotent off-shell on all fields

s2 c = s2A = s2 φ = s2 Ã = 0 off-shell ,

assuming that Ã transforms according to

s Ã = −[c, Ã]−Dφ .

The term proportional to γ(0) in (2.11) spoils the BRST invariance of the action

s Ĩ = −
∫

Σ
TrφD

(
γ(0) Ã) =

∫
Σ
γ(0) TrDφ ∧ Ã .

One needs therefore to further modify the action by adding to it a term quadratic in Ã,

I ≡
∫

Σ
TrφF −

∫
Σ
f (2) 1

2
Trφ2 +

∫
Σ
γ(0) 1

2
Tr (Ã ∧ Ã) , (2.12)

The final action I, which is still topological, is manifestly invariant

s I = 0 ,

under BRST transformations acting on both the dynamical fields and the backgrounds

s c = −c2 + γ(0) φ ,

sA = −D c+ γ(0) Ã+ ψ(1) φ ,

s φ = −[c, φ] ,

s Ã = −[c, Ã]−Dφ ,

s f (2) = −dψ(1) ,

s ψ(1) = −d γ(0) ,

s γ(0) = 0 . (2.13)

– 9 –
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Roughly speaking, we are introducing a set of spurion fields whose classical expectation

values correspond to the backgrounds.

To construct a theory invariant under global topological supersymmetry, we consider

the backgrounds which are fixed points of the BRST transformations (2.13):

dψ(1) = 0 and d γ(0) = 0 .

Given the Z2 grading structure of the ghost number, one can choose the fixed point back-

grounds to be purely bosonic:

ψ(1) = 0 and γ(0) = constant . (2.14)

In these backgrounds, the BRST transformations act nontrivially only on the dynamical

fields

s c = −c2 + γ(0) φ ,

sA = −D c+ γ(0) Ã ,

s φ = −[c, φ] ,

s Ã = −[c, Ã]−Dφ . (2.15)

One can freely rescale the fields by the backgrounds to

ψ̂ ≡ γ(0) Ã and φ̂ ≡ γ(0) φ ,

carrying ghost number 1 and 2, respectively. It is immediate to verify that the resulting

theory is the quasi-topological Yang-Mills theory of [8].

At this point, it would be helpful to recapitulate the strategy we have paved so far.

Our starting point is YM2 theory, which has the area-preserving diffeomorphisms as an

infinite-dimensional global symmetry. To implement this global symmetry systematically,

we first replaced the two-dimensional volume form by a two-form spurion field f (2). The

global symmetry of the original model is reflected by the fact that the action containing

the spurion fields depends only on the cohomology class of f (2). We showed that, as the

background is promoted to a spurion field, this procedure entails both extending the BRST

transformations to the spurion fields and accordingly deforming the BRST transformations

of the gauge multiplet. This procedure amounts to promote the global symmetry to a local

gauge symmetry. To ensure off-shell BRST invariance it was necessary to introduce an an-

ticommuting one-form field, Ã, as a compensator. This field turned out to be proportional

to the gaugino of topological YM2. We managed to obtain in this way a BRST invariant

formulation of YM2 theory coupled to topological spurion fields, viz. (f (2), ψ(1), γ(0)).

A comment about the spurion topological multiplet (f (2), ψ(1), γ(0)) is in order. The

role of f (2) was to replace the metric volume form
√
g d2x of the Witten formulation, as

indicated in eqs. (2.5) and (2). As such the topological spurion multiplet is not necessarily to

be identified with the field strength multiplet of a U(1) topological connection. However we

will see that, in the correspondence that we will establish between topological backgrounds
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and localizing SG backgrounds, f (2) will be identified with the field strength of one of the

two SG graviphotons. Therefore it is natural to require that

f (2) = d a(1) (2.16)

where a(1) is an abelian connection on Σ, which transforms under the BRST operator as

follows:

s a(1) = −d ξ(0) + ψ(1) . (2.17)

Here, ξ(0) is the ghost of the U(1) gauge symmetry.

The partition function

Z[(f (2), ψ(1), γ(0))] ≡
∫

[dA dφ dÃ] exp
(
−I[A, φ, Ã; f (2), ψ(1), γ(0)]

)
,

which encodes the effective action of the spurion fields and hence the gauged global sym-

metry, satisfies the Ward identity

sZ
[(
f (2), ψ(1), γ(0)

)]
= 0 . (2.18)

This identity expresses the fact that the partition function depends only on the cohomology

class of f (2). In the BRST formulation, this is the statement that YM2 theory is invariant

under the area-preserving diffeomorphisms, viz. the w(∞) algebra.

Theories invariant under the ‘rigid’ topological supersymmetry are now obtained by

restricting the spurion fields to the backgrounds which are bosonic fixed points of the

deformed BRST operator, viz. γ(0) = constant and ψ(1) = 0, as explained in (2.14).

Hence, there is a one-parameter family of theories, labelled by the BRST invariant constant

background γ(0). Depending on the background value, the topological supersymmetry is

realized differently.

For non-degenerate backgrounds, γ(0) 6= 0, one recovers the topological YM2 theory

and also identifies the topological gaugino ψ, which remained mysterious in Witten’s for-

mulation [8], with the “composite” spurion γ(0) Ã. As the background is non-degenerate,

the standard YM2 theory has the topological supersymmetry as a manifest symmetry.

For degenerate background, γ(0) = 0, one recovers the original YM2 theory (2.1). The

topological supersymmetry collapses and the BRST symmetry reduces to the pure gauge

one, (2.2). Thus, when γ(0) = 0, the topological supersymmetry can be thought of as a

hidden symmetry of the standard Yang-Mills theory.

3 Coupling to d = 2 background topological gravity

We next couple the TQFT constructed in section 2 to two-dimensional TG. To this end,

it is useful to formulate the theory in terms of superfields (or polyforms).

We introduce the dynamical superfields, both valued in the adjoint representation of

the Lie algebra of the gauge group G:

A ≡ c+A+ φ̃ ,

Φ ≡ φ+ Ã+ c̃ ,
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where φ̃ is a two-form of ghost number −1 and c̃ is a two-form of ghost number −2. The

total fermion number is defined to be the sum of the form degree and the ghost number.

