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Abstract

Respondent-driven sampling (RDS) is a popular method for sampling hard-to-survey populations 

that leverages social network connections through peer recruitment. While RDS is most frequently 

applied to estimate the prevalence of infections and risk behaviors of interest to public health, such 

as HIV/AIDS or condom use, it is rarely used to draw inferences about the structural properties of 

social networks among such populations because it does not typically collect the necessary data. 

Drawing on recent advances in computer science, we introduce a set of data collection instruments 

and RDS estimators for network clustering, an important topological property that has been linked 

to a network’s potential for diffusion of information, disease, and health behaviors. We use 

simulations to explore how these estimators, originally developed for random walk samples of 

computer networks, perform when applied to RDS samples with characteristics encountered in 

realistic field settings that depart from random walks. In particular, we explore the effects of 

multiple seeds, without replacement versus with replacement, branching chains, imperfect 

response rates, preferential recruitment, and misreporting of ties. We find that clustering 

coefficient estimators retain desirable properties in RDS samples. This paper takes an important 

step toward calculating network characteristics using nontraditional sampling methods, and it 

expands the potential of RDS to tell researchers more about hidden populations and the social 

factors driving disease prevalence.

Keywords

respondent-driven sampling (RDS); social networks; clustering coefficient; small world model; 
transitivity; triad; hidden populations; HIV/AIDS; sampling; estimation

Corresponding Author: Ashton M. Verdery, Department of Sociology and Criminology, Oswald Tower, The Pennsylvania State 
University, University Park, PA 16802. amv5430@psu.edu. 

HHS Public Access
Author manuscript
Sociol Methodol. Author manuscript; available in PMC 2018 October 16.

Published in final edited form as:
Sociol Methodol. 2017 August ; 47(1): 274–306. doi:10.1177/0081175017716489.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Researchers in many fields are interested in populations that cannot be sampled by 

conventional methods because they are rare, lack a sampling frame, or have members who 

are unwilling to participate in traditional survey protocols. Such groups, known as hidden 

populations (Heckathorn 1997), are often marginalized and at high risk of infections like 

HIV/AIDS. Respondent-driven sampling (RDS) is a set of methods for sampling and 

making inferences about hidden populations that has proliferated throughout the social 

sciences and public health (Malekinejad et al. 2008; White et al. 2012). RDS uses a without-

replacement “link-tracing” approach, similar to snowball sampling, where respondents 

attempt to recruit a limited number of their personal network contacts in the target 

population until the desired sample size is attained. RDS offers a popular, quick, cost-

effective, and anonymous approach for sampling understudied groups like the homeless, 

drug users, or commercial sex workers that claims to provide asymptotically unbiased 

estimates of the population mean under limited conditions (Volz and Heckathorn 2008; 

Salganik and Heckathorn 2004). There are many concerns about the statistical properties of 

estimators for RDS data (Gile and Handcock 2010; Verdery, Mouw, et al. 2015; Merli, 

Moody, Smith, et al. 2015; Lu et al. 2013; Lu et al. 2012; Goel and Salganik 2010; Tomas 

and Gile 2011; McCreesh et al. 2012; Fisher and Merli 2014; Crawford et al. 2015). 

However, the continued development of estimators, diagnostics, and reporting protocols for 

use with such data are beginning to address these concerns (Lu 2013; Verdery, Merli, et al. 

2015; Gile 2011; Gile and Handcock 2011; Gile, Johnston, and Salganik 2015; White et al. 

2015; Nesterko and Blitzstein 2015; Yamanis et al. 2013; McCreesh et al. 2013; Crawford 

2016; Baraff, McCormick, and Raftery 2016), though more work is needed.

Most RDS studies focus on prevalence estimation—that is, estimation of the population 

mean or proportion of a focal attribute like condom use—and avoid making inferences about 

other relevant estimands. We focus on network structure and, in particular, clustering. The 

structure of both social and contact networks is a key component of the risk environment for 

members of hidden populations (Rhodes and Simic 2005) with important implications for 

disease transmission (Schneider et al. 2012; Morris et al. 2009) and health behaviors 

(Centola and Macy 2007). Highly clustered risk networks, like sexual contact networks or 

shared needle networks, can lead to more redundant paths, making disease transmission 

more likely (Moody 2002) and altering the relationship between concurrency and epidemic 

potential (Moody and Benton 2016). Clustering can also have benefits. Highly clustered 

friendship networks lead to normative reinforcement, and they can increase individual 

likelihoods of engaging in and spreading health-promoting behaviors like joining an 

Internet-based health forum (Centola 2010), adopting modern contraceptives (Kohler, 

Behrman, and Watkins 2001), abstaining from illicit drugs (Silverman et al. 2007), getting 

tested for HIV (Karim et al. 2008), or avoiding unprotected sex (Lippman et al. 2010). 

Normative reinforcement through clustering can also drive unhealthy behaviors, such as 

sexual concurrency (Yamanis et al. 2015).

Despite its sociological and epidemiological importance, few studies of hidden populations 

using RDS have directly examined network structure. This is by design. Because field 

implementations of RDS require that samples be conducted without replacement and with 
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maximal anonymity, typical RDS samples have limited opportunity to measure network 

structure beyond recruiter-recruit relationships. Some have proposed using RDS to measure 

homophily (Wejnert 2010), or the tendency for people with similar attributes to be tied 

(McPherson, Smith-Lovin, and Cook 2001), but these approaches are flawed (Crawford et 

al. 2015) and there have been few developments since. Others have fit exponential random 

graph models to RDS data (Merli, Moody, Smith, et al. 2015; Gile and Handcock 2011), but 

learning about networks themselves was not the primary purpose of these studies. The 

ability of RDS studies to estimate network structure is important, however, because without 

closer attention to network characteristics that influence risk behaviors and sexually 

transmitted infections, RDS studies will be unable to offer a comprehensive picture of the 

dynamics driving epidemic transmission or other network diffusion processes.

This paper focuses on the performance of recently developed estimators of network 

clustering that can be applied to RDS data. Work in computer science has proposed 

clustering estimators for data obtained via random walk sampling (RWS) (Hardiman and 

Katzir 2013), which is an alternative link-tracing sampling design more appropriate for 

computer networks than human populations. RDS procedures depart from RWS in several 

important ways that require new data collection protocols in order to estimate network 

characteristics of interest from RDS surveys of human populations, and which may call into 

question whether such estimators will have favorable statistical properties when used with 

RDS data. We review these discrepancies in detail throughout the paper. Section 2 discusses 

measures of network clustering, introduces their estimation in network censuses versus 

samples, and reviews how RDS differs from RWS. Throughout Section 2, we focus on RDS 

data collection strategies that could inform clustering estimators, which leads us to introduce 

two alternative survey question approaches for RDS. Section 3 describes the empirical data 

and simulation methods we use to evaluate whether our proposed survey questions and 

estimators of network clustering are appropriate for RDS data, focusing on bias, sampling 

variance, and total error. Section 4 contains results from these simulations. Section 5 

discusses how our proposed survey questions perform in six empirical RDS surveys. Section 

6 summarizes the contributions of this paper and lays out additional directions for this 

research. Our results indicate that the estimators maintain reasonable properties with RDS 

data and that the questions have good empirical properties. These findings lead us to suggest 

that researchers add clustering questions and estimators to RDS protocols to further explore 

network structure. We conclude by focusing on the potential benefits of clustering estimation 

with RDS data.

