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[ABSTRACT] 

Due to the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), 

deepening the host genetic contribution to severe COVID-19 may further improve our 

understanding about underlying disease mechanisms. Here, we describe an extended GWAS 

meta-analysis of 3,260 COVID-19 patients with respiratory failure and 12,483 population 

controls from Italy, Spain, Norway and Germany/Austria, as well as hypothesis-driven targeted 

analysis of the human leukocyte antigen (HLA) region and chromosome Y haplotypes. We 

include detailed stratified analyses based on age, sex and disease severity. In addition to 

already established risk loci, our data identify and replicate two genome-wide significant loci 

at 17q21.31 and 19q13.33 associated with severe COVID-19 with respiratory failure. These 

associations implicate a highly pleiotropic ~0.9-Mb 17q21.31 inversion polymorphism, which 

affects lung function and immune and blood cell counts, and the NAPSA gene, involved in 

lung surfactant protein production, in COVID-19 pathogenesis. 

[Introduction] 

In the past year, Coronavirus disease 2019 (COVID-19), caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic with 

more than 182 million confirmed cases and 3.9 million COVID-19 related deaths worldwide 

(frequencies reported by the World Health Organization, July 2nd, 2021). The clinical 

manifestations of COVID-19 are variable and range from complete absence of symptoms to 

severe respiratory failure and death. Severe COVID-19 requires intensive medical care with 

respiratory support and can result in long-term damages detrimental to the individual. The 

pathogenesis of severe COVID-19 is, however, still poorly understood. This condition has 

been associated with clinical risk factors such as old age, male sex and comorbidities such as 

diabetes, active cancer, hypertension and coronary artery disease, and solid organ transplant 

or other conditions that promote an immunosuppressive condition.1–4 Studies by this group 

and others have shown that genetic predisposition plays a role in COVID-19 susceptibility and 

severity.5–7 Previously, we reported significant associations between genetic variants at loci 

3p21.31 (around LZTFL) and 9q34.2 (ABO blood group locus) to severe respiratory failure 

and SARS-CoV-2 infection5, which have been replicated in subsequent studies.7,8 While 

3p21.31 was associated with disease severity, 9q34.2 was more associated with disease 

susceptibility5. Analysis of blood types of the ABO blood group additionally, showed that 

individuals carrying blood type A have a higher risk of COVID-19 infection. Since then, 11 

additional genome-wide significant loci, associated with SARS-CoV-2 infection or COVID-19 

manifestations have been reported by various studies, including the Genetics Of Mortality In 
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Critical Care (GenOMICC) Initiative and most recently the COVID-19 Host Genetics initiative 

(HGI).6,7 Six of these loci have been linked to critical illness by COVID-19, and include loci that 

were previously associated with pulmonary or autoimmune and inflammatory diseases.6 

Regarding the association with blood type Mankelow et al.9 report a higher disease 

susceptibility for blood type A secretors, determined by genetic variation at the 

Fucosyltransferase 2 (FUT2) gene. Here, we report an extended genome-wide association 

study (GWAS) meta-analysis of severe COVID-19 with full and rigorously quality-controlled 

information on age, sex and disease severity, including 3,260 COVID-19 patients with 

respiratory failure. The latter was defined as respiratory support with supplemental oxygen 

[class 1] or non-invasive and invasive ventilation [classes 2 and 3, respectively], or by 

extracorporeal membrane oxygenation (ECMO) [class 4])5 and 12,483 population controls of 

unknown COVID-19 status from Italy, Spain, Norway and Germany/Austria. The availability of 

information on age, sex, and comorbidities such as hypertension, diabetes and coronary artery 

disease within each study cohort additionally allowed for in-depth and stratified analysis of 

especially age- and sex-specific risks for these loci.  

The discovery study (first and second analysis) was followed by an in-silico replication analysis 

in up to 12,888 hospitalized cases (including 5,582 critically ill cases) and 1,295,966 

population controls from the COVID-19 HGI, which allowed us to replicate previous findings 

and characterize in detail new candidate loci for disease severity. Genetic analysis was 

followed by a thorough in-silico functional characterization of new loci. 

In response to clear expectations for a potential role for the human leukocyte antigens (HLA) 

in the disease course of COVID-19 and preliminary evidence from some smaller pilot 

studies10–12, our genetic analysis includes a detailed investigation of the genetic variations in 

the HLA region. With male sex identified as a risk factor for severe COVID-19 and COVID-19 

related death3, we explore possible connections between genetic variants on the Y 

chromosome and the risk of developing severe COVID-19 in males3. Variations on the Y 

chromosome describe so-called Y-chromosome haplogroups with letters A-Z (defined by the 

Y Chromosome Consortium)13 and follow a pattern of ancestral population migrations in 

Europe and on a global scale. HLA analysis includes classical fine-mapping of the HLA region 

based on local imputation of SNP, amino acid and classical allele information, as well as a 

broad range of other approaches, including a peptidome-wide association study (PepWAS)14 

computational prediction of SARS-CoV-2 peptide presentation, HLA class I supertype 

association analysis, and tests for heterozygote advantage, divergent allele advantage and 

molecular mimicry. Y-chromosome analysis includes analysis of known Y-chromosome 

haplogroups with a focus on the haplogroup R, the predominant haplogroup in Europe.  
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[Results] 

GWAS meta-analyses for severe COVID-19 with respiratory failure 

Genotyping was performed using Illumina’s Global Screening Array (GSA), followed by 

genotype quality control (QC) analysis and TOPMed genotype imputation (Online Methods, 

Supplementary Figure 1, patient numbers before and after QC are shown in Supplementary 

Tables 1). Analogously to the COVID-19 HGI6, we then conducted two GWAS discovery meta-

analyses for two main categories of COVID-19 disease state: First, “hospitalization with 

respiratory support” (respiratory support classes 1-4 with a total of 3,260 patients; first 

analysis) and second, a more stringent definition of severe COVID-19 “hospitalization with 

mechanical ventilation” (classes 2-4 with 1,911 critically ill cases; second analysis). Details of 

per cohort patient numbers are shown in Supplementary Table 1e. The characteristics of 

patients and controls included in these analyses are shown in Table 1 and Supplementary 

