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Abstract  

Lignocellulose from terrestrial plant biomass is abundant and contains polymeric 

carbohydrates and lignin; both recognized as attractive renewable feedstock for energy, 

chemicals and materials as alternatives to fossils to meet the targets for future 

sustainable development. Liquid biofuels are particularly important renewable 

commodities because of the vast infrastructure already in place to use them, especially 

for transportation, and efficient synthetic approaches and viable commercial 

manufacture processes are under development for both drop-in fuels and new fuel 

compounds. This work surveys the recent trends in lignocellulosic biomass conversion 

into fuels, and highlight innovative synthetic approaches based on novel chemo- and 

bio-catalyst systems and process strategies utilizing both biomass-derived carbohydrates 

and technical lignin as feedstock.  
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1. Introduction 

The urge for renewable fuel from biomass-based resources is rapidly increasing and is 

anticipated to grow further to overcome the shortage of fossil resources and to meet the 

societal concern for sustainability. Liquid biofuels are of particular importance because 

of the vast infrastructure already in place to use them, especially for transportation, and 

synthetic approaches are already accessing commercial operation. 

Fossil fuels for transportation consist mainly of liquid hydrocarbons (e.g. alkanes or 

cycloalkanes) separated into gasoline (C4-C12), diesel (C9-C25) and jet fuel (C8-C16). 

Biodiesel (bio-esters) and bio-alcohols (especially bioethanol) are attractive substitutes 

for diesel and gasoline, and are currently mainly produced on large-scale commercially 

from edible commodities like starch, sugar (e.g. corn or sugarcane) and vegetable oils 

(i.e. “first generation” biomass) by processes considered established technology. Fatty 

acids and terpenoid-based biofuels can act as supplements for or replacements of jet 

fuels, but industrial production technologies are still immature. 

The primary resource for the production of biofuels with non-edible feedstock (i.e. 

“second generation” biomass) is low-value biomass that possesses high cellulose and 

hemicellulose content, i.e. lignocellulosic biomass including wood chips, crop residues, 

and municipal waste. Secondary resources include residual oils and fats like, e.g. waste 

cooking fat from deep-frying and slaughter industry as well as algae (“third-generation” 

biomass), which also holds promise for biofuel production but so far has it proven 

difficult to develop economically viable production.  

Cellulose is a crystalline polysaccharide comprised of only glucose (hexose) monomer 

units with resilient β-1,4 glycoside linkages, while hemicellulose is an amorphous 
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polysaccharide comprised of xylose (pentose) and hexoses linked by more weak β- and 

α-glycosidic bonds. A general route to synthesize biofuel from such polysaccharides 

comprise low-temperature deconstruction of the biomass into monomer products, which 

can be converted into platform compounds, that are either the fuel itself (e.g. ethanol by 

enzymatic fermentation) or can be further transformed into the biofuel. To improve the 

energy density of the biofuel, the overall strategies in the synthetic approaches are (1) to 

reduce the substantial oxygen content of the parent feedstock, and (2) to increase the 

amount of C-C bonds between biomass-derived intermediates [1]. 

Lignin, a polyphenolic compound, is also a main component of lignocellulosic and it is, 

next to cellulose, the most abundant biopolymer in nature. Although different types of 

lignin and lignin model compounds have been described based on the means of isolation 

and linkages, the valorization of technical lignin is prioritized from an industrial 

perspective. Technical lignin is generated as a byproduct from pulp and paper industry 

or cellulosic ethanol production and presents a sustainable bulk feedstock. In this 

respect, the synthesis of biofuels from industrial lignin streams holds a great potential to 

improve the economy of existing pulp mills and debottleneck the recovery boilers on-

site. Despite the technical progress reached and the growing importance of 

environmental sustainability, lignin commercialization is yet to become a success story 

[2]. 

This review article concisely summarizes the recent trends in novel synthetic 

approaches to catalytic conversion of biomass-derived carbohydrates and technical 

lignin to biofuels. 