So, A carries fermion number +1, while Φ carries fermion number 0. We also introduce

the spurion superfield (whose expectation value yields the super-background)

f ≡ γ(0) + ψ(1) + f (2) ,

carrying total fermion number +2. One can show straightforwardly that the superfield

relations

δ0A+A2 = f Φ ,

δ0 f = 0

δ0 Φ + [A,Φ] = 0, (3.1)

where δ0 stands for the derivation

δ0 ≡ s+ d ,

are equivalent to the BRST transformations (2.13) and also define the BRST transforma-

tions for φ̃ and c̃:

s φ̃ = −
[
c, φ̃
]
− F + γ(0)c̃+ ψ(1)Ã+ f (2)φ ,

s c̃ = − [c, c̃ ]−
[
φ̃, φ

]
−DÃ .

The BRST invariant action

I =

∫
Σ

f
1

2
Tr Φ2 =

=

∫
Σ

[
f (2) 1

2
Trφ2 + ψ(1) ∧ Trφ Ã+ γ(0) Tr

(
φ c̃+

1

2
Ã ∧ Ã

)]
(3.2)

corresponds to the action (2.12). To see this, we solve for φ̃ and c̃ by putting

φ̃ = 0

and

s φ̃ = −F + γ(0)c̃+ ψ(1)Ã+ f (2)φ = 0 .

into the action (3.2) and obtain the action (2.12).

We are ultimately interested in putting the theory on curved spacetime and in a back-

ground with nontrivial gauge fields. Therefore, we shall couple our topological formulation

of YM2 theory to two-dimensional TG. The field content of TG includes the metric gµν ,

the gravitino ψµν , the diffeomorphism ghost ξµ, and the ghost-for-ghost γµ needed for the

nilpotency of the BRST charge. They carry ghost numbers 0, 1, 1, 2, respectively. The

BRST transformations of these fields [13–16] are

s gµν = −Lξgµν + ψµν ,

s ξµ = −1

2
Lξξµ + γµ ,

s ψµν = −Lξψµν + Lγgµν ,
s γµ = −Lξγµ , (3.3)

where Lξ is the Lie derivative associated with the vector field ξ.
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It is useful to introduce the operator S

S ≡ s+ Lξ
which satisfies the relation

S2 = Lγ (3.4)

on all the fields except the vector field ξµ. Finding a nilpotent BRST operator s for the

matter TQFT coupled to TG is equivalent to finding an operator S that satisfies the

relation (3.4) on the matter sector.

The solution to this problem [17] is obtained by replacing the coboundary operator δ0

with a new nilpotent operator δ:

δ ≡ S + d− iγ = δ0 + Lξ − iγ , δ2 = 0 (3.5)

in the transformations rules (3.1):

δA+A2 = f Φ ,

δ f = 0 . (3.6)

The equations above describe the BRST transformation rules for topological YM2 theory

coupled to TG. In components, these transformations become

S c = −c2 + γ(0) φ+ iγA

S A = −D c+ γ(0) Ã+ ψ(1) φ+ iγφ̃

S φ̃ = −
[
c, φ̃
]
− F + γ(0)c̃+ ψ(1)Ã+ f (2)φ

S φ = − [c, φ] + iγÃ

S Ã = −
[
c, Ã

]
−Dφ+ iγ c̃

S c̃ = − [c, c̃ ]−
[
φ̃, φ

]
−DÃ

S f (2) = −dψ(1)

S ψ(1) = −d γ(0) + iγf
(2)

S γ(0) = iγψ
(1) . (3.7)

Most importantly, the action (3.2) remains BRST invariant even when the spacetime

manifold Σ is curved. In general, we can add to the action terms of the form

In =
an
n

∫
Σ

f Tr Φn, (n = 2, · · · ) . (3.8)

In particular, in case the gauge group G contains U(1) factors, we can add a topological

counterpart of the Fayet-Iliopoulos term

I1 = a1

∫
Σ

f Tr Φ = a1

∫
Σ

(
f (2) Trφ+ ψ(1) ∧ Tr Ã+ γ(0) Tr c̃

)
, (3.9)

which, after eliminating φ̃ and c̃, becomes

I1 ' a1

∫
Σ

TrF .

For n = 2, we regain the BRST invariant action (3.2).
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4 BRST invariant topological backgrounds

Having coupled the matter TQFT to TG, we now look for the background configurations

that are BRST invariant. The BRST invariance conditions for the fermionic fields of both

TG and topological U(1) multiplet read

S ψµν = 0 and S ψ(1) = 0.

They lead to the equations

Lγgµν = Dµ γν +Dν γµ = 0,

d γ(0) = iγf
(2) , (4.1)

characterizing the backgrounds in correspondence of which the matter QFT acquires global

topological supersymmetry. Our aim is to solve these equations and classify the solutions

modulo BRST trivial ones.

The action depends on the topological backgrounds only through the BRST operator

S. The BRST operator, in turn, depends on the ghost-for-ghost γµ of TG and on the U(1)

fields γ(0) and f (2) only. Therefore, when the equations (4.1) are satisfied, the matter QFT

is automatically independent of any variation of the metric that preserve γµ, as well as of

any topological variation of the U(1) fields that preserve the class of f (2).

The first equation in (4.1) asserts that the ghost-for-ghost γµ has to be a Killing vector

of the two-dimensional metric gµν . This equation takes the same form in any spacetime

dimensions, but the moduli space of solutions differs. In the context of three-dimensional

supersymmetric gauge theories, its moduli space was discussed in [3]. In two dimensions,

it is well-known that there are Killing vectors on the sphere S2 and on the torus T2, but

not on higher-genus Riemann surfaces. Given the Killing vector γµ, we conclude that the

matter QFT is independent of any γ-invariant deformations of the metric. Generically,

these metrics have only a U(1) isometry. This is the case for example for the squashed

two-sphere S2
q studied in [18] and [6].

Given the Killing vector γµ, we now turn to study the equations for the U(1) gauge

field background. The consistency of (4.1) requires

d iγf
(2) = 0 = Lγ f (2)

iγ dγ(0) = 0 = Lγγ(0) .

This means that all the backgrounds gµν , f (2) and γ(0) must be Lγ-invariant. Trivial

solutions are of the form

γ(0) = iγ(θ(1)) and f (2) = dθ(1) ,

where θ(1) is a globally defined Lγ-invariant 1-form:

Lγ θ(1) = 0 .

The second equation in (4.1)

d γ(0) − iγf (2) = 0 (4.2)
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has the form of the defining equation of the equivariant closed form of degree-two of the

S1-equivariant cohomology on a two-surface:

(d− εΩ iV ) (f (2) + εΩ f
(0)) = 0 , (4.3)

provided we make the identifications

γ(0) = εΩ f
(0) and γµ = εΩ V

µ

where V is the Killing vector associated with the S1-equivariant action and εΩ is the

degree-two generator of the ring of the S1-equivariant cohomology. The f (2) + εΩ f
(0),

which appears in (4.3), is the equivariantly closed extension of the ordinary differential

form f (2) and d− εΩ iV is the Cartan differential.