Table 2. After imputation, we carried out a GWAS of 9,223,806 high-quality genetic variants 

(imputation R²≥0.6 and minor allele frequency (MAF) ≥1%) stratified by ancestry (Italy, Spain, 

Norway and Germany/Austria) using logistic mixed model analysis as implemented in 

SAIGE15, followed by fixed-effect inverse variance meta-analysis using METAL16 (low genomic 

inflation of 1.017; Supplementary Figures 2-3). Genome-wide comparison of the case-

control frequencies (conservatively adjusted for age, sex, age*age, sex*age and top 10 

principal components from PCA as employed by the COVID-19 HGI; Online Methods) 

revealed two known loci (LZTFL1 at 3p21.31; ABO at 9q34.2; TYK2 at 19p13.2) with genome-

wide significance (Pdiscovery<5×10-8) and an additional four (PCDH7 at 4p15.1; FREM1 at 

9p22.3; MAPT at 17q21.31; DPP9 at 19p13.3) with suggestive significance (Pdiscovery<10-6) in 

our first analysis, and another five loci (OLMF4 at 13q21.1; TTC7B at 14q32.11; CPD at 

17q11.2; PTPRM at 18p11.23; IFNAR2 at 21q22.11) with suggestive significance from the 

second analysis (Figure 1; Supplementary Table 3, regional association plots shown in 

Supplementary Figures 4-5). Across the results from the single study cohorts, the strongest 

association signal in the discovery analysis (besides the known association around LZTFL1 

at locus 3p21.31) was found in the Spanish cohort at locus 17q21.3 (rs8065800 at MAPT; 

P=1.16×10-8; OR=1.67 for minor allele G; 95%CI=1.49-1.84; Supplementary Table 3). These 

findings replicate four associations previously reported by the COVID-19 HGI.6 Analysis of the 

ABO secretor status (Online Methods) does not statistically replicate the recently published 

finding that A secretors have a higher risk of COVID-19 susceptibility, though a clear trend can 

be observed for increased risk of COVID-19 infection for A secretors (A secretors: OR=1.32; 

95%CI=1.20-1.46; A non-secretors: OR=1.08; 95%CI=0.91-1.28) (Supplementary Table 4). 

To calculate posterior probabilities of replicability (PPRs) of our genome-wide and suggestive 
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variants across individual discovery and replication GWAS studies, we performed hierarchical 

mixture model analysis with MAMBA17 (Online Methods). The analysis showed a high 

probability (PPR>0.8), of consistent effect sizes across all analyzed cohorts for all but the 

variants at 14q32.11 (TTC7B, PPR=0.005) and at 17q11.2 (Supplementary Table 5) with the 

17q21.3 (rs8065800) variant showing higher replicability in our first analysis compared to the 

second analysis (PPR=0.93/PPR=0.2). 

Next, we recalculated statistics for our first and second analyses, excluding individuals that 

were used to calculate association statistics, submitted to the COVID-19 HGI B2 (12,888 

hospitalized cases) and A2 (5,582 critically ill cases) analyses by this group and the BoSCO 

study group, to be used as an external replication. This left 11,906 (1,579 cases/10,327 

controls) individuals for the first and 11,009 (944 cases/10,065 controls) individuals for the 

second analysis. Of the 13 loci reported as associated with COVID-19 by the COVID-19 HGI 

8 replicated at least at nominal P-value of 0.05. 12 of 13 variants replicated in this studies’ 

complete cohort at the same significance threshold (Supplementary Table 3).  

Subsequently, we performed a fixed-effect inverse variance meta-analysis using METAL16 

across the first analysis and COVID-19 HGI B2 statistics as well as the second analysis and 

COVID-19 A2 statistics, resulting in a total of 725,601 and 1,318,140 analyzed individuals in 

the respective analyses as well as 9,163,457 and variants with MAF ≥ 1% (Supplementary 

Figures 6-7). This analysis prioritized rs1819040 at the 17q21.31 locus within the KANSL1 

gene as the most strongly associated variant in this region (Pdiscoveryreplication=3.27×10-11 for 

rs1819040; OR=0.88 for minor allele T; 95%CI=0.84-0.92) over rs8065800 from the first 

analysis (Supplementary Table 3). Neither of the novel associations at PCDH7 at 4p15.1; 

FREM1 at 9p22.3; OLMF4 at 13q21.1; TTC7B at 14q32.11 and CPD at 17q11.2 had 

suggestive evidence after combining data with the HGI statistics. Since replicability with 

MAMBA, however showed high replication of the variants in this studies’ cohort, subsequent 

analyses need to show whether this is attributable to an artefact in the cohorts of this study or 

maybe to high heterogeneity of cohorts and data sets included in the COVID-19 HGI analyses. 

The meta-analysis of our second discovery cohort (critically ill only) with the COVID-19 HGI 

summary statistics revealed an additional genome-wide significant locus not previously 

associated with severe COVID-19 (NR1H2 at 19q13.33; Pdiscoveryreplication=3.25×10-8 for 

rs1405655; OR=1.09 for minor allele C; 95%CI=1.06-1.1) (regional association plot is shown 

in Supplementary Figure 8, Supplementary Table 3). 
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Stratified analysis on genome-wide and suggestive loci 

To estimate possible hidden genetic effects from age, sex and disease severity, we performed 

an in-depth stratified analysis of the 3 genome-wide significant and 7 replicable suggestive 

loci from our first and second analyses as well as the 19q13.33 variant from the meta-analysis 

with COVID-19 HGI summary statistics. We additionally investigated association of these 

variants to known comorbidities such as hypertension, coronary artery disease and diabetes 

Supplementary Table 6, Supplementary Figures 9/10). We confirmed our previously 

described5 association with age (first analysis; ages: 41-60; P=2.15x10-23, OR=2.20, 

95%CI=1.88-2.57; ages: 61-80; P=6.41x10-6; OR=1.49, 95%CI=1.25-1.77) and disease 

severity for 3p21.31 (P=9.73×10-7, OR=1.65; 95%CI=1.35-2.03) and additionally observed a 

strong trend for association with age for rs12610495 at the 19p13.3 locus (first analysis: ages: 

41-60; OR=1.33, 95%CI=1.19-1.48; ages: 61-80; OR=1.14, 95%CI=1.02-1.28). None of the 

other loci showed genome-wide or suggestive association to any of the analyzed categories. 

