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Abstract 

The TiCl4-NR3 reagent system is useful for carbon-carbon bond forming reactions such as the 

aldol and related condensation reactions, the diastereoselective coupling of phenyl acetic acid 

derivatives, the conversion of aryl alkyl ketimines and ketoximes to pyrroles, ketazines to 

dihydrodiazines, enamines to aromatic amines, N,N-dialkylanilines to the corresponding 

benzidine derivatives, trialkylamines to unsaturated aldehydes, diarylcyclobutanones, 

diarylcyclobutylamine derivatives via iminium ion intermediates and for the reductive coupling 

of aromatic aldehydes, aldimines and intramolecular reductive coupling of chiral diimine 

derivatives.  In all cases, the organic products are obtained in moderate to good yields, in single-

pot operations under ambient reaction conditions.  Hence, these synthetic methods have 

considerable synthetic potential. 

 

Keywords: Titanium enolates, alkynyltitanium, metalated iminium ions, stereoselective, 

coupling  

 

 

 

Introduction 

 

Titanium reagents are widely used in organic synthesis.
1
 Whereas the organotitanium reagents 

are useful in C-C bond forming reactions, the simple TiX4
1a-c 

and TiX3
1d,e 

(X = Cl, OR) are 

frequently used in both stoichiometric  and catalytic quantities in C-C bond forming reactions 

and functional group transformations.  Among various titanium reagents, TiCl4 has vast 

applications in organic synthesis.  It has been used as such or in combination with an additive.  

In the last 20 years, several useful synthetic transformations involving the use of TiCl4 along 

with a tertiary amine NR3 were uncovered.  These results are presented in this account.  
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Discussion 

 

The TiCl4-NR3 reagent system has been widely used for the preparation of titanium enolates for 

applications in aldol and related reactions in organic synthesis.
 
 It was first used in Knoevenagel 

condensation reactions (Scheme 1).
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In 1986, it was discovered that the titanium enolate prepared using propiophenone reacts 

with arylaldehydes to give the corresponding aldols with very high syn selectivity (Scheme 2).
3
  

 

CH3

O ArCHO

CH2Cl2 CH3

O

Ar

OH

CH3

O

Ar

OH

TiCl4/Et3N
+

syn anti

                               Yield                   syn : anti 
 Ar = Ph                  91%                      95:5
 Ar = p-OCH3Ph     95%                      89:11
 Ar = p-CH3Ph        94%                      96:4
 Ar = p-NO2Ph        98%                      87:13  

Scheme 2 

 

Similar reactivity pattern has been also observed in reactions using aliphatic ketones 

(Scheme 3).
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Stereoselective aldol reaction has been also observed in the reaction a titanium enolate 

prepared using a ketone and TiCl4/Bu3N reagent system with another ketone (Scheme 4).
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Aldehyde complexes of TiCl4 reacts with another aldehyde in the presence of TMEDA to 

give the corresponding aldol with very high syn selectivity (Scheme 5).
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Titanium enolate of an α-dialkoxyketone gives the corresponding aldol adduct in the 

presence of TMSCl catalyst (Scheme 6).
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Preparation of titanium enolate using TiCl4/EtN(i-Pr)2 reagent system followed by aldol 

reaction with aldehydes leads to very high diastereoselectivity (Scheme 7).
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In these transformations, syn selectivity was realized.  In contrast, high anti selectivity was 

realized in the reaction of a chiral amino indanol derived titanium enolate (Scheme 8).
9
  

Enantiomerically pure anti-aldols can be readily obtained upon hydrolysis of the anti adduct 

(Scheme 8).
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The titanium enolates can be readily captured using a Michael acceptor.  For example, the 

titanium enolate generated using N-propionyloxazolidone reacts with Michael acceptors to give 

the corresponding adducts with high diatereoselectivity (Scheme 9).
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Reaction of non-enolizable aldehydes with certain α,β-unsaturated carbonyl compounds in 

the presence of TiCl4/Et3N reagent system leads to Baiylis-Hilman type reaction (Scheme 10).
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Claisen condesation of esters is readily achieved using the TiCl4/Bu3N reagent system 