For Σ = S2, it is well-known that there are two linearly independent equivariant classes

x and y of degree-two.7 The first class is the ring variable itself:

x = εΩ.

The second class is

y = f̃ (2) + εΩ f̃
(0) ,

where

f̃ (2) =
√
g

1

2
εµνdxµ dxν

D2 f̃ (0) =
√
g εµν D

µ V ν .

Here, f̃ (0) is solved only up to an additive constant: given a choice of this constant, a shift

to another value induces the change

y → y + c x .

We choose the normalization of the variable y such that∫
Σ
y =

∫
Σ
f̃ (2) = −2 and y(N) = εΩ f̃

(0)(N) = εΩ (4.4)

where N is one of the fixed points of the vector field V . If S is the other fixed point of V ,

we can choose

− 2 =

∫
Σ
f̃ (2) = f̃ (0)(S)− f̃ (0)(N) and f̃ (0)(S) = −f̃ (0)(N) = −1 . (4.5)

The localizing SG background found in [4] corresponds to an equivariant class of the form

a y + b x with a 6= 0, whereas the background identified in [7] corresponds to a class

with a = 0.

The square of y is an equivariantly closed class of degree-four:

y2 = x (2 f̃ (2) f̃ (0) + εΩ (f̃ (0))2) .

7We present an elementary proof of this assertion in the appendix B.1.
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Hence, we have

D (2 f̃ (2) f̃ (0) + εΩ (f̃ (0))2) = 0 ,

from which we derive the cohomological equation

2 f̃ (2) f̃ (0) + εΩ (f̃ (0))2 ∼ αx+ β y .

Here, α and β are determined by∫
Σ
y2 = εΩ

∫
Σ

2 f̃ (2) f̃ (0) = β

∫
Σ
x y = β εΩ

y2(N) = ε2Ω (f̃ (0)(N))2 = αx(N)2 + β x(N) y(N) = (α+ β) ε2Ω .

This yields

β =

∫
Σ

2 f̃ (2) f̃ (0) and α = −β + 1 .

With the normalizations (4.4) and (4.5), we have

β = 0 .

We thus obtain the cohomological relation

y2 ∼ x2 , (4.6)

which tells us that the S1-equivariant cohomology at any degree is the polynomial ring

generated by x and y modulo the relation (4.6).

Throughout the above analysis, we were taking both the TG backgrounds and the U(1)

field strength f (2) background to be real-valued. This implies that, for Σ a compact surface,

the flux of f (2) must be quantized. Hence, on the two-sphere, the relevant cohomology is

the integer valued S1-equivariant cohomology. In section 6.1, we will discuss the impact of

this quantization condition on the topological moduli space.

For Σ = T2, the S1-action is free. So, the equivariant cohomology is the same as the

standard cohomology of the quotient T2/S1 ' S1.8 As such, there is just one parameter

for the inequivalent BRST invariant topological backgrounds.

5 Relation to supergravity backgrounds

Given the classification of the topological backgrounds just discussed, our next goal is to

establish a map between the topological BRST invariant backgrounds and the supersym-

metric backgrounds of two-dimensional N = (2, 2) SG. We will show that the equations

determining the BRST invariant topological backgrounds which we derived in the previous

section are equivalent to the equations for the generalized covariantly constant spinors of

N = (2, 2) SG in two dimensions. It will be clear from our discussion that the method

we will explain is very general, and it can be applied to other dimensions or to higher

supersymmetry contents. We expect that the topological system which describe localizing

8See appendix B.2 for an explicit verification of this well-known general statement regarding T2.
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backgrounds of SG with higher supersymmetry and/or in higher dimensions will include

more topological gauge multiplets beyond the single abelian one which we considered in

this paper.

The localizing backgrounds of SG are determined by the generalized Killing spinor

equation, which is obtained by requiring the vanishing of the supersymmetry variations of

the gravitino [6]:

(Dµ − iAµ) ζ = −1

2
H Γµζ +

i

2
GΓµΓ3ζ . (5.1)

Here, the covariant derivative Dµ includes the spin connection associated with the frame

rotation on the tangent space TΣ, the vector field Aµ is the U(1)R gauge field minimally

coupled to the R-symmetry current, and the scalar fields H and G are the Hodge duals

of the two graviphoton field strengths. The cases with at least two supercharges of oppo-

site R-charges are the ones discussed in the previous works since they lead to amenable

computations. They correspond to backgrounds in (5.1) which satisfy the following reality

conditions

A∗µ = Aµ , H∗ = −H , G∗ = G . (5.2)

For these backgrounds, the conjugate of (5.1) reads

(Dµ + iAµ) ζ† = +
1

2
H ζ†Γµ −

i

2
Gζ†Γ3Γµ . (5.3)

5.1 Graviphoton backgrounds

The map between the TG backgrounds and the SG backgrounds is obtained by considering

the decomposition of the bi-spinor in two dimensions:

ζa(x) ζ†b (x) = c0(x)
1

2
Iab + cµ(x)

1

2
Γµab + c̃0(x)

1

2
Γ3
ab ,

where

c0(x) = ζ†(x) ζ(x) , cµ(x) = ζ†(x)Γµζ(x) , c̃0(x) = ζ†(x) Γ3 ζ(x).

The Fierz identities in two dimensions lead to the relation

cµcµ = c2
0(x)− c̃2

0(x), (5.4)

where we raised the indices of cµ using the background metric gµν . The equations (5.1)

and (5.3) for the spinors ζ and ζ† imply the following equations for the bilinears c0, cµ, c̃0

Dµ cν +Dν cµ = 0

Dµ cν =
√
g εµν (Gc0 + iH c̃0)

Dµ c̃0 = −iH√g εµν cν

Dµ c0 = G
√
g εµν c

ν , (5.5)

where we used the relation

ζ† Γµ Γ3 ζ = −i√g εµν ζ† Γν ζ = −i√g εµν cν .

– 17 –



J
H
E
P
0
3
(
2
0
1
6
)
1
6
9

The SG variables H, cµ, and c̃0 have to be identified with the topological background

fields according to the following map:

f ≡ ∗f (2) = −iH, γ(0) = c̃0, γµ = cµ . (5.6)

Therefore, in correspondence to a solution of the topological equations

Dµ γν +Dν γµ = 0 d γ(0) = iγ(f (2)) , (5.7)

we can construct a solution of the equations (5.5), which is defined by

c0 =
√
γ2 + (γ(0))2

G =
1

c0

[
1

2

√
g εµν D

µ γν + f γ(0)

]
. (5.8)

together with eqs. (5.6).