2. Background

2.1. Initial Notation

The notation that follows guides our discussion throughout the paper. For illustrative 

purposes, we rely on Figure 1, which shows (1) a hypothetical population (i.e., nodes A 

through I); (2) the social network linking its members (solid lines connecting nodes); (3) a 

hypothetical time-ordered RWS link-tracing sample starting from node A (dashed, directed, 

and numbered lines); and (4) a table counting relevant nodal statistics (on the right). Note 

that item (3) refers to a random walk sample (RWS) rather than a respondent-driven sample 
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(RDS); in an RDS sample, node E would be ineligible to be sampled a second time because 

RDS is conducted without replacement. Below, we review this and other differences 

between RWS and RDS that together call into question whether clustering estimators 

designed for RWS can be applied to RDS.

We characterize a social network of n people as a graph G with nodes V representing people 

and undirected edges E representing social ties. In Figure 1, we label nodes A through I and 

represent edges as undirected solid lines. We discuss the time-ordered, directed random walk 

steps shown with dashed and numbered lines in Sections 2.4 and 2.5 below. We represent the 

graph as an n × n adjacency matrix, A, whose elements aij, are 1 if there is a tie (edge) from 

person i to person j (i.e., when i ↔ j) and are 0 otherwise. For instance, there is an edge in 

Figure 1 between nodes B and C (but not between nodes A and B). We follow standard 

practices in the RWS and RDS literatures (Lovász 1993; Hardiman and Katzir 2013; Volz 

and Heckathorn 2008) and consider an undirected graph with one component (see Lu et al. 

[2013] for the performance of RDS in directed networks). Since the network is undirected, 

the adjacency matrix A is symmetric and aij = aji for all i = 1,…,n and j = 1,…,n. We set the 

diagonal of A to 0 (i.e., aii = 0, for all i = 1,…,n).

For convenience, we define di = ∑i = 1
n ai j = ∑ j = 1

n ai j as the degree of person i, meaning 

how many ties i has in the network. In Figure 1, node A’s degree is 1 because he or she is 

linked to only one other node (E), while node B’s degree is 2 because he or she is linked to 

both E and C. In empirical RDS studies, researchers typically estimate degree by asking 

respondents questions like “how many people do you know (you know their name and they 

know yours) who have exchanged sex for money in the past six months?” (WHO 2013:147). 

Some have studied the effect of inaccurate degree reporting on RDS estimates (Neely 2009; 

Lu 2013; Lu et al. 2012), but we assume accurate degree reporting.

2.2. Clustering Coefficients

Watts and Strogatz (1998) introduced the clustering coefficient to characterize small world 

networks (Milgram 1967). Small world networks are (1) highly clustered, meaning most ties 

between people appear in pockets of interconnection (see below), and (2) have short average 

path lengths, meaning that the minimum number of steps between network members is, on 

average, low (e.g., as embodied in the famous phrase “six-degrees of separation”). 

Clustering coefficients measure the first criterion.

Watts and Strogatz originally proposed a global measure of the clustering coefficient, 

defined as

GCC =
2∑i = 1

n ∑ j = 1
n ∑k = 1

j − 1 ai jaika jk

∑i = 1
n di(di − 1)

, (1)

where i, j, and k index unique respondents (Hardiman and Katzir 2013; Newman, Strogatz, 

and Watts 2001; Watts and Strogatz 1998). The global clustering coefficient (GCC) 

summarizes the overall network clustering by dividing the count of triangles by the count of 
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connected triplets, where triangles are defined as sets of three individuals (i, j, and k) for 

whom cells aij, aik, and ajk in the adjacency matrix A are all equal to 1 and connected triplets 

are defined as sets of three individuals (i, j, and k) where cells aij and aik are equal to 1. Note 

that triplets are defined to avoid double counting so that person i is a member of 

∑ j = 1
n ∑k = 1

j − 1 ai jaik connected triplets and ∑ j = 1
n ∑k = 1

j − 1 ai jaika jk triangles. As such, triangles 

are a subset of connected triplets that are connected in cell ajk. A node’s number of 

connected triplets is a function of his or her degree—that is, node i’s number of connected 

triplets is di(di – 1)/2. The embedded table in Figure 1 holds triangle and connected triplet 

counts for each node. The GCC of this graph is 15/33=0.4545. It is important to note that 

equation (1) cannot be evaluated for most RDS studies without information on connections 

between unsampled peers. We introduce simple questions for RDS surveys that address this 

issue in Section 2.5 below.

Extensions to the clustering coefficient concept consider the average amount of clustering 

among each individual’s affiliates in the network. This second measure, the local clustering 

coefficient (LCC), is defined as

CLCC = n−1Σi = 1
n 2∑ j = 1

n ∑k = 1
j − 1 ai jaika jk

di(di − 1) . (2)

The LCC measures the average of each individual’s number of triangles divided by his or 

her connected triplets. In Figure 1, the LCC is obtained by first dividing triangles by 

connected triplets, then taking the average (when di = 1, the value is set to 0). Thus, nodes 

A–C each contribute values of 0 to the LCC, while node D contributes a value of 

0.111=1/1*1/9 and node E contributes a value of 0.278=4/16*1/9, and so on. This graph’s 

LCC is 0.5767. As with the GCC, the LCC cannot readily be evaluated for many RDS 

samples. The key difference between the clustering coefficient measures is that the GCC 

captures the totality of network members’ experience, which may be dominated by low 

clustering among high degree nodes—for instance, while the LCC captures the average 

experience of network members, where each person in the network is weighted equally.

Although clustering coefficients are recent additions to the social networks literature, they 

resemble other important network characteristics— in particular, transitivity, ego-network 

density, and measures of clustering from the exponential random graph modeling 

framework. We omit detailed discussion of these alternate measures for the sake of brevity.

2.3. Measuring Clustering in Network Censuses and Samples

The calculation of many network-level statistics, including the clustering coefficient, 

assumes that researchers measure the entire adjacency matrix, A, in terms of cells (edges) 

and rows/columns (nodes). In Figure 1, it would be assumed that the researcher measured all 

ties (solid, undirected lines) and nodes (labeled A–I). Collecting such saturated network data 

is challenging (Smith 2012), however, and often impossible for populations without clearly 

defined institutional boundaries (such as schools). In other settings, either intentionally or 
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not, researchers do not collect data on all network members (node missingness), do not 

measure all relevant ties linking network members (edge missingness), or both.

When researchers cannot conduct a census of the network, they often turn to samples. There 

are many approaches to collecting sampled network data, including randomly drawn 

samples (Marsden 1987; Krivitsky, Handcock, and Morris 2011; Smith 2012; McPherson, 

Smith-Lovin, and Brashears 2006) and numerous link-tracing approaches (Goodman 1961; 

Heckathorn 1997; Volz and Heckathorn 2008; Mouw and Verdery 2012). We focus on the 

latter.