Additional stratified analysis on candidate SNPs from the COVID-19 HGI analyses6, showed 

trends for association with age for rs1819040 at 17q21.31 (see also below) and of rs74956615 

with gender and age (first analysis; ages: 41-60; OR=1.68, 95%CI=1.33-2.13; ages: 61-80; 

OR=1.04, 95%CI=0.80-1.35; male: OR=1.53, 95%CI=1.23-1.89; female: OR=1.03, 

95%CI=0.75-1.40) which was not observed for rs11085725 (TYK2 at 19p13.2) at the same 

locus (between variant LD is r2=0.09 or D’=0.94) (Supplementary Table 6, Supplementary 

Figure 11). 

Fine-mapping of signals at 17q21.31 and 19q13.33 

We next performed an in-depth characterization of the previously unknown genome-wide 

significant locus 19q13.33 (NR1H2) and the 17q21.31 locus, which contains a known ~0.9-Mb 

inversion polymorphism spanning across several different genes, whose implication in 

COVID-19 has not been accurately investigated. 

Bayesian fine-mapping analysis with FINEMAP18 (Online Methods) identified a total of 1,531 

(log10(Bayes factor)=10.46) and 15 (log10(Bayes factor)=5.95) variants that belong to the 95% 

credible sets of variants most likely to be causal at 17q21.31 or 19q13.33, respectively (Figure 

1, Supplementary Table 7). For 17q21.31, the 95% credible set included rs1819040 as the 

best SNP candidate with only 1.1% certainty, followed by 1,530 variants in high linkage 

disequilibrium (LD) (mean(LD)=0.997 and min(LD)=0.954) with certainty <0.3%, indicating that 

the individual SNP associations are only proxy variants for the actual causal variant (see 

below). For 19q13.33, the 95% credible set included rs1405655 as the best SNP candidate 
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with 59.1% certainty, followed by rs1274514 and rs1274510 (5.3% certainty), and 12 variants 

with certainty <4%, so we assume that rs1405655 represents the candidate causal variant  

Imputation and statistical analysis of the 17q21.31 inversion 

The lead variant rs1819040 and the most strongly associated variants of the 95% credible set 

at this locus point directly to the common 17q21.31 inversion polymorphism, spanning across 

several different genes, including and mapping to two highly divergent haplotypes, H1 and H2, 

which are estimated to have evolved separately >2 million years ago19 (Figure 1a). The 

inversion haplotypes H1 and H2, were determined more accurately for COVID-19 respiratory 

support failure cases and controls by genotype imputation with IMPUTE220, employing as 

reference 109 individuals from the 1000 Genomes Project for which 17q21.31 inversion 

genotypes were obtained experimentally by FISH and droplet digital PCR (Online Methods). 

LD between the rs1819040 variant, prioritized in the meta-analysis with the COVID-19 HGI 

summary statistics and the inversion in our cohorts is near perfect (r2=0.98, D’=0.99). 

rs8065800-G, observed as associated in our first and second analysis as a risk allele in the 

Spanish population, is inherited together with the major H1 haplotype, although being in low 

LD (in our cohorts: r2=0.12-0.18; D’=0.97-1), which also points to the effect of the inversion. 

Genome-wide significant association with severe respiratory COVID-19 for the inversion was 

confirmed using logistic regression followed by meta-analysis across this study’s discovery 

and replication panels from the COVID-19 HGI (meta-analysis first discovery panel and 

COVID-19 HGI release 5 B2: P=7.61×10-10, OR=0.89; 95%CI= 0.84-0.92; meta-analysis 

second discovery panel and COVID-19 HGI release 5 A2: P=1.5×10-4, OR=0.90; 95%CI= 

0.85-0.95; Figure 1b, Supplementary Table 8a). For deduction of P-values from the HGI 

replication summary datasets we used the published method Fast and Accurate P-value 

Imputation for genome-wide association study (FAPI)21. Using our first and second discovery 

analyses only, the 17q21.31 inversion association with a protective OR was consistently 

observed across the Italian, Spanish, and German/Austrian study cohorts in the 40-60 years 

age group (Norway was excluded for this analysis, having NCase < 50), while association was 

inconsistent in the equally powered 60-80 years age groups (Figure 1b, Supplementary 

Table 8b). 

Functional analysis of 17q21.31 and 19q13.33 using publicly available datasets 

We next performed several follow-up analyses to understand better possible functional 

implications of associations at the 17q21.31 and 19q13.33 loci. A phenome-wide association 

study (PheWAS) for 17q21.31 and 19q13.33 using a wide range of phenotypes from the 
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NHGRI GWAS Catalog22 and other available GWAS data revealed no known phenotypes to 

be linked with the rs1405655 lead SNP at 19q13.33, while 162 GWAS associations were 

identified for the 17q21.31 inversion in the GWAS Catalog, illustrating its pleiotropic effects. 

These associations included several traits potentially related to COVID-19 pathology, such as 

blood and immune cell composition or lung function (Figure 1c). Credible sets from Bayesian 

fine mapping at 17q21.31 and 19q13.33, overlap with several genes including MAPT, 

KANSL1, FMNL1 and CRHR1 at the inversion locus 17q21.31, and NAPSA, NR1H2, KCNC3 

at locus 19q13.33 (Supplementary Figures 4, 5 and 8). We performed an exploratory gene 

expression analysis using several publicly available datasets to: 1) Identify in which tissues or 

cell types our candidate genes are expressed by analyzing their RNA expression at bulk and 

single-cell level; 2) Examine the direct effect of both loci on gene expression by using 

expression and splicing quantitative trait loci (eQTL and sQTL) and; 3) Infer the possible 

contribution of these genes to COVID-19 pathology by looking at their expression patterns in 

a) monocytes exposed to different viral and non-viral immune stimulators; b) organoids 

infected with COVID-19 and c) single cell RNA-seq of several tissues including lung coming 

from patients who died after experiencing a SARS-CoV-2 severe disease (Online Methods). 