As explained in the previous section, solutions of the topological equations (5.7) that

are related by the transformations

f (2) → f (2) + dω(1) , γ(0) → γ(0) + iγ(ω(1)) where Lγ ω(1) = 0 (5.9)

with globally defined ω(1), are gauge equivalent. The flux of f (2) is, by definition, invariant

under the gauge transformations (5.9). Let us see if the same is true for the flux of the

SG background G. Under the gauge transformations (5.9), the associated composite two-

form field

G(2) = G
√
g d2x =

1

c0

[
1

2
d k + f (2) γ(0)

]
,

varies by

δG(2) =
1

c0

[
dω(1) γ(0) + f (2) iγ(ω(1))

]
− G(2)

c0

γ(0) iγ(ω(1))

c0

= d

(
ω(1) γ(0)

c0

)
≡ d ω̃(1) ,

where

ω̃(1) ≡ γ(0)√
γ2 + (γ(0))2

ω(1) and Lγ ω̃(1) = 0 .

Moreover,

δ c0 = iγ(ω̃(1)) .

Hence we conclude that, under the gauge transformations (5.9), the “composite” fields G(2)

and c0 transform in the same way as the topological fields f (2) and γ(0):

G(2) → G(2) + d ω̃(1) , c0 → c0 + iγ(ω̃(1)) where Lγ ω̃(1) = 0 . (5.10)

In particular, ∫
Σ
G(2) =

∫
Σ

1
2 d k + f (2) γ(0)√
γ2 + (γ(0))2

where k ≡ gµν γν dxµ

is invariant under the BRST transformations, provided that the backgrounds satisfy the

BRST invariance equations (5.7).
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5.2 U(1)R field strength background

We have seen how the topological backgrounds specify the spinorial bilinears and thus the

backgrounds H and G. Below, we show how the U(1)R field strength is also obtained from

the same topological backgrounds.

From the equation for the generalized covariantly constant spinors:

(Dµ − iAµ) ζ =
i

2
(−f Γµ +GΓµ Γ3) ζ , (5.11)

we obtain

(Dν − iAν) (Dµ − iAµ) ζ =
i

2
(−(Dν f) Γµ + (Dν G) Γµ Γ3) ζ+

+
i

2
(−f Γµ +GΓµ Γ3)

i

2
(−f Γν +GΓν Γ3) ζ

=
i

2

[
−(Dν f) Γµ + (Dν G) Γµ Γ3 +

i

2
(f2 −G2) Γµ Γν)

]
ζ .

Antisymmetrizing with respect to µ, ν yields(
− i

2

√
g R εµν Γ3 + iFµν

)
ζ =

i

2

[
(D[µ f) Γν] − (D[µG) Γν] Γ3 −

√
g εµν (f2 −G2) Γ3

]
ζ ,

where

Fµν = ∂µAν − ∂ν Aµ ≡ FR
√
g εµν

[Dµ, Dν ] ζ =
√
g εµν R

i

2
Γ3 ζ .

Hence, we arrive at the equation[
2FR + (f2 −G2 −R) Γ3 + (

√
g εµν D

νf + iDµG) Γµ
]
ζ = 0 . (5.12)

Nontrivial solutions of this equations exist whenever

det
[
2FR + (f2 −G2 −R) Γ3 + (

√
g εµν D

νf + iDµG) Γµ
]

= 0 , (5.13)

that is,

2FR = ±
√

(f2 −G2 −R)2 +Dµ fDµf −DµGDµG+ 2 i
√
g εµν DµGDν f . (5.14)

For generic f and G, (5.14) would require that FR be complex-valued. However, since the

fluxes are annihilated by the Lie derivative along γ:

Lγ f = Lγ G = 0

it follows that9

√
g εµν D

µGDν f = 0

9This can be proven as follows. γµDµ f = 0 implies

γ2 Dµ f = (γ2 Dµ − γµ γρDρ) f =
√
g εµν γ

ν (ερσ γσDρ f).

So, Dµf =
√
g εµν γ

ν A(f) where A(f) ≡ ερσ γσ Dρ f

γ2
. The same holds for G. It then follows immediately

that
√
g εµν D

µGDν f = 0.
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and thus the square of the field strength, F2
R, is real-valued :

FR = ±1

2

√
(f2 −G2 −R)2 +Dµ fDµf −DµGDµG . (5.15)

As a matter of facts, not only the square but also FR itself is real. This can be understood as

follows. We first rewrite the integrability condition (5.13) in a different form. From (5.12),

we have

2FR c0 + (f2 −G2 −R) γ(0) + (
√
g εµν D

νf + iDµG) γµ = 0

2FR γ(0) + (f2 −G2 −R) c0 + (
√
g εµν D

νf + iDµG) i
εµρ
√
g
γρ = 0 .

Since f and G are Lγ invariant, the imaginary terms in the equations above drop out:

2FR c0 + (f2 −G2 −R) γ(0) −Dµf
√
g εµν γ

ν = 0

2FR γ(0) + (f2 −G2 −R) c0 −DµG
√
g εµν γ

ν = 0 . (5.16)

Combining the two equations, we obtain a manifestly real-valued expression of the U(1)R
field strength

FR = (Dµf c0 − γ(0)DµG)

√
g εµν γ

ν

2 γ2

=
εµν
√
g
Dµ

[
(f c0 −Gγ(0)) γν

2 γ2

]
.

The flux of FR does not necessarily vanish since the vector field

Aµ =
1

2
(f c0 −Gγ(0))

γµ

γ2

becomes singular at the zeros of the vector field γµ. If we perform the transformation (5.9)

on f and γ(0), the field strength FR changes by a globally defined total derivative:

Aµ → Aµ +

(
ερσ ∂ρ ωσ
2 c0
√
g
− γρ ωρG

2 c2
0

)
γµ ,

which implies that the flux of FR is invariant under topological transformations.

From (5.16), we can also express the scalar spinorial bilinears in terms of the SG

backgrounds:

γ(0) =

√
g εµν γ

µ

(Df)2−(DG)2

[
(Dνf)(f2−G2−R)−(DνG)

√
(f2−G2−R)2+(Df)2−(DG)2

]
c0 =

√
g εµν γ

µ

(Df)2−(DG)2

[
(DνG)(f2−G2−R)−(Dνf)

√
(f2−G2−R)2+(Df)2−(DG)2

]
.