(Scheme 11).
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In all these transformations the titanium species remains as Ti(IV) species.  In recent years, 

several new organic transformations have been uncovered using the TiCl4/R3N reagent system in 

which the TiCl4 species becomes Ti(III).  For example, in 1996, it was reported that the TiCl4-

NR3 reagent system is useful in the preparation of the (dl)-C2 symmetric 2,3-diphenylsuccinic 

acid esters (Scheme 12).
12 

 The reaction is highly chemo and diastereoselective. 
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The reaction proceeds through the formation of the corresponding titanium enolates, 

followed by oxidative coupling with concomitant formation of the titanium (III) species (Scheme 

13).
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Asymmetric versions of such oxidative coupling reactions have been reported (Scheme 14).
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Methods have been developed for the resolution of the corresponding racemic dicarboxylic 

acid for applications in the synthesis of chiral 3,4-diphenylpyrrolidine system (Scheme 15).
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During these research efforts, it was observed that the oxidative coupling of the chiral 

binaphthyl esters leads to diastereoselective formation of the corresponding cyclic compound 

(Scheme 16).
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The reactivity pattern of the TiCl4/Et3N reagent system with organic substrates containing 

acidic hydrogens were further examined.  It was observed that the reaction of acetophenone with 

TiCl4/Et3N reagent gave the corresponding 1,4-diketone in low yields (10-20%) along with the 

corresponding aldol condensation product.
16

 However, the reaction of aromatic ketimines 

produced the corresponding 2,5-disubstituted pyrroles in good yields, through oxidative coupling 

and aromatisation reactions (Scheme 17).
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The results can be rationalised by the mechanism shown in Scheme 18.
17 
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Also, it was found that certain ketoximes react with the TiCl4/NEt3 system to give the 

corresponding tetrasubstituted pyrroles (Scheme 19).
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However, aldoximes give the corresponding nitriles on reaction with the TiCl4/R3N reagent 

(Scheme 20).
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The reactions of hydrazones derived from ketones are expected to form the corresponding 

1,2-diazines.  However, in this case, the reaction gave the corresponding dihydro derivative 

(Scheme 21).
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Aromatisation takes place when certain enamines are used in the reaction with the 

TiCl4/NEt3 system (Scheme 22).
20

 The results can be rationalized considering initial 

deprotonation similar to that outlined in Scheme 18. 
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It has been observed that the TiCl4-NR3 system reacts with 1-alkynes to give the 

corresponding diynes, through the intermediacy of the alkynyltitanium species.
21

 Also, the 

alkynyltitanium species can be readily functionalised using certain electrophiles (Scheme 23).
21

  

Such direct metalation is an interesting observation, as previously alkynyl titanium reagents were 

prepared via metalation of 1-alkynes with alkyllithium reagents followed by exchange reaction 

with titanium complexes.
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Interesting oxidative coupling reactions have been observed using N,N-dialkylaniline 

derivatives.
23

  The corresponding benzidine derivatives are the products.  Again, this 

transformation can be rationalised considering the intermediacy of the corresponding 

aryltitanium species.
23 

The aryltitanium species prepared in this way can be readily 

functionalized using certain electrophiles (Scheme 24).
23 
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In 1955, it was reported that the TiCl4 oxidises tertiary amines.  Presumably, the 

corresponding iminium ions would be the organic product and the reaction can be rationalised by 

the intermediates shown in Scheme 25.
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Clearly, the tertiary amine can be oxidised by TiCl4 in the absence of organic substrates 

containing acidic hydrogen.  Accordingly, we have examined the reaction of organic substrates 

that could trap such iminium ion intermediates formed in situ from the amines.  It was found that 

the reaction in the presence of benzophenone gives the corresponding unsaturated aldehydes via 

condensation with the iminium ions (Scheme 26).
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The results can be rationalized considering the mechanism outlined in Scheme 27.
25 
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Interestingly, the reaction of an N,N-diisopropylalkylamine leads to the formation of the 

corresponding cyclobutanone in low yields in addition to the aldehydic products Scheme 28.
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Fortunately, iminium ions prepared from N,N-diisopropylbenzylamine using I2 react with 