2. Biofuels from biomass-derived carbohydrates 
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Cellulose, hemicellulose, and their monomers or derivatives are oxygen-containing 

carbohydrates requiring a series of reaction steps such as, e.g. hydrolysis, 

dehydration/alkylation, hydrodeoxygenation (HDO) etc. to be converted into liquid 

biofuels (Figure 1) [3-8]. Cascade or one-pot tandem catalytic reaction processes are 

preferred operation modes for such processes circumventing cumbersome separation 

and purification of intermediate chemical compounds, thereby easing processing and 

enabling efficient utilization of the carbohydrate source.  

 

Figure 1. Overview of recent synthetic transformations for production of biofuels and 

fuel-additives (in green) from biomass-derived carbohydrates via intermediate platform 

compounds involving cascade and one-pot strategies.  
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2.1 New reaction strategies 

An efficient two-step catalytic cascade process for making jet fuel compatible biofuel 

includes NaOH-catalyzed aldol condensation of 5-hydroxymethyl furfural (HMF) or 

furfural with methyl isobutyl ketone (MIBK) to produce branched C11 and C12 furan 

compounds (yields up to 96%) followed by HDO with hydrogen to the branched 

alkanes 2-methylundecane and 2-methyldecane (yields up to 98%) using a catalytic 

system containing Pd/C and Eu(OTf)3 [9]. Recently, Li and coworkers have 

demonstrated an alternative, efficient cascade catalytic process involving alkylation and 

HDO of 2-methylfuran with solid catalysts and various substrates using pressure tubes 

for the alkylation followed by HDO of the resulting alkylation solution in a Teflon tube 

containing another solid catalysts [10,11].  

To simplify processing, cascade reactions for the synthesis of biofuels from 

carbohydrates may also be performed in one-pot as demonstrated for the production of 

5-(hydroxymethyl)-2-(dimethoxymethyl)furan from fructose via a two-step 

dehydration/acetalization process using a facile catalyst SiO2-HNO3 and DMSO-

methanol biphasic solvent system [12]. However, even more desirable is to operate 

continuous-flow reactions, which are often preferred for industrial applications. In this 

respect, Kwon et al. [13] demonstrated selective condensation of 2-methylfuran and 

furfural to C15 compounds with supported phosphotungstic acid catalysts in a 

continuous-flow fixed-bed reactor system, where formation of unwanted viscous 

tetramers (C20) were suppressed. Moreover, Weng et al. [14] applied carbon supported 
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phosphated Ru-Mo catalysts in a continuous trickle-bed reactor to convert sorbitol into 

renewable alkanes and higher alcohols. 

2.2 New catalyst systems 

A variety of other novel homogeneous and heterogeneous catalyst systems offers 

immense potential in helping to make renewable biofuels into commercial reality [15-

20]. In this respect, Liu et al. [21] have lately exploited an in-situ generated catalyst 

system of HCl and ZrO(OH)2 formed by decomposition of ZrOCl2�8H2O in ethanol, 

which effectively catalyzed the dehydration/etherification of fructose to 5-

ethoxymethylfurfural (EMF) (gasoline additive) and subsequent reductive etherification 

of EMF to 2,5-bis(ethoxymethyl)furan (BEMF) using ethanol as H-donor. Furthermore, 

Xu et al. [22] found Mn2O3 be very active and stable for the aldol condensation of 

furfural and angelica lactone achieving high yield of 96% of C10 oxygenates under mild 

reaction conditions. Similar high yield of derived C9 and C10 alkanes (gasoline) were 

after hydrogenation and HDO obtained of the aldol condensation products over Pd/C 

and Pd-FeOx/SiO2 catalysts, respectively. In an analogous study, Liu et al. [23] reported 

the aldol condensation of various furfural species with cyclic ketones over a NaOH 

catalyst and obtained high yield (>90%) of the target condensation intermediates under 

mild conditions (30 °C; 40 min). Afterwards, amorphous zirconium phosphate 

combined with Pd/C catalyzed HDO of the condensation intermediates to cycloalkanes 