We note that the field strength background (5.15) encompasses all known backgrounds

discussed in [6] as special cases. When (5.15) is satisfied, the matrix in (5.12) is generically

of rank-one. In this case, the system has only two global supercharges. The system has four
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global supercharges when the matrix has rank-zero, that is when the U(1)R field strength

vanishes,

f2 −G2 −R = Dµ f = DµG = 0 and hence FR = 0 , (5.17)

which agrees with the results of [6].

Let us also observe that eq. (5.15) implies that whenever

f = G (5.18)

one has

FR = ±1

2
R (5.19)

We might take this as the definition of the A-model, whose twisting was indeed originally

characterized by identifying the spin-connection with twice the U(1)R gauge field.

From eq. (5.8) we see that γµ = 0 automatically implies the A-model condition (5.18):

the corresponding backgrounds — i.e. γµ = 0, f = G and FR = ±1
2 R — identify the

old A-model introduced by Witten in [9]. When instead the A-model condition (5.18) is

satisfied by γµ 6= 0 one obtains the so-called [6] Ω-deformed A-model on the sphere. We

will verify this in detail in subsection 6.2.

6 Classification of supergravity backgrounds

Our considerations in earlier sections apply to any two-dimensional spacetime Σ equipped

with a metric which has an isometry. In this section we shall focus separately on Σ = S2

and T2. While non-compact Σ = H2 is an equally interesting case, due to new features, we

shall relegate its study to a separate work. As we explained in the previous sections, there

is no loss of generality in taking the metrics on S2 and T2 be maximally symmetric.

6.1 All supersymmetric localizing backgrounds on S2

Consider the round two-sphere S2 with coordinates

ds2 = dθ2 + sin2 θ dφ2. (6.1)

We take γµ to be proportional to one of the three Killing vector fields,

γ = εΩ ∂φ ≡ εΩ V . (6.2)

Up to topological equivalences, we know that the general solution of (5.7) is given by

γ(0) = εΩ

(
A− n

2
cos θ

)
and f =

n

2
, (6.3)

where A is a constant and n ∈ Z labels the first Chern class of the topological connection∫
Σ

√
g f =

γ(0)(π)− γ(0)(0)

εΩ
= n . (6.4)
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The modulus A for a generic solution which is topologically equivalent to (6.3) can be

expressed as

A =
γ(0)(π) + γ(0)(0)

2 εΩ
=
n

2
+
γ(0)(0)

εΩ
. (6.5)

This expression is topologically invariant since the Killing vector γµ vanishes at the poles

of S2.

For the graviphoton background G, we obtain

Gn,A =
n
2 A+ (1− n2

4 ) cos θ√
sin2 θ + (A− n

2 cos θ)2
, (6.6)

whose flux takes the value

m ≡
∫

Σ

√
g Gn,A =

c0(π)− c0(0)

εΩ
=


+n for A ≥ + |n|2

2A sign(n) for |A| < |n|
2

−n for A ≤ − |n|2

. (6.7)

Therefore, by requiring the quantization of this flux, we see that, when |A| ≥ |n|
2 , A is

a continuous moduli parameter of this family of solutions. On the other hand, when

|A| < |n|
2 , the quantization of the flux for G imposes that A be a discrete parameter, taking

the 2n− 1 values

A = A(m) =
m

2
for m = −(n− 1), · · · , 0, · · · , n− 1 (6.8)

and

Gn,m =
n
2
m
2 + (1− n2

4 ) cos θ√
sin2 θ + (m2 −

n
2 cos θ)2

. (6.9)

The U(1)R field strengths corresponding to the topological backgrounds (6.3) are

F n,A
R = ±1

2

√
(n2/4− 1−G2

n,A)2 − (DGn,A)2 . (6.10)

The flux of U(1)R gauge field is then given by∫
Σ

√
gF n,A

R =

∫ π

0
dθ

d

dθ

[
(f c0 −Gγ(0))

γφ
2 γ2

]
=

1

2 εΩ

[
(f(π) c0(π)−G(π) γ(0)(π))− (f(0) c0(0)−G(0) γ(0)(0))

]

=


+1 for A ≥ + |n|2

0 for |A| < |n|
2

−1 for A ≤ − |n|2

. (6.11)

In figure 1, continuous and discrete solutions are represented on the (m,n) plane, where m

and n are the G and f fluxes. The solutions with continuous A are pictured by red (blue)

dots on the lines n = m (n = −m) and their U(1)R flux is +1 (−1). The discrete solutions,

which do not have continuous moduli parameters beyond the Ω-deformation parameter, are
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Figure 1. Fluxes of localizing backgrounds on the 2-sphere: n =
∫

Σ

√
g f , m =

∫
Σ

√
g G.

represented by the black dots. Their U(1)R fluxes vanish. The solution with m = n = 0 is

represented by a green dot: its U(1)R flux is 1 (−1) if A > 0 (A < 0).

Let us briefly discuss how the solutions previously studied in the literature fit to our

general classification. For n = −2, the discrete solutions form a multiplet whose members

are labelled by m = −1, 0, 1:

f = −1

γ(0)

εΩ
=
m

2
+ cos θ

c0

εΩ
=

√
sin2 θ +

(m
2

+ cos θ
)2

G =
−m

2√
sin2 θ +

(
m
2 + cos θ

)2 . (6.12)

The solution found in [4] has

f = −1 , γ(0) = εΩ cos θ , G = 0 (6.13)

It corresponds in our classification to the case with m = 0 of the n = −2 multiplet.10

10Eq. (5.17) shows that this solution has enhanced supersymmetry.
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6.2 Ω-deformed S2

In this section we will focus on the solution with n = m = 0 (the green dot of figure 1):

f = 0 , γ(0) = εΩA , G =
cos θ√

sin2 θ +A2
. (6.14)

FR is given by eq. (5.15) and its flux is +1 (−1) if A > 0 (A < 0).11 In this subsection we

show that this background is topologically equivalent, in the sense of eq. (5.9), to the so-

called Ω-deformed S2. The Ω-deformed A-model was defined in [6] and [7] by the equation

f = G. (6.15)

We have already remarked that this equation implies the identification of the FR with half

of the world-sheet curvature. By substituting eq. (6.15) into (5.8), one obtains the equation

1

2

√
g εµν D

µ γν + f γ(0) = f
√
γ2 + (γ(0))2 . (6.16)

Taking account of (5.7) and (6.1), this gives

ε2Ω cos θ +
d γ(0)

dθ

γ(0)

sin θ
=

d γ(0)

dθ

√
ε2Ω +

(γ(0))2

sin2 θ
, (6.17)

which can be easily solved to yield

γ(0)(θ)

εΩ
= − 1

2B
+
B

2
sin2 θ = − 1

2B
+
B

2
V 2

f = G = B cos θ =
B

2

√
g εµν D

µ V ν

c0

εΩ
=

1

2B
+
B

2
V 2 . (6.18)

Since

γ(0) = − εΩ
2B

+ iγ(ω) and f (2) = dω

where

ω =
B

2
gµν V

ν dxµ,

one verifies that the Ω-deformed background (6.18) is indeed topologically gauge equiva-

lent to

γ(0) = − εΩ
2B

f = 0 (6.19)

i.e. to the background (6.3) with n = 0 and A = − 1
2B .