2.4. Hardiman and Katzir Estimators

Hardiman and Katzir (2013) introduce estimators for the LCC and GCC that use data 

gathered in an RWS sample, like that shown in Figure 1. Intuitively, for vertices x1, x2, …, 

xr sampled via RWS, they estimate clustering with the presence of a tie between the vertices 

before and after the focal vertex. Typical RDS studies do not ask about the existence of this 

tie, though some have (see Section 5 below and online Appendix B), and in Section 2.5 we 

propose two question formats for RDS studies to assess its existence. More formally, for a 

step k in a random walk, X, let ϕk represent whether a tie is present between the vertex 

before xk—that is, xk−1 — and the vertex after xk—that is, xk+1. In the random walk 

depicted in Figure 1, for instance, ϕk would be 0 the first time node E is sampled because 

nodes A and H are unconnected, but it would be 1 the second time node E is sampled 

because nodes F and I are connected. That is, ϕk = a(xk−1,xk+1), for each 2 ≤ k ≤ r – 1, where 

aij is the cell in the ith row and the jth column of the adjacency matrix, as before. Importantly, 

ϕk is not calculated for the first and last nodes of the walk, because the former has no 

recruiter and the latter no recruitee.

Next for the LCC, define a weighted sum of the ϕ value as Φl = 1
r − 2 ∑k = 2

r − 1 ϕk
1

dxk
− 1 . In 

this case, dxk represents the degree of the vertex xk in the random walk and r is the length of 

the random walk. Thus, Φl is the average of whether the previous vertex in the random walk 

(xk−1) and the vertex that follows in the random walk (xk+1) were tied, weighted by the 

probability of observing the current vertex. In RWS on an undirected, unweighted graph, the 

probability of observing a given vertex is the inverse of that vertex’s degree if the random 

walk is in the steady state, which is typically achieved if the walk is sufficiently long or 

started with steady state probabilities (reviewed in greater depth in Verdery, Mouw, et al. 

[2015] and in Lovász [1993]). We note that this finding cannot be assumed to hold for the 

finite, branching, without replacement samples conducted in RDS and that future research 

may investigate alternate weighting schemes. Finally, let Ψl = (1 r)∑k = 1
r 1 dxk

, 

representing the sum of sampled vertices’ reciprocal degrees. Hardiman and Katzir define an 

estimator of the LCC as
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CLCC =
Φl
Ψl

=

1
r − 2 ∑k = 2

r − 1 ϕk
1

dxk
− 1

1
r ∑k = 1

r 1
dxk

. (3)

Hardiman and Katzir also develop an estimator of the GCC. Letting 

Φg = (1 (r − 2))∑k = 2
r − 1 ϕkdk and Ψg = (1 r)∑k = 1

r dxk
− 1, they suggest the following 

measure for the global clustering coefficient:

CGCC =
Φg
Ψg

=
1

r − 2 ∑k = 2
r − 1 ϕkdxk

1
r ∑k = 1

r dxk
− 1

. (4)

Hardiman and Katzir use both analytic proofs and simulation to show that their proposed 

estimators are asymptotically unbiased with minimal variance for large RWS samples and 

that they produce more consistent results at any given sample size than other approaches that 

query each sampled node’s full ego network (counting ego network reports in the sample 

size). Although RDS does not rely on simple random walks, researchers may wish to apply 

these estimators to RDS samples. Section 2.5 discusses RDS departures from RWS with 

special attention to the empirical contexts in which RDS studies are conducted. Within it, we 

propose new survey questions that researchers could employ to estimate clustering via the 

Hardiman and Katzir estimators. We examine how these questions perform in six empirical 

surveys in Section 6.

2.5. RDS Departures from RWS

The Hardiman and Katzir estimators cannot immediately be applied to RDS studies in the 

field because they were developed for RWS, which differs considerably in core assumptions. 

Deviations of RDS from RWS have been shown in prior work to bias other estimators, like 

that of the population mean (Gile 2011; Merli, Moody, Smith, et al. 2015; Tomas and Gile 

2011) and sampling variance (Verdery, Mouw, et al. 2015), so we should not expect that a 

naïve application of Hardiman and Katzir’s clustering coefficient estimators will yield viable 

estimates from empirical RDS samples.

Table 1 summarizes eight RDS departures from RWS that may affect clustering estimation. 

A RWS sample of a network begins with selecting a single “seed” node, typically with 

probability proportionate to the steady-state probability πi = di/2m, where di is the degree of 

node i in the population and m = (1/2)∑idi is the number of edges in the population (Lovász 

1993). By contrast, most RDS protocols recommend initiating the sample by identifying, 

often by convenience, eight to ten members of the hidden population who are willing to 

participate, have large personal networks with other members of the target population, and 

are diverse with respect to relevant focal attributes, such as years injecting drugs (WHO 
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2013:71–82). A first consequence of this distinction is that RWS samples lead to a single 

chain in a network (as in the hypothetical chain depicted in Figure 1), whereas RDS samples 

start from multiple points and yield multiple chains. A second consequence is that RDS 

samples often exhibit seed dependence, whereas RWS samples do not (Gile and Handcock 

2010).

RWS and RDS also differ in their approach to tracing links. RWS samples proceed without 

branching (i.e., having only one coupon), while RDS samples almost always allow 

branching in practice through the distribution of two or three recruiting coupons to each 

respondent (Goel and Salganik 2009). RWS samples are conducted with replacement while 

RDS is conducted without replacement, which means that recruitment becomes competitive 

(Heckathorn 1997; Barash et al. 2016; Gile and Handcock 2010; Gile 2011; Crawford 2016). 

Other differences arise because RWS is researcher-driven (or algorithm-driven), while RDS 

is respondent-driven. In RDS, respondents must identify, approach, and successfully recruit 

peers, which can yield less than perfect link tracing efficacy and introduce preferential 

recruitment (Merli, Moody, Smith, et al. 2015; Verdery, Merli, et al. 2015).

Sample size is another distinction because RWS samples are used in computer science or 

fields where costs of sampling additional individuals is low compared to RDS in human 

populations (Mouw and Verdery 2012). For instance, Hardiman and Katzir examine their 

estimators’ performance in four large networks with 1 percent samples of sizes n = 9,780, n 
= 21,734, n = 30,724, and n = 48,440. By contrast, Malekinejad et al. (2008) report attained 

sample sizes for 63 RDS studies, ranging from n = 99 to n = 548, with a median n = 152. A 

first consequence of smaller samples is that RDS samples are more likely to contain finite 

sampling bias even when assumptions are met because the samples are too small for 

asymptotically unbiased RDS estimators to minimize bias. A second consequence of small 

RDS samples is that they are likely to violate the RDS assumption that the sample is “in 

equilibrium”, a fact exacerbated by convenience sampling of seeds (Gile and Handcock 

2010; Wejnert 2009). We note, however, that larger sample sizes have not been found to 

solve RDS’s core statistical problems (Verdery, Mouw, et al. 2015).