The potential functional role of the 17q21.31 inversion is supported by the analysis of 2,902 

linked variants (r2>0.9) that are already reported as eQTL or sQTL in the GTEx Project.23 The 

inversion is in LD with lead eQTLs and sQTLs (i.e. displaying the strongest association with 

target), for 24 and 7 genes, respectively, in at least one tissue (Supplementary Table 9, 

Supplementary Figure 12). Expression patterns of coding genes affected by the inversion 

are shown in Supplementary Figure 13, with the best candidates to play a role in the effects 

of the inversion on their known function and expression, including MAPT, KANSL1, FMNL1 

and CRHR1, being summarized in Figure 2. Many of these genes are highly expressed in 

neural and male-specific tissues (Figure 2a, Supplementary Figure 13). However, several 

of them are also expressed in major immune cell types in COVID-19 relevant tissues (Figure 

2b; Supplementary Figure 13a/b), such as KANSL1, which is expressed in lung tissue-

resident alveolar macrophages, or FMNL1 (Figure 2b, Supplementary Figure 13b). These 

two genes especially show significantly higher expression in different lung cell types in COVID-

19 patients versus healthy controls24 (Figure 2c, Supplementary Figure 13c). Moreover, 

RNA-seq data of monocytes under different bacterial and viral stimuli25 show expression 

changes in several genes affected by the inversion (Supplementary Figure 14, 

Supplementary Table 10). For example, KANSL1, which could have anti-inflammatory 

effects, shows higher expression in H2 carrier monocytes stimulated with Influenza A virus 

infection-like conditions, which appears to be related to a significant increase of coding and 

non-coding isoforms (Supplementary Figure 15). Similarly, in SARS-CoV-2 infected brain 
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organoids, the expression of MAPT was significantly downregulated in premature and mature 

neuronal cells (Supplementary Figure 16, Supplementary Table 11). 

In the case of the 19q13.33 locus, expression of candidate genes shows high tissue specificity, 

with the NAPSA mRNA being specific to lung and lung parenchyma and KCNC3 being highly 

expressed in brain and thyroid tissue, while NR1H2 is more broadly expressed among human 

tissues, including many immune cell types (Figure 2b, Supplementary Figure 13). Of those 

candidates, expression of KCNC3 and especially NAPSA appears to be clearly affected by 

the rs1405655 lead SNP (Figure 2a). Single SNP Mendelian randomization analysis using 

rs1405655 and eQTL data identified higher expression of NAPSA as a potentially causal 

protective factor for severe COVID-19 (Beta=-0.39; P=1.26×10-7) (Supplementary Methods, 

Supplementary Table 12). Notably, NAPSA shows significantly increased expression in type 

1 alveolar cells of COVID-19 patients as compared to healthy controls24 (Figure 2, 

Supplementary Figure 13). The NR1H2 gene is significantly down-regulated in some 

parenchymal (basal, ciliated, club) and endothelial (pericyte) lung cells and is up-regulated in 

monocytes of COVID-19 patients as compared to healthy controls (Figure 2c, 

Supplementary Figure 13).24 

Association analysis of specific candidate genomic regions: HLA locus & Y-chromosome 

haplogroups 

The HLA fine-mapping approach yielded no association at the genome-wide or nominal (P<10-

5) significance threshold, neither in the overall meta-analysis across the four cohorts, nor within 

the separate cohorts (Supplementary Table 13, Supplementary Figure 17). Furthermore, 

we found no significant association for any HLA-presented viral peptide in a so-called 

PepWAS approach (Supplementary Table 14, Supplementary Figures 18-19), where 

associations between HLA-presented peptides and disease is unravelled by integrating 

similarities and differences in peptide binding among HLA alleles across patients nor robust 

statistical associations with any of the other tested HLA parameters (Supplementary Table 

15).  

Results of the Y-chromosome haplogroup analysis are shown in Supplementary Table 16. 

We observed a significant risk association of the R-haplogroup R (M207) in the Italian 

population for individuals aged > 80 years with respiratory failure COVID-19 (P=0.0014, 

OR=4.29, 95%CI=1.76-10.47; NCases or NControls < 50 in all other cohorts for this age group) in 

the first analysis. At different haplogroup levels this signal was driven by haplogroup R1b 

(M343) (P=0.0026, OR=3.92; 95%CI=1.61-9.54) and its subgroup R1b1a2a2 (P312) 

(P=8.11x10-5, OR=16.18, 95%CI=4.05-64.58). This association was however not seen in any 
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other age group or cohort. COVID-19 related mortality was significantly associated with 

haplogroup R1b1a2a1 (U106) (P=0.01, OR=2.8, 95%CI=1.27-6.12). This association 

remained after adjusting for the comorbidities hypertension, coronary artery disease and 

diabetes. COVID-19 related death remains, however, a challenging endpoint influenced by 

many factors but did not surpass correction for multiple testing.  

[DISCUSSION] 

We here present a large collaborative COVID-19 genetics study of different centers from Italy, 

Spain, Norway and Germany/Austria. With our clearly defined phenotype of severe respiratory 

COVID-19 and a centralized genotyping and rigorous quality control, we have generated a 

valuable resource for further COVID-19 related genetic analyses. We identified and analyzed 

in detail two new loci of interest associated with severe COVID-19, the 17q21.31 inversion 

and the 19q13.33 locus. Furthermore, we examined for the first time effects of age and sex on 

various variants identified as genome-wide significant or suggestive in this study. 