11The case with n = 0 and A = 0 is a singular limit: as discussed previously, if one sets γ(0) = 0, the

BRST transformations degenerate.
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In our considerations so far, both G and f are taken real-valued. There actually exists

another class of consistent SG backgrounds for which both G and f are purely imaginary-

valued. Formally, these backgrounds can be obtained from our backgrounds by analytically

continuing our formulas to pure imaginary values of A. The background with A = i, for

example, is the situation discussed in [5]. For this “Wick-rotated” backgrounds, the two-

dimensional flux configurations of the backgrounds correspond to exchanging n and m

in figure 1.

6.3 All localizing backgrounds on T2

For Σ = T2, let us adopt the coordinates

ds2 = dθ2
1 + dθ2

2 . (6.20)

We choose the vector field γ to be one of the two Killing vectors:

γ = εΩ ∂θ1 . (6.21)

Up to topological equivalences, the general solution of (5.7) is given by

f = 0 = G , γ(0) = εΩA , c0 = εΩ
√

1 +A2 . (6.22)

We see that the allowed values for the background fields are considerably reduced compared

to those for S2. This is because the first Chern class of the topological U(1) gauge field

must vanish.

7 O(1, 1) duality symmetry

In this section we will show that some of the duality automorphisms of the supersymmetry

algebra act as solutions generating symmetries. To see this, let us return to the Killing

spinor equation

(Dµ − iAµ) ζ = − i
2
f Γµζ +

i

2
GΓµΓ3ζ . (7.1)

We see that this equation is invariant under the global O(1, 1; R) transformations[
f

G

]
→

[
f ′

G′

]
=

[
coshα sinhα

sinhα coshα

][
f

G

]
ζ → ζ ′ = e

α
2

Γ3 ζ

Aµ → A′µ = Aµ . (7.2)

Namely, under the O(1, 1; R), (f,G) transforms as a vector, ζ transforms as a spinor,

while Aµ is a scalar. We shall refer to this continuous global O(1, 1;R) invariance as

“non-compact duality symmetr”.

Under the same O(1, 1; R) duality transformation, the topological bilinears trans-

form as [
c0

γ(0)

]
→

[
c′0

(γ(0))′

]
=

[
coshα sinhα

sinhα coshα

][
c0

γ(0)

]
γµ → (γµ)′ = γµ . (7.3)
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The O(1, 1; R) duality transformation leave the equations for the spinor bilinears (5.5)

invariant and thus it must act on the topological backgrounds as well. However, it is

important to observe that the O(1, 1; R) duality symmetry is realized non-linearly on the

space of solutions of the equations for TG backgrounds as follows:

f → f ′ = coshα f + sinhαG[f, γ(0), γµ]

γ(0) → (γ(0))′ = sinhα c0[γ(0), γµ] + coshα γ(0)

γµ → (γµ)′ = γµ

FR[f, γ(0), γµ]→ FR[f ′, (γ(0))′, (γµ)′] = FR[f, γ(0), γµ] , (7.4)

where

c0[γ(0), γµ] =
√
γ2 + (γ(0))2

G[f, γ(0), γµ] =
1

c0

[
1

2

√
g εµν D

µ γν + f γ(0)

]
FR[f, γ(0), γµ] = ± 1

2

√
(f2 −G2 −R)2 + (Dµf)2 − (DµG)2 . (7.5)

On a compact surface Σ, the fluxes of f and G must be quantized. In general, given a

background configuration of (7.1) with quantized fluxes, the configuration obtained after

the duality transformations (7.2) may not have quantized fluxes. When this happens,

the transformed background is not physically acceptable. This implies that, for compact

manifolds, the continuous duality symmetry O(1, 1; R) is generically broken.

Still, the theory might be invariant under a discrete set of duality transformations

which send a configuration with quantized fluxes to another configuration with quantized

fluxes: if (n,m) are the (f,G) fluxes of a given configuration, there must exists a nontrivial

discrete duality transformation for each nontrivial integer fluxes (n′,m′) that preserves the

O(1, 1; Z) quadratic form

||(n′,m′)||2 ≡ n′ 2 −m′ 2 = n2 −m2 ≡ ||(n,m)||2 . (7.6)

As we already classified all solutions up to topological gauge equivalence, we can analyze

the fate of the global duality symmetry in full generality.

Take first the solutions with |A| > |n|
2 > 0 which have f and G fluxes equal to (n,m) =

(n,±n). We will focus on the n > 0 and m = n class of background configurations, as

the foregoing analysis would similarly hold for other classes. From (7.6), we see that the

duality transformations which act on such backgrounds form a subgroup isomorphic to Z,

whose elements are the matrices for which

eαk = k, equivalently, αk = log k + 2πiZ (7.7)

for some k positive integer such that[
f

G

]
→

[
f ′

G′

]
=

[
1
2(k + 1

k ) 1
2(k − 1

k )
1
2(k − 1

k ) 1
2(k + 1

k )

] [
f

G

]
[
γ(0)

c0

]
→

[
(γ(0))′

c′0

]
=

[
1
2(k + 1

k ) 1
2(k − 1

k )
1
2(k − 1

k ) 1
2(k + 1

k )

] [
γ(0)

c0

]
.
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Under such discrete duality transformation, the moduli A and n of the backgrounds are

transformed to [
n

A

]
→

[
n′

A′

]
=

[
1 0

1/2 1

][
k 0

−k/2 k

][
n

A

]
= k

[
n

A

]
.

We see that, starting from the solutions with n = 1 and all A > 1/2, one can generate all

other solutions with n > 0 and A > n/2 by O(1, 1; R) duality transformations.