(gasoline) in good yield (76%) at optimized reaction conditions. HDO has also been 

used to convert sorbitol (sugar alcohol derived from glucose) into high-octane gasoline 

products with research octane number (RON) higher than 100 in ∼70% yield using 

zirconium phosphate supported Pd-bimetallic catalysts [24]. In contrast, carbon 

nanotube supported phosphated Ru-Mo catalysts were found to provide low affinity for 
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C-C bond cracking of sorbitol resulting instead in high selectivity of C6 products (lower 

gasoline-range) in gas-phase (C6 alkanes, 74.7%) and liquid-phase (C6 alkanes and 

alcohols, 87.8%) [14]. 

2.3 New fuel molecules 

Biomass-derived fuel molecules with high energy density are a new group of materials 

[25]. Tang et al. [26] demonstrated for the first time the synthesis of 1,1,3-trimethyl-

cyclohexane (jet fuel-range cycloalkane) in good yield (67%) by coupling the aqueous 

phase reforming of glycerol and HDO of isophorone, which both are commodities 

produced industrially in multi-thousand tons per annum scale. Also using readily 

available feedstock, Liu et al. [27] adopted two steps to convert cellulose into a high-

density mixture of C12 and C18 branched polycycloalkanes with a low freezing point of -

48 °C (winter diesel) in high yield (74.6%). First, cellulose was selectively converted to 

2,5-hexanedione where after it in combination with hydrogen formed branched 

polycycloalkanes over a dual-bed (25% Cu2Ni/MgO-p and Ni/H-β) catalyst system via 

an aldol condensation-hydrogenation-HDO sequence. Using a similar reaction 

approach, Wang and co-workers [28] synthesized 1-(3-cyclopentyl)cyclopentyl-2-

cyclopentylcyclopentane, a new renewable high-density jet or rocket fuel, with a high 

overall similar yield (70%) using cyclopenanone as a substrate that can be derived from 

hemicellulose. 

3. Biofuels from technical lignin 

Lignin-derived fuels can be obtained directly by one-pot depolymerization or through 

upgrading of bio-oil obtained from biomass degradation by either chemical or 

biochemical pathways (Figure 2) [29,30]. Under reductive conditions, hydrocarbons can 
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be formed in a transparent liquid form, with carbon numbers from C6–C9 and C12–C17, 

covering the gasoline and diesel ranges, respectively [31,32]. Lignin hydrotreatment is 

normally performed in the presence of a solvent, mainly to suppress condensation and 

re-polymerization of intermediate radicals. However, solvent recycling can be rather 

challenging and costly, and solvent-free strategies are thus favored. 

 

Figure 2. Schematic presentation of recent synthetic approaches to production of biofuel 

from technical lignin and whole biomass, including reductive catalytic fractionation 

(RCF), hydrodeoxygenation of technical lignin and lignin-derived oils (HDO), and 

bioconversion (Bio).  

3.1 New chemical reaction strategies 

Hita et al. [33] demonstrated a process for hydrotreatment of technical lignins using an 

inexpensive Fe-based limonite catalyst and without using a solvent. Product yields up to 

41 wt% were obtained, containing mostly alkylphenolics and aromatics which can be 

used for biofuel production. In another example, cyclohexane‐derived alkanes in the jet‐

fuel/diesel range were produced via one-pot HDO of softwood lignin using earth-
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abundant metals, including Fe, Ni, Cu, and Zn, co-loaded with Ru on HY zeolite 

catalysts [32]. Total yields of hydrocarbon products were in the range 26–32 wt%, and a 

decrease in the yield of low-molecular-weight gaseous products was observed. The one-

step HDO of technical lignin is a promising approach to synthesis of hydrocarbon fuels, 

but long residence time and high catalyst-to-lignin ratio are often required to overcome 

low productivity. 