TiCl4/NR3 reagent system to give the corresponding cyclobutanones in good yields (Scheme 

29).
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The results can be rationalized by the mechanism and intermediates outlined in Scheme 30.
26 
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It has been reported certain diarylcyclobutylamine derivatives are biologically active.
27

 

Accordingly, we have examined the synthesis of the cyclobutylamine derivatives by carrying out 

the reduction of the iminium ion intermediates containing cyclobutyl moiety.  It was observed 

that the corresponding cyclobutylamines are isolated in 60-70% yields under these conditions 

(Scheme 31).
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Reductive amination of carbonyl compounds with secondary amines is achieved via the 

reaction using TiCl4/NEt3 followed by Na(CN)BH3 reduction (Scheme 32).
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The TiCl4/amine system has been also used in the oxidation of certain alcohols.  For 

example, the TiCl4/pyridine reagent combination is useful for the oxidative cleavage of methyl 

diphenyltartrate to methyl phenylglyoxalate (Scheme 33).
30
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The TiCl4/Et3N combination oxidizes dihydrobenzoin and benzoin to benzil (Scheme 34).
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Propargyl alcohols are oxidized to the corresponding aldehydes under similar conditions 

(Scheme 35).
32 

 

OH

R

O

R H

TiCl4/NEt3

R = n-C12H25                90%

R = Ph3Si                      98%

R= HO(CH2)2-CH2       89%  
Scheme 35 

 

As discussed previously (Scheme 25), the TiCl3 species are produced in the reaction of TiCl4 

with NR3.  We have observed that the TiCl3 produced in situ in this way can be readily exploited 

to achieve reductive coupling of aromatic aldehydes and aldimines (Scheme 36).
33 
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Ar

H
N

(E)

ArCHO
TiCl3

OH

OHAr

Ar

TiCl3

R NHR

NHRAr

Ar

TiCl3

TiCl4 + Et3N

                      Yield                   dl : meso

Ar = Ph            71                       74:26

Ar = p-ClPh     58%                     83:17

Ar = p-MePh    61%                    100:0

Ar = o-MePh    63%                    75:25

                                            Yield          dl : meso

Ar = Ph, R = Ph                     65%           80:20

Ar = p-ClPh, R = Ph              63%            85:15

Ar = Ph, R = Cyclohexyl       60%            16:84

Ar = Ph, R = (CH3)3C            62%           33:67  
Scheme 36 

 

Also, the reaction of TiCl3 prepared in this way is useful for the diastereoselective 

intramolecular reductive coupling reaction of aromatic aldimines containing chiral 1,2-

cyclohexyldiamine moiety, albeit in low yields (Scheme 37).
34

 However, the yields are better 

when the reaction is carried out with the TiCl3 species prepared using the TiCl4/Zn reagent 

system. 
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In conclusion, the TiCl4/R3N has been shown to be useful for the diastereoselective aldol and 

related reactions, oxidative coupling of phenylacetic acid derivatives, for the conversion of aryl 

alkyl ketimines and ketoximes to pyrroles, ketazines to dihydrodiazines, enamines to aromatic 

amines, N,N-dialkylanilines to the corresponding benzidine derivatives, trialkyl amines to 

unsaturated aldehydes, diarylcyclobutanones and diarylcyclobutylamine derivatives via 

metalation of iminium ion intermediates and for the reductive coupling of aromatic aldehydes, 

aldimines and intramolecular reductive coupling of certain chiral imine derivatives.  Several of 

these transformations were previously carried out via multi-step syntheses. Since the 

transformations using the TiCl4/R3N reagent system described here are carried out in essentially 

single pot   operations starting   from     readily     accessible organic    substrates    under 
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ambient conditions, these synthetic methods have considerable potential for further exploitation 

in organic synthesis. 
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