On the other hand, generic discrete solutions for A = m
2 and fluxes (n,m) with |m| <

|n| and n 6= 0 breaks completely the O(1, 1; R) duality symmetry group (7.2). This is the

case, for example, of the solution (n,m) = (−2, 0) of [4], since the only solution of

n′ 2 −m′ 2 = 4 (7.8)

are n′ = ±2 and m′ = 0. In general, one can show that the set of O(1, 1; Z) duality

transformations which send a given discrete solution into another discrete solution is a

finite set (generically empty). For example, the only other solution which can be generated

by the Lorentzian symmetry from the discrete solution (n,m) = (7, 2) is the one with

(n′,m′) = (9, 6).

It remains to consider the solution with n = 0 and A > 0 continuous12 associated with

the Ω-deformed S2

γ(0) = εΩA

f = 0

c0(γ(0), γµ) = εΩ
√

sin2 θ +A2

G(f, γ(0), γµ) =
cos θ√

sin2 θ +A2
(7.9)

By a general O(1, 1; R) rotation, one obtains

(γ(0))′

εΩ
= sinhα

√
sin2 θ +A2 + coshαA (7.10)

and hence that

A′ =
1

2

[
(γ(0))′(π) + (γ(0))′(0)

]
= eαA .

We see therefore that, starting from the n = 0 A = 1 model, one obtains all values A > 0

by acting with the duality symmetry transformation.

Summarizing, the O(1, 1,R) duality transformations generate, starting from the solu-

tions with n = ±1 and n = 0 in the continuous branch, all other solutions with generic n

and A continuous. On the other hand, the solutions in the discrete branch, with A = m
2

and |m| < |n| are, generically, not connected by the duality transformations. The action

of the duality transformations on the localizing SG backgrounds is depicted in figure 2.

12The solution with A < 0 corresponds to the Ā-twisted model.
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Figure 2. The action of the discrete non-compact duality symmetry on fluxes: n =
∫

Σ

√
g f ,

m =
∫

Σ

√
g G.

8 Conclusions

In this work, we have obtained a complete classification of supersymmetric localizing back-

grounds (metric and gauge field) that can be constructed in two-dimensional N = (2, 2)

SG. The key idea has been to couple two-dimensional matter TQFT to topological gravity

and to relate BRST invariant topological backgrounds to supersymmetry preserving SG

backgrounds. This approach was already introduced in three dimensions in [3]. The present

work discusses its universality and generality and also explicitly works out the dictionary

between the TG and SG approaches in two dimensions.

Unlike the SG approach widely discussed in the literature, our analysis uses TG to

analyze and classify the manifolds admitting generalized covariantly constant spinors. In

this paper, we showed that all the two-dimensional backgrounds which admit generalized

covariantly constant spinors can be obtained via TG. More precisely, we demonstrated that

there is a precise map which allows to reconstruct, given a BRST invariant topological

background, a solution of the equations for generalized covariantly constant spinors in

N = (2, 2) SG. From a more technical point, we have learned that the two-dimensional case

presents a new feature when compared to the three-dimensional one analyzed in [3]: one

needs to introduce also a background U(1) topological gauge field, equivariantly coupled to

TG. In section 2 we have shown that the abelian gauge multiplet is necessary to consistently

couple the YM2 theory to TG. In other words, the rigid matter theory explicitly tells us

what are the backgrounds which need to be introduced.

In fact, the topological approach also provides a natural and precise notion of equiv-

alent backgrounds, i.e. backgrounds that can be made equal through topological gauge
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transformations. In this way, it becomes much easier to obtain a complete classification

of the localizing backgrounds. We believe this is a significant advantage over the more

traditional SG approach, for which the analogous notion has not yet been worked out.

The natural implication of our map is the prediction that the topological partition

function Ztop[γµ, f (2), γ(0)] of the matter TQFT coupled to BRST invariant topological

backgrounds is identical to the partition function of the matter SQFT coupled to the

corresponding SG backgrounds

Ztop[γµ, f (2), γ(0)] = Zsugra

[
f,G[f, γ(0), γµ],FR[f, γ(0), γµ], ζ

]
. (8.1)

Here, ζ is the covariantly constant spinor solution of eq. (5.11), while G[f, γ(0), γµ] and

FR[f, γ(0), γµ] are the “composite” SG backgrounds expressed in terms of the topological

backgrounds in (7.5). Checking this prediction explicitly is an outstanding open problem

that we leave for the future.

We found many more supersymmetric localizing solutions than those that have been

explored so far: it would be interesting in particular to investigate the “discrete” solutions

that generalize the one of [4] and [5]. In this regard, it would be also interesting to

understand how the non-compact duality transformations act on the partition functions of

different supersymmetric localizing backgrounds.

A direction for future investigation might be the uplift of the new supersymmetric lo-

calizing backgrounds we discovered to the superstring setup. The two-dimensional matter

SQFTs with at least 2 supercharges contain vector, chiral and twisted chiral supermulti-

plets. Such systems arise as the low-energy limit of two-dimensional matter on intersecting

D-branes. It could be interesting to study how the topological symmetry which we have

uncovered is realized from the brane perspectives.

Another direction is to understand better the Ω-deformation. We related this back-

ground to turning on the background of vector superghost in TG. It would be interesting to

extend this to the most general Ω-deformations and to utilize the two-dimensional analysis

in this paper to the worldsheet formulation of the Ω-deformations.

As yet another direction, we note that the coupling of the matter TQFT to TG is

also the starting point for constructing topological strings. It seems reasonable to ask if

the backgrounds with non-vanishing ghost number which were at the core of our analysis

are relevant in the topological string set up in which the topological backgrounds become

dynamical. One might speculate that the Ω-deformation be relevant to the world-sheet

understanding of the refined topological string, in particular, in the context of computation

of elliptic genera of M-strings in six dimensions [19–21], and monopole strings in five

dimensions [22, 23].

We hope we made clear that the methods introduced in this paper are quite general

and they are not restricted either to two dimensions or to N = (2, 2) SG: we believe they

might be a valuable tool to explore localizing backgrounds also in other dimensions and

with different supersymmetry content. For example, it should be relatively simple to study

localizing backgrounds which arise in two-dimensional N = (4, 4) SG.13

13Some preliminary results for this case have been recently obtained in [24].
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A Standard YM theory from topological YM theory

We asserted that, in two-dimensional spacetime, standard YM theory is related to topo-

logical YM theory by a certain deformation. Here, we explain details of this relation. The

starting point is the partition function of the standard YM theory, viewed as a deformation

of the topological YM theory:

Z[ε] =

∫
[dA dφ] e−IYM[A,φ] =

∫
[dA dφ] e−Itop[A,φ] e−ε

∫
Σ d2x

√
g 1

2
Trφ2

, (A.1)

Here, ε is a positive semidefinite deformation parameter and

Itop[A, φ] =

∫
Σ

TrφF (A.2)

is the topological YM theory action. Expanded in power series of the deformation param-

eter ε,

Zpert[ε] =
∞∑
n=0

εn

n!