The final departure of RDS from RWS is anonymity, which pertains to the measurement of 

ϕk, whether person x’s recruiter knows person x’s recruitee. Unlike the situation in computer 

or online networks where it is comparatively easy to determine for each node xk in the 

random walk, whether the prior node, xk−1, is tied to the subsequent node, xk+1, this task is 

more challenging in an RDS sample of a human population. One cannot seek xk−1 in a 

stored contact list of node xk+1 or otherwise backtrack the sample for direct measurement; 

rather, the existence of this tie must be elicited from respondents themselves during a period 

when the respondent is answering the survey, which can introduce measurement error and 

other challenges. The timing of recruitments and preservation of anonymity in RDS mean 

that (1) researchers cannot ask about recruitments that have not yet occurred (e.g., they 

cannot ask A whether he or she is tied to H in the RWS in Figure 1), and (2) researchers 

cannot divulge who recruited whom to respondents (e.g., they cannot tell H that A recruited 

E). The middle recruit is the only feasible person to ask about this tie’s existence in an RDS 

sample (E in this example), although this requires E to report on a tie that exists between two 

of his alters and thus may introduce reporting error (a topic we examine below).

Verdery et al. Page 8

Sociol Methodol. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In many RDS surveys, a majority of respondents participate twice, once when they are 

recruited themselves (primary interview) and a second time when they return to the research 

site to collect additional incentives for successfully recruiting peers (secondary interview). 

Acknowledging this interview timing, we propose two questions that researchers can ask 

RDS respondents to feasibly elicit information about potential ties between xk−1 and xk+1:

(A) [In the secondary interview]. “Does the person who gave you the coupon 

know the person who you gave the coupon to or vice versa.” (We refer to this from 

here on as the binary question format).

(B) [In the primary or secondary interview]. “What percent of people who you 

know in the population does the person who gave you the coupon know.” (We refer 

to this from here on as the percentage question format).1

The binary question format garners the exact information required by the Hardiman and 

Katzir estimators, but it relies on the accuracy of respondent reports about recruiter-recruitee 

relationships. It can also be estimated only on a subset of sampled cases, as it cannot be 

asked until the secondary interview (after recruitment). The percentage question format 

differs from Hardiman and Katzir’s suggested approach, but it can be asked during either the 

main survey (of all respondents) or the follow-up interview (of the subset of respondents 

who recruit). If asked in both, researchers can check test-retest validity and potentially 

diagnose respondent comprehension problems. Of course, there are other possible ways to 

ask such questions in RDS surveys, but our proposed approaches are flexible in terms of 

implementation and preserve the desirable confidentiality of standard RDS studies.

3. Data and Methods

3.1. Approach

We begin by evaluating the performance of Hardiman and Katzir’s estimators applied to 

RDS through simulation methods. We aim to understand the effects of increasingly large 

departures from RWS, toward more realistic situations encountered within RDS data 

collection. To do this, we simulate data collection from underlying population social 

networks. It is notoriously difficult to obtain analytical results for RDS estimators, which is 

why many prior developments have tested proposed estimators through simulation. We test 

scenarios driven by data collection parameters to match how RDS departs from RWS, 

drawing 1,000 samples in each scenario. It is important to draw multiple samples per 

scenario to determine the estimators’ distributional properties (bias, sampling variance, and 

total error). For each simulated sample, we calculate the Hardiman and Katzir LCC and 

GCC estimators implemented with both question formats we proposed. We compare these 

sample estimates with the parameters in the population social network (or as would be 

calculated in a census). After examining how Hardiman and Katzir’s estimators perform in 

simulations, we evaluate their feasibility in six empirical RDS samples.

1.Many studies do not ask respondents directly for the percentage. Rather, they ask them to report personal network size (e.g., 
“A1. How many adult sex workers do you know who live in this city?”), then to report the number known by the recruiter (e.g., 
“A2. Of the number in A1, how many are known by the person who gave you the coupon?”). Percentages can be calculated 
directly from this pair of questions. We review six surveys that asked variants of the questions needed to calculate the clustering 
coefficient estimators in Section 5 and online Appendix B.
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3.2. Data

We first simulate link-tracing samples from a hidden population social network of 

heterosexuals, sex workers, and injecting drug users at elevated risk of HIV/AIDS collected 

beginning in 1987 as part of the Project 90 study in Colorado Springs, Colorado (Potterat et 

al. 2004; Woodhouse et al. 1994; Rothenberg et al. 1995; Klovdahl et al. 1994). The project 

aimed to assess how network structure affected disease transmission, and, as such, the 

researchers sought to obtain a census of the hidden population and their links to one another. 

These data have previously been used in prior RDS assessments (Goel and Salganik 2010) 

and are made available to researchers through the Office of Population Research at Princeton 

University (Office of Population Research, Princeton University 2015). We focus on 4,111 

individuals linked by 17,164 ties that remain in the network’s largest weakly connected 

component after dropping cases lacking valid attribute codes. Figure 2 shows the network 

linking members of this population, with nodes shaded by a key structuring variable (white/

nonwhite). Whites make up 74.7 percent of network members, while 17.1 percent of ties 

cross race categories. Nodes of different races group together in different parts of the figure, 

but there are many cross group links.

To understand how the Hardiman and Katzir estimators perform across a range of networks, 

we also examine additional networks from a data set of 100 Facebook networks collected in 

2005, which have also been subject to intensive examinations in prior simulation evaluations 

of RDS (Mouw and Verdery 2012; Verdery, Mouw, et al. 2015). Importantly, because they 

were collected when Facebook was new and membership restricted to those with college 

email addresses, researchers have argued that these networks represent realistic, offline 

social and interaction networks (Traud, Mucha, and Porter 2012; Traud et al. 2011; Clouston 

et al. 2009). We restrict analysis to 29 university networks where the largest connected 

component of users with valid attribute codes contained between 5,000 and 10,000 nodes, 

size restrictions we put in place to avoid without replacement sampling effects (Barash et al. 

2016) and to maintain computational tractability. Table 2 provides summary statistics for the 

Project 90 network and the Facebook networks. The Project 90 network is smaller, less 

dense, more clustered, and less homophilous than the Facebook networks.

3.3. Scenarios

We provide a replication file for researchers interested in replicating and expanding our 

scenarios for the Project 90 network, which are publicly available data. In both data sets, we 

focus on five scenarios designed to test the bias, sampling variance, and error of Hardiman 

and Katzir’s estimators when used with standard RDS protocols as opposed to simple RWS. 

Table 3 shows what key features we manipulate in each scenario. We first simulate 

collecting simple random walks (“RWS baseline”). These scenarios begin from a single seed 

selected with steady state probabilities, are conducted with replacement, do not branch, 

experience 100 percent link-tracing efficacy without preferential recruitment, and do not 

contain any measurement error for ϕk.

We then selectively relax parameters until the samples resemble the standard RDS protocol. 

We start with a scenario designed to mimic an ideal case of RDS constrained by the 

method’s actual implementation in the field (“RDS baseline”). The samples in this scenario 
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begin from 10 seeds selected via convenience sampling (implemented as uniform random 

seed selection in the main text; in online Appendix A we consider four other seed selection 

scenarios and find that they did not alter our results), are conducted without replacement 

(recruitment is competitive between respondents), and may branch up to three ways from 

each respondent (i.e., each respondent is simulated as having three coupons), respondents 

always approach and succeed in recruiting peers who have not already been sampled (i.e., 

100 percent recruitment efficacy), selecting them at random among the sets of their friends 

who have not participated (no preferences), and respondents accurately report the items used 

to measure ϕk (either the presence or absence of a tie between their recruiter and their 

recruitee for the binary question format, or the percentage of their potential recruitees known 

by their recruiter for the percentage question format). This RDS baseline scenario subsumes 

the first four ways that RDS departs from RWS, as listed in Table 1.