As for the novel association at the 19q13.33 locus, additional analyses provided first hints for 

a functional involvement in COVID-19 through its regulation of the NAPSA gene, a gene 

encoding a protease highly expressed in Type 1 (AT1) and Type 2 (AT2) alveolar cells, two 

cell types required for the gas exchange at the lung surface and the secretion of surfactant 

proteins as well as immunomodulatory factors (AT2).26 Complementary findings were 

observed in another recent study dissecting the lung transcriptome of COVID-19 infected 

patients in which NAPSA expression is increased also in AT1 cells. This study also linked 

NAPSA to the marker gene expression signature of “damage-associated transient 

progenitors” (DAMPs), an intermediate cell state between AT1 and AT2 cells promoted by 

inflammation, characterized by a failure of AT2 cells to differentiate to AT1 cells.27 Thus, given 

that the NAPSA protein is involved in lung surfactant production, which is dysregulated in 

COVID-1928, the fact that the COVID-19 risk allele is associated with decreased NAPSA 

expression while increased expression of NAPSA is a protective factor for severe COVID-19, 

suggests a potential role of NAPSA in susceptibility for severe COVID-19. 

Moreover, we detected a clear association of the well-known and pleiotropic 17q21.31 

inversion polymorphism, which is linked to many traits potentially relevant to COVID-19 

outcome. For instance, the inverted haplotype H2 was previously associated with higher 

number of red blood cells and hemoglobin levels, whereas each haplotype correlates with 

different proportions of lymphocytes and granulocytes, which could potentially modulate the 

immune response during SARS-CoV-2 infection29. In addition, the H2 protective allele is also 

associated with decreased lung function and increased risk of chronic obstructive pulmonary 
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disease but protects against development of pulmonary fibrosis30, and is associated with 

higher ventilatory response to corticosteroids in individuals with asthma31, showing potential 

trade-offs and shared pathways that may be important in lung health. This variant had has 

been proposed to be under positive selection in Europeans through its effect on fertility19. Our 

results point to a role of this polymorphism in immunity and virus infection defense. 

Interestingly, inversion effects were found to be stronger in the younger age group in both 

severity classes, which could explain the weaker association in the HGI more severe A2 

phenotype due likely to a larger proportion of older individuals32. The inversion probably affects 

COVID-19 disease course through its large effects on gene expression shown by us and 

others6. Although the function of many of the affected genes are not well known, the inversion 

acts as an eQTL and sQTL of several interesting candidate genes for severe COVID-19. In 

particular, there are several genes potentially associated with immune function and immune 

response. For example, KANSL1, involved in histone acetylation, is broadly expressed in 

many types of immune cells in upper airways and lung tissue (Figure 2) and has been 

proposed to play a role in the macrophage transition to an anti-inflammatory phenotype in 

mice33,34. Here, we have found that its expression decrease in infection-like stimulated 

monocytes is partially compensated in homozygotes for the H2 inversion haplotype. CHRH1, 

associated to higher expression in the H2 haplotype in several tissues (Figure 2), encodes a 

receptor that binds to corticotropin-releasing hormones, which are major regulators of the 

hypothalamic-pituitary-adrenal axis, and regulates immune and inflammatory responses35. 

Finally, FMNL1, which is also located in the inversion locus, shows high expression levels in 

macrophages, dendritic cells and B and T lymphocytes in different COVID-19 related tissues 

(Figure 2) and it is involved in cell motility and T cell trafficking36. In addition, many of the 

genes in the 17q21.31 inversion regions show a predominant expression in brain tissues, 

which could also play an important role in COVID-19. The clearest example is MAPT, which 

is downregulated in SARS-CoV-2 infected neuronal cells (Supplementary Figure 16) and 

lung-related cells and tissues37. The H2 haplotype is linked to increased expression of MAPT 

in the lung and its MAPT exon 3 in brain tissues38, which could compensate for the 

downregulation during viral infection and have a protective effect against COVID-19. However, 

despite the potential implication of these and other genes, it is not possible to single out just 

one as the most likely candidate. In fact, inversions are well-known for keeping together a 

combination of alleles from different genes that generate complex phenotypic traits in different 

organisms39. 

Our hypothesis-driven analysis of associations in the HLA, as well as COVID-19 specific 

PepWAS analyses yielded no significant results, indicating no major role for HLA variability in 

mediating the severity of COVID-19 in our cohorts. These results are in line with a recent, and 
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the so-far largest, HLA analysis from Shachar et al.40 Interestingly, we observed statistical 

association of the Y-haplogroup R with COVID-19 disease and mortality, however none of the 

results remain significant after correction for multiple testing. To gain more knowledge 

regarding the potential role of the Y-chromosome haplogroups in the COVID-19 pandemic, 

larger study samples are necessary as well as studies following the pandemic over time 

investigating whether the associations weaken or strengthen for different haplogroups. 

In summary, our findings add to the number of genome-wide significant hits for COVID-19 – 

totaling now around 16 independent loci – and provide new insights to the molecular basis of 

COVID-19 severity that could potentially trigger subsequent and more targeted experiments 

to develop therapies for severe COVID-19. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.21.21260624doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.21.21260624
http://creativecommons.org/licenses/by-nc-nd/4.0/


[ONLINE METHODS] 

Study Participants and Recruitment 

We recruited 5,228 patients with mild to severe COVID-19, which was defined as 

hospitalization only (mild) or with respiratory failure (severe) with a confirmed SARS-CoV-2 

viral RNA polymerase-chain-reaction (PCR) test from nasopharyngeal swabs or other relevant 

biologic fluids, cross sectionally, from intensive care units and general wards at different 

hospitals from Italy (4 centers, N=1,857), Spain (6 centers, N=2,795), Norway (7 centers, 

N=127) and Germany/Austria (8 German, 1 Austrian center, N=449). For comparison, we 

included 13,705 control participants from Italy (4 centers, N=5,247), Spain (3 centers, N= 