Bio-oil, a complex mixture of compounds generated from biomass degradation under 

relatively harsh conditions, can be upgraded by HDO with hydrogen gas using 

hydrotreating catalysts. The upgraded products can have comparable quality to 

traditional fossil fuel pools. Usually, a high hydrogen pressure is required to drive the 

HDO process when using conventional hydrotreating catalysts. However, recent 

progress in HDO catalysts for lignin-derived bio-oil upgrading have been introduced, 

such as molecular sieves supported noble metal and/or transition metal catalysts [34]. 

Direct upgrading of fast pyrolysis lignin vapors, in situ, was also reported to be 

successful using conventional hydrotreating catalysts, like HZSM-5 [35]. An organic 

liquid product was obtained, containing about 70 wt% oxygen-free aromatics 

(predominantly benzene and toluene). The intimate contact between lignin and the 

catalyst during pyrolysis is key to minimize re-polymerization reactions and require 

further research [35].   

A tandem lignin-first biorefinery method has been reported by Román-Leshkov, 

Beckham and colleagues [36] and further commented and extended by Rinaldi [37,38]. 

This biorefinery paradigm (also termed reductive catalytic fractionation) employs active 

stabilization [39] and relies on maintaining the carbohydrates intact by selective 

extraction of lignin as a valuable phenolic resource from whole biomass. Such 
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alternative synthetic route may enable the production of hydrocarbons through a 

sequence of flow reactors, providing improved mass and energy balances all over the 

process chain. The lignin-derived hydrocarbons generated could serve as replacements 

for gasoline, diesel, and aviation fuels.  

3.2 New biochemical reaction strategies 

Bioconversion of technical lignin into lipids has emerged recently as a potential route 

for biofuel synthesis. These lipids can potentially replace fossil-derived chemicals and 

can contribute, for instance, to a more sustainable route of biodiesel production. Among 

the different genera of bacterial species, Rhodococcus opacus was reported to produce 

lipids from technical lignin, e.g. kraft lignin [40,41]. The lipid concentrations were 0.07 

and 0.15 g/L employing oxygen- [40] and laccase-treatments [41], respectively, 

however only one oxygen-treatment condition was investigated in the former study. In a 

very recent study, the parameter space of oxidative depolymerization and the resulting 

effect on lignin bioconversion has been expanded [42]. The combination of oxygen-

treatment and subsequent fermentation seems an effective strategy towards improving 

the bioconversion of lignin into potential drop-in fuel replacements, necessitating 

further investigation. To date, the highest lipid production utilizing lignin as the carbon 

source (1.83 g/L) was achieved via a combinatorial pretreatment integrated with fed-

batch fermentation [42]. However, such high lipid concentration was attained using 

lignin from corn stover, which quite differs from technical (kraft) lignin in terms of 

chemical structure and successive breakdown compounds.    

4. Conclusions and future directions 
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There are currently many interesting developments in the field of biomass conversion. 

The identification of new catalyst and reaction systems give promise for improved 

conversion and utilization of biomass. There are, as described, two radically different 

approaches to valorization of the biomass, dedicated use or using side-products from 

existing processing. The first approach is the most promising with respect to production 

volumes, while the second one is the one with the most near-term promise. The current 

main chemical processing of biomass is in the context of paper and pulp production and 

the revenue from the cellulose and hemi-cellulose parts of the wood is the benchmark 

for producing renewable fuels from the wood. Here, technological questions can be 

posed, such as if the valorization should line up the existing technical lignin streams 

readily available from the pulp and paper industry, or should the efforts be directed 

towards new alternatives, harnessing the lignin-first from biomass components? Finally, 

it may be speculated if the current pulping mills are willing to change their facilities 

towards adopting such technologies? Nonetheless, the revenue from the biofuel 

production, including tax incentives, has to be higher long-term than the alternative 

revenue from sales of pulp and paper. Another important factor to keep track of is the 

sustainable silviculture needed for producing sizeable amounts of renewable fuels. 

Indeed looking at the volumes of transportation fuels needed worldwide and the supply 

of biomass, it is obvious that the use of biomass in transportation can only be a part of 

the solution. Along with other approaches such as more efficient vehicles, increasing 

public transport and electrification of the transport sector.  
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