We next examine the fifth through seventh ways that RDS departs from RWS. We look at 

how less than perfect recruitment efficacy affects estimates by considering a scenario where 

only 80 percent of offered coupons are accepted by the targeted peer (“+ less than 100% 

efficacy”). We then test the effects of preferential recruitment (“+ preferential recruitment”), 

modeling it as a case where all respondents are half as likely to offer coupons to certain 

types of peers (to white peers in the Project 90 network and freshmen in the Facebook 

networks). Finally, we examine what happens when respondents misreport recruiter-

recruitee ties (“+ ϕk measurement error”). For the binary question format where respondents 

report on the presence or absence of a tie between their recruiter and recruitee, we subject 

each report to a 10 percent random chance of being misattributed (ties reported as nonties or 

nonties reported as ties). For the percent question format where respondents report on the 

percent of their network alters known by their recruiter, we randomly shift this number by up 

to ±10 percent from its true value (capping responses at 0 or 1).

In all simulated samples we assume respondents accurately report degree. Although sample 

size marks a key way in which RDS departs from RWS, we hold target sample sizes constant 

at 400, which is a small fraction of the population sizes we examine. We found that target 

sample sizes were attained in all scenarios, which reviews of RDS indicate happens 

frequently (Malekinejad et al. 2008).

3.4. Measures

We measure the performance of Hardiman and Katzir’s clustering coefficient estimators 

with three indicators. For each of the question formats (binary or percentage) of each of the 

estimators (GCC or LCC) in each scenario, we calculate (1) their bias, defined as 

bias = a−1∑i = 1
i = a (c − C) where a is the number of simulated samples; (2) their sampling 

variance (SV), defined as SV = a−1∑i = 1
i = a c i − a−1∑ j = 1

j = ac j
2
; and (3) their root mean square 

error (RMSE), defined as RMSE = (bias2 + SV).

4. SIMULATION RESULTS

We first consider the distribution of estimates for both the GCC and LCC calculated via the 

binary and percent question formats in the baseline RWS scenario on the Project 90 network. 
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Figure 3 shows that both estimators, using either question format, exhibit minimal bias that 

arises because of finite sample sizes. The LCC estimator is less biased than the GCC 

estimator (GCC binary bias = 0.017; LCC binary bias = 0.009; GCC percent bias = 0.017; 

LCC percent bias = 0.008). Sampling variance is approximately equivalent across estimators 

and question formats (GCC binary SV = 0.010; LCC binary SV = 0.008; GCC percent SV = 

0.009; LCC percent SV = 0.007). Considering both bias and sampling variance 

simultaneously, we find that the LCC percent estimator performs the best and that the 

percent question form has slightly lower error (GCC binary RMSE = 0.102; LCC binary 
RMSE = 0.092; GCC percent RMSE = 0.097; LCC percent RMSE = 0.083).

We next examine the distribution of estimates in realistic RDS samples and what features of 

RDS lead to performance deterioration compared with the RWS baseline scenario. Figure 4 

shows that in the Project 90 network the GCC estimated using the binary question format 

performs poorly in each of the RDS scenarios, underestimating the population parameter 

substantially (GCC binary bias by scenario is RDS baseline = −0.132, + imperfect = −0.127, 

+preferences = −0.130, and +misreporting = −0.067). Underestimation begins with the RDS 

baseline scenario and persists, which indicates that problems for this estimator arise from the 

use of multiple seeds, convenience seed selection, without replacement design, and/or 

branching. Because we do not see comparable biases in the percent format under these 

scenarios (GCC percent bias by scenario is RDS baseline = −0.010, +imperfect = −0.007, 

+preferences = −0.008, and +misreporting = −0.006), we attribute this bias to the binary 

question format’s restrictions on effective sample size because this format is asked only of 

nonseed respondents who recruit others, while the percent format can be asked of any 

nonseed sample participant.

The LCC estimators perform well in Figure 4. The binary question format of the LCC 

slightly overestimates clustering (LCC binary bias by scenario is RDS baseline = 0.039, 

+imperfect = 0.044, +preferences = 0.038, and +misreporting = 0.019), while the percent 

form slightly underestimates it (LCC percent bias by scenario is RDS baseline = −0.019, 

+imperfect = −0.016, +preferences = −0.016, and +misreporting = −0.015).

Estimates obtained in all RDS scenarios in the Project 90 network exhibit low sampling 

variance (ranging from 0.001 to 0.003), substantially lower than was found for the RWS 

scenarios. This result follows from the without replacement design of RDS, which tends to 

yield lower sampling variance than the with replacement design of RWS. RMSEs in the 

worst case scenarios, which contain all RDS deviations from RWS that we examine, are 

lower than we found for the RWS baseline scenarios in all cases. In the +misreporting 

scenarios, RMSEs are GCC binary RMSE = 0.076; LCC binary RMSE = 0.057; GCC 
percent RMSE = 0.034; LCC percent RMSE = 0.045.

We next turn to results in the Facebook networks. Table 4 shows how absolute values of bias 

(“absolute bias”) and RMSEs are distributed within these networks by estimator and 

question format in three focal scenarios (RWS baseline, RDS baseline, and RDS 

misreporting). We display these scenarios because the +imperfect and +preferences 

scenarios made little difference in the results. We do not show the low sampling variance we 

found in all scenarios for the Facebook networks (a maximum of 0.004 across networks in 
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any scenario). The estimators exhibit almost no bias in the RWS baseline scenarios, with a 

maximum that is substantially lower than was seen in the Project 90 network. The RWS 

baseline scenario also tends to produce much lower RMSEs in these networks than it did in 

the Project 90 network.

The RDS scenarios also yield lower bias in the Facebook networks than they did in the 

Project 90 network, with maximum observed values all lower in these networks. In terms of 

bias, the Facebook networks indicate that the binary measures are the most biased, with the 

LCC being less biased than the GCC. The Facebook networks also have lower RMSEs than 

the Project 90 network. In terms of RMSEs in the realistic RDS scenarios, results from the 

Facebook networks suggest that the percent question format is preferable to the binary 

format and that the GCC is slightly preferred over the LCC after accounting for sampling 

variance (recall that the LCC had lower bias). In total, median RMSEs observed in the RDS 

scenarios in the Facebook networks are only slightly larger than the median RMSEs 

obtained in the RWS baseline scenarios, which indicates that the clustering coefficient 

estimators maintain reasonable properties for application to RDS samples.

5. APPLICATION OF DATA COLLECTION INSTRUMENTS IN SIX 

EMPIRICAL SURVEYS

We now discuss six empirical RDS surveys collected in diverse hidden populations in 

multiple countries by different research teams that asked respondents the types of questions 

needed to estimate network clustering. Two studies examined female sex workers in China, 

two examined people who inject drugs in the Philippines, one study examined people who 

inject drugs in Canada, and the last survey, which contained both of our proposed question 

formats, looked at vegetarians and vegans in Argentina. For the sake of brevity, we omit full 

descriptions of these studies in the main text but provide complete details in online 

Appendix B. We focus on the proportion of invalid item responses (“Invalid %”) in each 

survey across question formats, where we define invalid responses as cases where 

respondents did not answer the question, gave responses of “don’t know,” or otherwise 

offered evidence that they did not understand or wish to answer the question. We also 

compare the mean values of valid responses (“Mean of valid”) between relevant survey pairs 

(comparing the two surveys in China to each other, and the two surveys in the Philippines to 

each other), and within individuals who answered both types of questions in the survey in 

Argentina.