4,552), Norway (1 center, N = 288) and Germany (1 center, N= 3,582). Details on the centers 

and origin of the control panels are shown in Supplementary Table 1a/b. Though all patient 

samples that were sent to our study center were processed, only the severe COVID-19 

individuals were analyzed in this study (Supplementary Table 1e). Respiratory failure was 

defined in the simplest possible manner to ensure feasibility: the use of oxygen 

supplementation or mechanical ventilation, with severity graded according to the maximum 

respiratory support received at any point during hospitalization (1: supplemental oxygen 

therapy only, 2: noninvasive ventilatory support, 3: invasive ventilatory support, or 4: 

extracorporeal membrane oxygenation).5 

Recruiting Centers and Ethics Committee Approval IDs 

The project protocol involved the rapid recruitment of patient-participants and no additional 

project-related procedures (we primarily used material from clinically indicated venipunctures) 

and afforded anonymity, owing to the minimal dataset collected. Differences in recruitment 

and consent procedures among the centers arose because some centers integrated the 

project into larger COVID-19 biobanking efforts, whereas other centers did not, and because 

there were differences in how local ethics committees provided guidance on the handling of 

anonymization or deidentification of data as well as consent procedures. Written informed 

consent was obtained, sometimes in a delayed fashion, from the study patients at each center 

when possible. In some instances, informed consent was provided verbally or by the next of 

kin, depending on local ethics committee regulations and special policies issued for COVID-

19 research. For some severely ill patients, an exemption from informed consent was obtained 

from a local ethics committee or according to local regulations to allow the use of completely 

anonymized surplus material from diagnostic venipuncture. 
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Centers from which samples were obtained are listed together with their ethics approval 

reference numbers from each ethic committee in the Supplementary Table 1b. 

Sample Processing, Genotyping, Quality control, and Imputation 

Detailed description on sample processing, genotyping, genotype quality control and genotype 

imputation can be found in the Supplementary Methods. In brief: The majority of samples 

were processed at the DNA laboratory of the Institute of Clinical Molecular Biology (Christian-

Albrechts-University of Kiel, Germany), with a subset of the German samples (BoSCO study) 

processed and typed at the Genomics Department of Life&Brain Center, Bonn, and another 

subset (COMRI study) prepped at the Technical University Munich, Munich, Germany and 

genotyped at the Genotyping laboratory of the Institute for Molecular Medicine Finland 

FIMM Technology Centre, University of Helsinki, Finland. The German control samples were 

prepped at the Institute of Clinical Molecular Biology and genotyped at the Regeneron 

Genetics Center, U.S.A. In brief, prepped DNA extracts or non-prepped whole blood, buffy 

coat samples (and for an exceedingly small subset also saliva) genotyped on Illumina’s Global 

Screening Array (GSA), version 1.0 (German controls), 2.0 or 3.0 (BoSCO study, COMRI 

study and 378 cases and 1,180 controls from the Italian cohort) with a SNP coverage of 

700,078 to 730,059 variants. We performed a uniform sample and single-nucleotide 

polymorphism (SNP) quality control across the German, Italian, Norwegian and Spanish 

populations respectively. After the exclusion of samples during quality control (the majority 

due to population outliers) (Supplementary Table 1), the final case–control datasets 

comprised 1,536, patients and 4,759 control participants from Italy, 1,421 patients and 4,377 

control participants from Spain, 62 patients and 262 controls from Norway and 241 patients 

and 3,110 control participants from Germany. The number of SNPs pre-imputation were 

664,969 for the Italian cohort, 669,359 for the Spanish cohort 663,411 for the Norwegian 

cohort and 568,542 for the German cohort. To maximize genetic coverage, we performed SNP 

imputation on genome build GRCh38 using the Michigan Imputation Server and 194,512 

haplotypes generated by the Trans-Omics for Precision Medicine (TOPMed) program (freeze 

5)41,42 (Supplementary Methods). The number of SNPs with a post-imputation score (R2) of 

> 0.1 were 77,767,912 for the Italian cohort, 72,504,622 for the Spanish cohort 19,466,514, 

for the Norwegian cohort and 51,399,774 for the German cohort pre-imputation.  
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Statistical Analysis  

Genome-wide association analysis 

To take imputation uncertainty into account, we tested for phenotypic associations with allele 

dosage data separately for the Italian, Spanish, German, and Norwegian case-control data. 

We carried out a logistic regression analysis corrected for potential population stratification, 

age and sex bias using the SAIGE software43 (Supplementary Methods). An inverse-

variance weighted fixed-effects meta-analysis was conducted with the meta-analysis tool 

METAL15 on the first discovery cohort including 3,260 cases and 12,483 population controls 

of unknown COVID-19 status from Italy, Spain, Norway and Germany and the second 

discovery cohort including 1,911 critically ill cases and 12,483 population controls 

(Supplementary Table 1). This was followed by an in-silico replication analysis in up to 

12,888 hospitalized cases (including 5,582 critically ill cases) and 1,295,966 population 

controls of the COVID-19 HGI. Only variants that were common to at least 2 datasets with 

respective post-imputation R2 ≥ 0.6 and that had an overall minor allele frequency (MAF) of ≥ 

1% were considered in the analysis. For each variant, we computed across-cohort 

heterogeneity P-values and I2 values using METAL16. We used a significance threshold of 

P=10−6 for joint P-values to determine statistical significance.  

Candidate SNPs for each respective main meta-analysis were fine mapped using Bayesian 

fine mapping with the tool FINEMAP16 and analyzed using Meta-Analysis Model-based 

Assessment of replicability18 (MAMBA) (Supplementary Methods) to assess replicability at 

each locus.  

Association analysis of candidate SNPs 

We additionally performed age- and sex-stratified as well as severity analyses on candidate 

SNPs from our first and second discovery cohorts, as well as candidate SNPs from the COVID-

19 HGI analysis6. We carried out a logistic regression analysis corrected for potential 

population stratification, age and sex bias using the software R version 3.6.2 (Supplementary 

Methods). The inverse-variance weighted fixed-effects meta-analysis was conducted using 

the R-package metafor44 including only statistics from cohorts with NCase and NControl > 50. Sub-

analyses in age groups of 20-40, 41-60, 61-80 and > 80 years were carried out, with the 

highest sample numbers and statistical power in the age groups of 41-60 and 61-80 years, 

such that only these are reported (Supplementary Table 1e).  
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Association analysis of the 17q21.31 inversion 

17q21.31 inversion genotypes were imputed using IMPUTE v2.3.245,46 from quality controlled 

SNP data (first and second analysis) based on experimentally-validated inversion genotypes 

from 109 individuals from the 1000 Genomes Project or from P-values (COVID-19 HGI A2/B2 

release 5 data) using Fast and accurate P-value Imputation for genome-wide association 

study (FAPI) (Supplementary Methods).21 The inversion was coded as 0 for the major allele 

H1 and 1 for the minor allele H2. All association analyses were carried out as described above 

on the minor allele H2.  