∫
[dA dφ] e−Γtop[A,φ]

∫
Σ
d2x1

√
gTrφ2(x1) · · ·

∫
Σ
d2xn

√
gTrφ2(xn)

=
∞∑
n=0

εn

n!

∫
Σ
d2x1

√
g(x1) · · ·

∫
Σ
d2xn

√
g(xn)

〈
Trφ2(x1) · · ·Trφ2(xn)

〉
top

, (A.3)

where 〈· · · 〉top denotes the vacuum expectation value computed in the topological YM

theory. Since we are expanding in ε, Zpert(ε) is of course only the perturbative part of

the full partition function Z(ε) of the standard theory: Zpert(ε) does differ from Z(ε) by

exponentially small, nonperturbative terms of O
(
e−

1
ε

)
.

One also observes that the zero-form

O(0) = Trφ2 , (A.4)
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is BRST invariant

sO(0) = 0 , (A.5)

and hence

d Trφ2 = sO(1) , (A.6)

where

O(1) = Trφψ . (A.7)

This implies that the correlation functions〈
Trφ2(x1) · · ·Trφ2(xn)〉top ≡ 〈

(
Trφ2

)n〉
top

, (A.8)

does not depend on the operator insertion locations x1, . . . xn. So, the perturbative parti-

tion function (A.3) becomes

Zpert(ε) =

∞∑
n=0

(
Vol(Σ) ε

)n
n!

〈(
Trφ2

)n〉
top

, (A.9)

where Vol(Σ) is the area of the surface Σ with the chosen background metric g.

When Σ is a closed surface Σh of genus h, the topological correlation function which

appear in the expansion (A.9) is reduced to integrals over the moduli space Mh of flat

gauge connections on Σh. More precisely, the ghost number-four BRST operator Tr φ2

corresponds to a closed four-form Ω(4) on Mh:

Trφ2 ↔ Ω(4) , (A.10)

so the topological correlation functions which appear in (A.9) become〈(
Trφ2

)n 〉
top

=

∫
Mh

(
Ω(4)

)n
eω2 , (A.11)

where ω2 is the natural symplectic two-form on Mh, defined by

ω2(δA, δA) =

∫
Σ

Tr δA ∧ δA . (A.12)

The correlation functions (A.11) make it clear that the series expansion (A.9) terminates

after a finite number of terms so that Zpert(ε) is a polynomial in ε whose degree depends

on the genus h of Σh.

The integration in (A.11) is well-defined as long as the moduli spaceMh is smooth and

compact. Singularities of Mh are associated with reducible flat connections. Therefore,

in the presence of reducible flat connections, Zpert(ε) does not admit an expansion in

integer positive powers of ε, as in (A.9), but it also includes terms with fractional, possibly

negative, powers of ε. In this case, Zpert(ε) still encodes some topological information of

the moduli space Mh, but it is not related in any simple way to the standard intersection

numbers of it.
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B S1-equivariant cohomology

B.1 S1-equivariant cohomology for S2

A generic invariant two-form f (2) can be decomposed as

f (2) = c1
√
g

1

2
εµνdxµ dxν + d θ(1) , (B.1)

where c1 is a constant and θ(1) satisfies

Lγ θ(1) = dω(0) . (B.2)

The positive-definite inner product on the space of one-forms〈
ω(1), ω̃(1)

〉
=

∫
Σ
ω(1) ∗ ω̃(1) =

∫
Σ

d2x
√
g ωµ ω̃ν g

µν (B.3)

built with the Lγ-invariant metric gµν is Lγ-invariant. So, θ(1) admits the orthogonal

decomposition:

θ(1) = θ
(1)
0 + θ

(1)
⊥ , (B.4)

where

Lγ θ(1)
0 = 0 (B.5)

and 〈
θ

(1)
⊥ , θ

(1)
0

〉
= 0, and θ

(1)
⊥ = Lγ ω(1) (B.6)

since the image of Lγ is orthogonal to the space of invariant forms.

There is a positive definite, Lγ-invariant inner product on the space of zero-forms as

well: 〈
ω(0), ω̃(0)

〉
=

∫
Σ

d2x
√
g ω ω̃

and the corresponding orthogonal decomposition:

ω(0) = ω
(0)
0 + ω

(0)
⊥ . (B.7)

Then,

Lγ θ(1) = Lγ θ(1)
⊥ = dω

(0)
0 + dω

(0)
⊥ .

This implies

dω
(0)
0 = 0

and hence

Lγ θ(1) = dω
(0)
⊥ = Lγ d θ(0) .

In other words,

Lγ θ̃(1) ≡ Lγ (θ(1) − d θ(0)) = 0 . (B.8)

Hence,

f (2) = c1
√
g

1

2
εµνdxµ dxν + d θ̃(1)

γ(0) = c1 γ
(0)
BC + iγ(θ̃(1)) + c0 (B.9)

with θ̃(1) which is Lγ invariant.
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B.2 S1-equivariant cohomology for T2

Again, a generic invariant two-form f (2) can be decomposed as

f (2) = c1
√
g

1

2
εµνdxµ dxν + d θ(1) , (B.10)

where

Lγ d θ(1) = 0 = dLγ θ(1) . (B.11)

Hence,

Lγ θ(1) = dω(0) + h(1) , (B.12)

where h(1) is harmonic:

dh(1) = d† h(1) = 0. (B.13)

Using the same orthogonal decomposition as in (B.4) for θ(1), ω(0) and h(1), we now obtain

Lγ θ(1) = Lγ θ(1)
⊥ = dω

(0)
0 + dω

(0)
⊥ + h

(1)
0 + h

(1)
⊥ . (B.14)

From this,

dω
(0)
0 + h

(1)
0 = 0 (B.15)

and hence

Lγ θ(1) = dω
(0)
⊥ + h

(1)
⊥ = Lγ (d θ(0) − h̃(1)). (B.16)

So,

θ̃(1) ≡ θ(1) − d θ(0) + h̃(1) (B.17)

is invariant:

Lγ θ̃(1) = 0 (B.18)

and f (2) is reduced to

f (2) = c1
√
g

1

2
εµνdxµ dxν + d θ̃(1) . (B.19)

However, there is no nontrivial U(1) bundle on T2 invariant under γ. We must therefore set

c1 = 0 . (B.20)

This leads to

γ(0) = iγ(θ̃(1)) + c0 . (B.21)

Open Access. This article is distributed under the terms of the Creative Commons
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