Table 5 summarizes the item response patterns in these empirical surveys. Respondents were 

much more likely to give invalid responses to the binary question format than to the percent 

question format. More speculatively, we can make some claims about conceptual validity by 

examining the cross-site concordance in the means of valid responses within the two sets of 

paired surveys. For instance, the means of valid responses in the female sex worker surveys 

collected by overlapping research teams in two cities in China are moderate (23.2%–42.3%), 

while means of valid responses for the two surveys of persons who inject drugs in Philippine 

cities are much higher (78.7%–91.7%). We take these findings to indicate that the survey 

questions are measuring consistent phenomena. In addition, we find nearly identical means 
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of valid responses between the two question formats implemented in the Argentina survey. 

Here, both the percent and binary measures found raw clustering levels in the 30.1%–32.0% 

range, and we determined that the respondent-specific average of binary format versus 

percent format reports had a Spearman’s correlation of 0.445, while the item-specific reports 

with potentially multiple binary reports per respondent had a polyserial correlation of 0.376. 

These correlations suggest a reasonably high level of agreement between question formats, 

even in the face of large amounts of missing data. Taken together, these results indicate that 

the questions tap into valid concepts, but they add another reason that researchers should 

prioritize implementing the percent question format: Respondents seem more willing or able 

to answer it.

6. DISCUSSION AND CONCLUSION

Sociological interest in marginalized populations means researchers often confront situations 

where traditional sampling methods cannot be used. In such examples, the peer-driven 

recruitment procedures of RDS yield large and diverse samples quickly and cheaply while 

maintaining respondent anonymity, which is why researchers have used this method to 

sample hundreds of stigmatized, sensitive, and hidden groups. Prior methodological research 

on RDS has focused on its estimators of the population mean and avoided examining how it 

may reveal other interesting features of hidden populations of relevance to sociology and 

public health (with a few notable exceptions, such as Crawford [2016] and Wejnert [2010]). 

This avoidance is strategic: Practical considerations limit researchers’ ability to uncover 

many aspects of the underlying population social network. In this paper, we proposed new 

data collection protocols and estimators for RDS that allow researchers to examine 

clustering, a social network feature of broad interest. We began by considering estimators of 

network clustering developed in computer science for random walk sampling (RWS) and 

expanded their application to the case of human populations sampled with RDS, with careful 

attention to practical differences between RDS and RWS. We offered data collection 

protocols in the form of two different question formats that RDS surveys could adopt in the 

field to estimate network clustering, and we studied how these question formats perform 

under two clustering coefficient estimators in simulations as well as their implementation 

challenges in six empirical surveys.

Overall, we recommend that researchers using RDS surveys begin asking respondents the 

types of questions that would allow for clustering coefficient estimation. While RDS 

estimators of the population mean often fail in the face of unmet assumptions about sample 

recruitment (Gile and Handcock 2010; Verdery, Mouw, et al. 2015; Merli, Moody, Smith, et 

al. 2015; Lu et al. 2013; Lu et al. 2012; Goel and Salganik 2010; Tomas and Gile 2011; 

McCreesh et al. 2012), we find that the clustering coefficient estimators we studied perform 

well even when core RDS assumptions are violated. Considering the two question formats 

we proposed, we also find that the percent question format can be asked of more 

respondents, yielded better results in a simulation study, and appeared to be better 

understood by respondents in empirical studies. The two clustering estimators perform 

similarly, but the GCC estimator had lower total errors than the LCC estimator in most 

networks we studied. However, the contribution of sampling variance to RMSE drives this 
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result, so researchers concerned about bias may prefer to stick to the LCC estimator, which 

we found tends to exhibit lower bias.

We hope that methods for estimating clustering coefficients from RDS data will spur 

additional substantive and methodological contributions. Substantively, clustering is a core 

property that distinguishes human social networks from random graphs (Watts and Strogatz 

1998), and many researchers have posited that it plays a role in the transmission of diseases 

and the adoption of behaviors through networks (e.g., Eguíluz and Klemm 2002; Centola 

2010). These theories consist of a set of structural hypotheses, where the structure of the 

entire network makes it more or less conducive to diffusion, and they have been supported 

by results from mathematical models and some experiments. For example, such models 

suggest that ceteris paribus moving from low to moderate clustering of the risk network 

increases transmission (Keeling and Eames 2005), but moving from moderate to high 

clustering does not change transmission substantially until very high levels when the 

network becomes disconnected (Newman 2003). Using clustering coefficients from RDS 

data could allow researchers to confirm the insights of these mathematical models of 

network structure and disease diffusion with macro-comparative methods.2 In this vein, for 

instance, researchers might compare a set of similar populations sampled with RDS over 

multiple time points to examine whether changes in clustering levels are associated with 

changes in the prevalence of infectious diseases, like HIV/AIDS. Clustering in the social 

network may be associated with differences in risk behaviors such as unprotected sex at the 

individual level. Prior research finds that network clustering moderates effects of peer 

contraceptive users in the use of fertility control (Kohler, Behrman, and Watkins 2001), but 

that such normative reinforcement can also facilitate the spread of unhealthy behaviors 

(Yamanis et al. 2015). Previous studies of this topic have been limited to traditional survey 

populations, however, and the approaches developed in this paper will enable researchers to 

test these hypotheses in a more diverse series of hidden populations.

In addition, estimators of network clustering can offer methodological improvements to 

RDS. An first methodological extension could provide additional data to inform variants of 

RDS mean estimators that use exponential random graph modeling and algorithmic 

simulation in an effort to obtain less biased, lower variance results (Gile and Handcock 

2011). Currently, these approaches model clustering as a byproduct of dyadic homophily, 

divorced from assessments of clustering levels in the population of interest. With empirical 

estimates of clustering, researchers using such algorithms could confirm the clustering 

coefficients produced in their models. Such information may enhance the realism of the 

model-based approach and increase confidence in its bias and variance reductions.

A second methodological contribution could allow researchers to test one of the most central 

but least often evaluated assumptions of RDS, that the network contains a “giant 

component” where the vast majority of people are reachable through chains of arbitrary 

length through the network ties (Volz and Heckathorn 2008). Using random graph methods 

from the physics and computer science traditions that generate network structures from 

2.For clarity in this example, we assume that the social network that the RDS chain traverses is a close proxy for the risk network for 
the disease, a connection that future research should examine more closely.
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degree distributions and clustering coefficients (Newman, Strogatz, and Watts 2001; Heath 

and Parikh 2011), researchers may also be able to determine if they are sampling a network 

with “bottlenecks” —that is, a grouping where there are few links between cohesive groups 

in the network, a feature that many in the RDS community link to poor estimate quality 

(Toledo et al. 2011). This would add to the emerging diagnostic toolkit being developed for 

RDS (Gile, Johnston, and Salganik 2015). A related extension of this approach could 

calculate the “structural risk” of a network sampled with RDS by applying percolation or 

other diffusion models to examine the size and speed of hypothetical epidemics spreading on 

the modeled network (Britton et al. 2008; Merli, Moody, Mendelsohn, et al. 2015)—a 

potential early warning system of a given hidden population’s epidemic potential gathered 

directly from RDS.