Functional analysis 

Phenotype associations with the different variants were obtained from the NHGRI-EBI GWAS 

Catalog.47 Similarly, tissue-specific expression or splicing effects were obtained by searching 

for SNPs in high LD (r2>0.9) that have been already identified as expression quantitative trait 

loci (eQTLs) or splicing quantitative trait loci (sQTLs) in cis by the GTEx Project (GTEx 

Analysis Release v8).22 Candidate coding genes were selected based on their inclusion in the 

GWAS credible sets and/or if any of the variants had been identified as lead eQTL or sQTL. 

Exploratory gene expression analysis of selected candidates was performed on publicly 

available pre-processed RNA-seq datasets generated from organ tissues (GTEx Analysis 

Release v8 immune cell types (BLUEPRINT23), as well as respiratory tract48 and brain cells49 

(COVID-19 Cell Atlas)50. Differential expression of candidate genes in COVID-19 infected lung 

cells were obtained from pseudo-bulk differential expression analysis performed by Delorey 

et al.51 Since several candidate genes (including MAPT, CRHR1 and KANSL1) were highly 

expressed in the neural system, differential gene expression was also analyzed on single-cell 

RNA-seq dataset of COVID-19 infected brain organoid cells from Song et al.24 (obtained upon 

request). The analysis was carried out using hurdle modeling, implemented in the R package 

MAST.52 Finally, to check the effect of the 17q21.31 inversion on monocytes stimulated by 

infection-like conditions we also performed a differential expression analysis in the RNA-seq 

data from Quach et al.53 by imputing the inversion genotypes with IMPUTE v2.3.225 and 

quantifying gene and transcript expression differences with Kallisto v0.46.020 and QTLtools 

v1.154. For detailed description, refer to Supplementary Methods. 

Analysis and fine mapping of the HLA  

Detailed descriptions of this analysis can be found in the Supplementary Methods. In brief, 

quality-controlled genotypes at the HLA region (chr6:29-34Mb) were extracted. HLA allele, 

amino acid, and SNP imputation was performed using the random-forest based HLA genotype 
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imputation with attribute bagging (HIBAG) and applying specially tailored as well as publicly 

available reference panels.5,55,56 The resulting data were used as a basis for several 

subsequent analyses, including: 1) basic association analysis (fine mapping) as described in 

the section Statistical Analysis and the Supplementary Methods, 2) a peptidome-wide 

association study14 (pepWAS), to screen for disease-relevant peptides from SARS-CoV-2, that 

may present a possible functional link between severe COVID-19 and variation at classical 

HLA loci, 3) quantitative HLA analyses directed at the number of peptides bound by an HLA 

allele, as well as 4) an analysis of HLA-presentation of shared peptides (‘molecular mimicry’).  

Analysis of the Y-chromosome haplotypes 

First, we produced high quality Y-chromosome genotypes by manually calling and visually 

inspecting Y-chromosome SNPs in the male fraction of the cohorts only. Next, we used 22 Y-

chromosome SNPs to distinguish known Y-chromosome haplogroups as described in the 

Supplementary Methods at different haplogroup resolutions. We here focused on 

haplogroup R, the most prevalent Y-chromosome haplogroup across Europe. Association 

analysis was carried out as described in the Section Statistical Analysis – Association 

analysis of candidate SNPs on Y-chromosome haplogroups coded as absent (0) or present 

(1). We additionally analyzed the end-point mortality (Supplementary Methods). 

Analysis of the ABO secretor status 

ABO blood group typing was performed as described by Ellinghaus et al.5. Briefly, genotypes 

of the SNPs rs8176747, rs41302905 and rs8176719 were extracted from the imputed data 

(R2=1 for all SNPs and cohorts) and used to infer the A, B and O blood types. The ABO-

“secretor” status was inferred from the genotypes of the rs601338 SNP (G>A) at the FUT2 

gene, located at 19q13.33, extracted from the imputed data (R2=0.98-0.99 for all cohorts). 

Individuals carrying genotypes GA or GG were assigned secretor status and individuals 

carrying genotype AA were assigned non-secretor status based on the genotype dosages, 

ranging from 0 to 2, retrieved from the imputed data. Individuals with allelic dosages 1.3-1.7 

were called as “no call”, individuals with dosages ≤1.3 were called “secretors” and individuals 

with dosages ≥1.7 were called “non-secretors”. Association analysis was carried out as 

described in the Section Statistical Analysis – Association analysis of candidate SNPs on 

blood type or blood type secretor status coded as absent (0) or present (1). Blood types A and 

AB were also analyzed combined as “A and AB”. 
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Availability of Summary Statistics  

Genome-wide summary statistics of our analyses will be made available upon reasonable 

request to the corresponding author. 
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Tables 

Table 1. Overview of patients included in the genome-wide discovery analysis. Overview of patients included in our first analysis (3,260 

patients) and second analysis (1,911 patients). Individuals of the Italian, Spanish, Norwegian and German cohorts were recruited at five, seven, 

eight and ten different hospitals/centers, respectively. Shown are respiratory support status groups 1-4, age and median age across all individuals 

as well as within each respiratory support group, percentage of females within each cohort, as well as percentage of individuals affected by known 

comorbidities of COVID-19, factors related to lung health and mortality. Commonly reported comorbidities in COVID-19 are shown, hypertension, 

coronary artery disease and diabetes. Characteristics of control individuals are shown in Supplementary Table 1.  