Such extensions and future directions lie outside of the scope of the present paper. However, 

we emphasize that we view the development of clustering estimators for RDS data as the 

beginning of a new line of inquiry about how estimates of the topological features of 

networks sampled with RDS can inform substantive and methodological interests. The 

benefits from estimating clustering in RDS samples are large, and we encourage researchers 

to begin deploying survey questions needed for their calculation. In either case, further 

attention to the ability of RDS to tell us more about hidden populations than disease 

prevalence is an important next step for the literature to take.
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APPENDIX A

Other Seed Selection Procedures

In the main text of this paper, we defined all of the RDS scenarios as starting from a uniform 

random sample of seeds. This appendix will consider four alternative scenarios in the Project 

90 network that vary seed selection procedures but otherwise retain all features of the 

“+misreporting” scenarios. (We found no difference for the other RDS scenarios but do not 

report on them here.) In these scenarios we select seeds (1) uniformly at random from white 

nodes only (“+white”); (2) uniformly at random from nonwhite nodes only (“+non-white”); 

(3) with probability proportional to their level of local clustering (“+high cluster”); (4) with 

probability inverse proportional to their level of local clustering (“+low cluster”).

Table A1 shows the results under these alternative seed selection scenarios. We found few 

meaningful differences between the results provided in the main text of the paper and those 

obtained with alternative seed selection procedures. None of the biases changed directions; 
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the largest change in the RMSEs was a level of 0.03 (for the GCC binary estimates), and, in 

general, the rank ordering of estimator performance was maintained with the percent 

question formats having lower RMSEs than the binary formats.

Table A1.

Bias and RMSEs in the Project 90 Network, by Alternative Seed Selection Scenario, 

Estimator, and Question Format

Bias Measures RMSE

GCC LCC GCC LCC

Scenario Binary Percent Binary Percent Binary Percent Binary Percent

+misreporting −0.067 −0.006 0.019 −0.015 0.076 0.034 0.057 0.045

+non-white seeds −0.097 −0.038 0.006 −0.040 0.102 0.042 0.053 0.057

+white seeds −0.067 −0.006 0.019 −0.016 0.076 0.033 0.057 0.045

+high cluster seeds −0.076 −0.014 0.010 −0.016 0.085 0.033 0.056 0.045

+low cluster seeds −0.077 −0.030 0.043 −0.037 0.085 0.038 0.067 0.057

APPENDIX B

Survey Questions Used in Empirical Surveys

This appendix provides the specific survey questions used in the six empirical studies 

reviewed in Section 5.

The Shanghai Women’s Health Study was collected in 2007 using RDS of female sex 

workers living in Shanghai, China (Merli et al. 2010; Yamanis et al. 2013). This study’s 

protocol was approved by the Research Ethics Committee of the University of Wisconsin, 

Madison, and the Shanghai Institute of Planned Parenthood Research. This survey used a 

percent question format, where nonseed respondents were asked the following two 

questions:

Q.901. In Shanghai, how many of this kind of sex workers do you know? You know 

how to address them, they know how to address you, and you have met or contacted 

them in the past month.

Q.904. Among those people (the people in 901), how many do both you and your 

contact (the person who introduced you to the project) know?

We obtain the percent by dividing the answer to Q.904 by the answer to Q.901.

The RDS component of the PLACE-RDS Comparison Study sampled female sex workers in 

Liuzhou, China, in 2010 (Weir et al. 2012). This study was approved by the Research Ethics 

Committee of the National Center for STD Control, China, and the Institutional Review 

Boards at the University of North Carolina and Duke University. This survey was conducted 

by members of the same team as the Shanghai study, and it also used the percent format by 

asking two iterative questions. Nonseed respondents in this survey were asked:
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Q.901. In Liuzhou city (including Liuzhou counties), how many women do you 

know personally who are sex workers? By sex worker, I mean that they are paid 

money in exchange for sex. By know personally, I mean:

- you know their name and they know yours

- you know who they are and they know you

- you have seen or contacted them in the past four weeks

Q.904. Of the (repeat response number from 901) sex workers you know, how 

many are also known by the person who gave you this coupon?

As above, we obtain the percentage by dividing the answers to these questions.

The Characterizing the Social Networks of Women and Men in Ottawa Who Inject Drugs to 

Drive Prevention Programming Study sampled people who inject drugs in Ottawa, Canada, 

in 2007 (Pilon et al. 2011). Approved by the Ottawa Hospital Research Ethics Board, this 

study asked respondents a percentage format of the question, but the approach used to 

collect these data differed from the format asked in the two studies of female sex workers in 

China that we reviewed above. Rather than asking respondents counts of potential recruitees 

that know the respondents’ recruiter, trained interviewers directly asked respondents 

questions to elicit ego networks, and then asked them to complete an interaction grid 

recording contact between ego network peers. Respondents were first asked to list members 

they know:

Q.1. First, please think back over the last 30 days about the people with whom you 

have had more than casual contact. These would be people that you have seen or 

have spoken to on a regular basis. Most of these close contacts would be people 

such as friends, family, sex partners, people you inject drugs with, or people you 

live with. Let’s make a list of these people starting with those who inject drugs. 

Please use only initials, or some other identifier that will make sense to you, such 

as a made up name. Please do not use their last names. We will use this list to make 

sure we know which individuals we are talking about. Remember that we are 

interested in people that you’ve had contact with in the last 30 days.

Then interviewers worked with respondents to fill out an interaction grid on the basis of the 

following instructions: (Grid image available upon request from the authors.)

Q.3. Following step 2, transfer the names of all the network members from the 

previous question onto the interaction grid. List the contacts in the ID column going 

down from 1–20. For each person listed, ask the subject to indicate which of the 

other individuals on the list that particular person knows or has contact with. 

Indicate whether they know one another by placing an X in the appropriate box. 

You are working down through the columns, not across. For example, if Sam is 

ID#1, you will go down column 1 and ask if Sam knows Tom, Mary, Mac, OT, etc. 

In column 1, you will end up with an X beside each of Sam’s contacts. Next, move 

to column 2 and do the same for Tom, then move to column 3, column 4, etc.)
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We obtained percentages by calculating the ego-network density of this matrix. We leave it 

for future investigation to determine whether this approach provides meaningfully different 

results than the percent format question recommended in the main text, because 

implementing this interaction grid adds substantial time to the data collection process.

The third and fourth studies we examine come from two surveys that were part of the 

Integrated HIV Biological and Serological Surveillance Study fielded by researchers at the 

Philippines Department of Health in 2013 (National Epidemiology Center, Department of 

Health, Philippines 2014). Data collection was a surveillance activity and was not subject to 

institutional review board approval, but secondary data analysis received approval from the 

Institutional Review Board of the University of North Carolina at Chapel Hill. These studies 

surveyed people who inject drugs in Cebu City and Mandaue City, the Philippines, a binary 

format of the question. Specifically, they asked respondents the following question:

1. Do the person you gave a coupon to and your recruiter (that is, the person who 

gave you your coupon) know each other?

Finally, we examine early results from a sixth RDS study. The pilot survey EncuestaVeg 
sampled vegetarians and vegans living in La Plata, Argentina, where avoiding meat is such a 

rare activity as to make those who identify with the practice a hidden population. This 

ongoing pilot survey was begun in June 2016; we report on results obtained as of September 

2016. The protocol for this survey was approved by the Institutional Review Board of the 

Pennsylvania State University. In it, respondents were asked both the percent and the binary 

question. First, during the primary interview, nonseed respondents were asked a percent 

format question:

13.1. Think about all the people you know who live in the city of La Plata ages 18 

and up. How many vegans and vegetarians do you know (you know their name and 

they know yours)?

13.9. Think of the person who gave you the code. Of the rest of the vegans and 

vegetarians who you know in La Plata, how many also know the person who gave 

you the code?

Percentages were obtained by dividing these questions. Note that Q13.9 did not specifically 

reference the answer given for Q13.1, and also that the response entry was open ended. 

Some respondents said larger numbers in 13.9 than they did for 13.1, while others gave 

string responses such as “todos [all],” or “Casi todos [nearly all].” In the main text, we 

report these cases as invalid responses (except todos, which we code as 100%). In addition 

to the percent question format, recruiting participants in EncuestaVeg who returned to 

complete the follow-up survey were asked a series of questions about who they invited to 

participate and a question that allows us to calculate the binary question format. Specifically, 

for each person they invited, they were asked:

Q.F.18. Does this person know the person who gave you the code to answer the 

survey?

We use answers to this question as the binary question format.
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Figure 1. 
Example network with hypothetical random walk sampling (RWS) and components needed 

to calculate local and global clustering coefficients for the whole network.
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Figure 2. 
Largest weakly connected component of Project 90 data set; nodes shaded by race (grey = 

white; black = nonwhite) and sized by degree. The network is displayed using the 

ForceAtlas2 algorithm, with no node overlap, in Gephi 0.9.
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Figure 3. 
Performance of Hardiman Katzir estimators by estimator and question format in RWS on the 

Project 90 data set.

Note: These are nonstandard box plots that show the mean rather than the median as the 

central line; the thick dashed line indicates the population parameter.
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Figure 4. 
Performance of Hardiman Katzir estimators by estimator and question format in RWS and 

RDS scenarios on the Project 90 data set.

Note: These are nonstandard box plots that show the mean rather than the median as the 

central line; the thick dashed line indicates the population parameter.
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Table 1.

Comparison of Features of RWS and RDS

RWS RDS

(1) Number of seeds One Multiple

(2) Seed selection Proportional to steady state Convenience

(3) Branching No Yes

(4) Replacement Yes No

(5) Link tracing efficacy 100% Less than 100%

(6) Preferential recruitment No, researcher controls Yes, respondent controls

(7) Sample size Large (more than 10,000) Small (less than 1,000)

(8) Measurement of ϕk Can be queried Asked of respondent
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Table 2.

Summary Network Statistics for Data Sets Analyzed in this Paper

Network Nodes Edges Density GCC LCC Cross group ties
b

Project 90 4,111 34,328 0.002 0.657 0.348 0.171

Facebook Nets
a

Minimum 4,985 212,114 0.004 0.200 0.135 0.015

25th percentile 5,930 367,486 0.008 0.216 0.152 0.032

Median 6,877 503,939 0.013 0.231 0.167 0.038

75th percentile 7,840 705,501 0.014 0.241 0.179 0.054

Maximum 9,693 905,428 0.017 0.276 0.199 0.163

a
Statistics presented for the Facebook networks are computed separately; the largest network does not necessarily have the largest proportion of 

cross group ties, for instance.

b
Cross group ties refer to ties that cross white/nonwhite categories in Project 90 and ties that cross freshmen/nonfreshmen categories in the 

Facebook networks.
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Table 3.

Parameters Used in Each Simulation Scenario

Scenario Seeds Selection Replace Branches Efficacy Preferential Error

RWS baseline 1 Steady state Yes 1 100% No 0%

RDS baseline 10 Convenience No 3 100% No 0%

+imperfect
(80% efficacy)

10 Convenience No 3 80% No 0%

+preferences
(targeted recruitment)

10 Convenience No 3 80% Yes 0%

+misreporting
(ϕk mismeasurement)

10 Convenience No 3 80% Yes 10%
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Table 4.

Distributions of Absolute Bias Statistics and RMSEs in the 29 Facebook Networks Studied by Scenario, 

Estimator, and Question Format

Absolute Bias RMSE

GCC LCC GCC LCC

Binary Percent Binary Percent Binary Percent Binary Percent

RWS baseline

 Minimum 0.000 0.000 0.000 0.000 0.019 0.006 0.040 0.023

 25th percentile 0.000 0.000 0.001 0.000 0.022 0.008 0.046 0.028

 Median 0.001 0.000 0.001 0.001 0.023 0.008 0.048 0.030

 75th percentile 0.001 0.000 0.002 0.001 0.024 0.009 0.052 0.032

 Maximum 0.002 0.000 0.005 0.003 0.027 0.012 0.058 0.040

RDS baseline

 Minimum 0.012 0.006 0.002 0.000 0.025 0.010 0.051 0.025

 25th percentile 0.019 0.009 0.010 0.004 0.031 0.014 0.055 0.029

 Median 0.020 0.011 0.012 0.007 0.033 0.016 0.057 0.033

 75th percentile 0.026 0.013 0.017 0.009 0.037 0.020 0.062 0.038

 Maximum 0.041 0.021 0.025 0.015 0.051 0.028 0.074 0.052

RDS misreporting

 Minimum 0.030 0.002 0.032 0.001 0.043 0.009 0.064 0.025

 25th percentile 0.046 0.006 0.044 0.003 0.055 0.012 0.068 0.028

 Median 0.050 0.008 0.048 0.005 0.057 0.014 0.071 0.031

 75th percentile 0.054 0.010 0.051 0.007 0.061 0.017 0.074 0.037

 Maximum 0.065 0.016 0.061 0.014 0.070 0.024 0.089 0.055
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Table 5.

Summary of Item Response Rates for Clustering Questions in Empirical Surveys

Survey location Population Format Reports
a Invalid

% Mean of valid

Shanghai, China FSW
b Percent 515 0.0% 23.2%

Liuzhou, China FSW
b Percent 576 0.5% 42.3%

Cebu, Philippines PWID
c Binary 380 14.2% 78.7%

Mandaue, Philippines PWID
c Binary 291 8.3% 91.7%

Ottawa, Canada PWID
c

Percent
e 364 11.5% 67.0%

La Plata, Argentina Veg
d Percent 145 5.5% 32.0%

La Plata, Argentina Veg
d Binary 131 36.6% 30.1%

a
We refer to reports rather than sample size because some respondents report on multiple relationships for the binary questions.

b
Female sex workers.

c
Persons who inject drugs.

d
Self-identifying vegetarians and vegans.

e
The format used in the Ottawa Study is an interaction grid in which respondents identify which peers know one another; see online Appendix A.
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