Characteristic Italy   Norway  Spain  

 N=1536 N=1421 N=62 N=241 

Respiratory support — (%)  Italy  Spain  Norway  Germany 

 Supplemental oxygen only (1)  17.97  63.35  80.65  45.23  

 Noninvasive ventilation (2)  60.74  8.62  3.23  8.71  

 Ventilator (3)  20.83  26.91  16.13  35.68  

 ECMO (4)  0.46  1.13  0  10.37  

Median age (IQR) — yr  67 (22)  68 (18)  59.5 (21)  63 (19)  

Median age (IQR) — yr (1)  75 (21)  69 (21)  59 (20)  63 (23)  

Median age (IQR) — yr (2)  66 (23)  72 (17)  68.5 (10)  68 (20)  

Median age (IQR) — yr (3)  63 (14)  65 (15)  66 (19)  64 (18)  

Median age (IQR) — yr (4)  49 (12)  57 (10)  /  56 (12)  

Female sex — (%)  32.81  35.88  33.87  26.97  

First analysis     

Hypertension — (% affected) (% missing)  40.55 (21.16)  49.6 (1.91)  41.3 (25.81)  53.09 (32.78)  

Coronary artery disease — (% affected) (% missing)  17.09 (21.16)  10.16 (1.98)  25.81 (0)  15.23 (37.34)  

Diabetes — (% affected) (% missing)  14.86 (21.16)  24.55 (1.91)  14.52 (0)  19.63 (32.37)  

https://doi.org/10.1101/2021.07.21.21260624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Smoking — (% affected) (% missing)  11.45 (22.07)  21.26 (1.69)  3.33 (3.23)  43.59 (83.82)  

Lung disease — (% affected) (% missing)  13.3 (43.23)  22.86 (32.34)  /  16.07 (30.29)  

Mortality — (% affected) (% missing)  15.73 (37.11)  15.4 (18.36)  9.68 (0)  12.63 (21.16)  

Second analysis     

Female sex — (%)  29.68 27.55 / 22.73  

Hypertension — (% affected) (% missing)  38.26 (23.25)  52.19 (3.28)  / 62.96 (38.64)  

Coronary artery disease — (% affected) (% missing)  16.03 (23.25)  12.55 (3.28)  / 18.75 (39.39)  

Diabetes — (% affected) (% missing)  14.58 (23.25)  25.3 (3.28)  / 19.75 (38.64)  

Smoking — (% affected) (% missing)  11.52 (24.21)  20.44 (2.89)  / 42.11 (85.61)  

Lung disease — (% affected) (% missing)  12.88 (48.25)  27.08 (44.51)  / 18.29 (37.88)  

Mortality — (% affected) (% missing)  15.68 (40.79)  25.07 (26.2)  / 26.14 (33.33)  

https://doi.org/10.1101/2021.07.21.21260624
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Figure 1. Association of the 17q21.31 locus with severe COVID-19 with respiratory 

failure. (a) Regional association plot showing the variant most strongly associated with severe 

COVID-19 (rs1819040, purple diamond) a ~0.9-Mb inversion polymorphism at 17q21.2133 

(white line with blue rectangles representing the variable segmental duplication (SD) blocks 

at the breakpoints), and the large credible set obtained by statistical fine-mapping including 

2,178 SNPs in high LD (median(LD)=0.97) with the inversion (Supplementary Table 7), 

Pairwise LD values (r2) with lead variant rs1819040 were calculated from merged Italian, 

Spanish, German and Norwegian GWAS discovery datasets. Below, organization of the 

17q21.31 inversion genomic region, with the extended haplotypes associated with each 

orientation (H1 and H2) shown as red and blue arrows, respectively, and breakpoint SDs as 

dark rectangles. Protein-coding genes for which the inversion is a lead eQTL in at least one 

GTEx tissue are shown as pointed rectangles indicating the direction of transcription. (b) 

Forest plot for an extended meta-analysis of our first discovery analysis and COVID-19 HGI 

release 5 analysis B2 datasets (Online Methods) of the association between severe COVID-

19 and the 17q21.31. Shown are OR and 95% CIs of the main (all), age-stratified (41-60 and 

61-80 years (yrs)) and sex-stratified analysis across all analyzed cohorts. (c) Phenome-wide 

association study (PheWAS) results for the 17q21.31 inversion showing only potentially 

COVID-19 related phenotypes from GWAS Catalog (P=10-7) grouped by disease categories 

using different colors. The effect direction of known SNP-trait associations is shown using 

triangles pointing upward (increase) and downward (decrease), whereas dots represent 

unknown effect direction. The dotted line indicates the genome-wide significance threshold 

(P=5×10-8). 
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Figure 2. Expression analysis of the most plausible candidate genes associated with 

the 17q.21.31 and 19q.13.33 loci in organ tissues and COVID-19 relevant cell types.  

(a) GTEx tissue-specific expression QTL (eQTL, upper panel) and splicing QTL (sQTL, middle 

panel) effects of the 17q21.31 and 19q.13.33 loci on selected candidate genes, as well as 

expression of these genes in GTEx23 tissues (lower panel). Direction of normalized eQTL and 

sQTL effect size (NES) is represented by color intensities, and statistical significance by dot 

size. Effects are calculated on the 17q21.31 inversion haplotype or 19q.13.33 allele 

(rs1405655-T). Black rectangles indicate genes for which these variants or proxy variants in 

high LD (r2) are lead QTL variant in that tissue. If no box is shown other variants (i.e. not 

inversion or rs1405655-T) are lead QTLs. Heatmap displays gene-wise centered median by 

tissue expression values (represented by color intensities), showing in which tissues 

candidate genes are mostly enriched. (b) Expression levels of candidate genes in scRNA-seq 

datasets from healthy upper airways (nasal, bronchi) and lung (parenchyma) cells48 and adult 

human brain cells from recently deceased, non-diseased donors49. Figure displays log-

normalized mean expression (represented by color) and fraction of cells expressing those 

genes (indicated by dot size). Processed and cell-type annotated gene expression levels from 

studies were retrieved from COVID-19 Cell Atlas50. (c) The figure shows differential 

expression of candidate genes in lung cells of COVID-19 patients compared to healthy 

controls. Log2 fold change (log2FC) values are presented as color gradient. Nominal p-values 

in -log10 scale are shown proportionally to dot size. Black-bordered circles indicate significantly 

differentially expressed genes after FDR correction. Results were obtained from pseudo-bulk 

differential expression analysis by Delorey et al.24 More in detailed figures are shown in 

Supplementary Figures 13 and 15.  
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