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The potential commercial applications for metal Organic Frameworks (MOFs) are tantalizing.  To address the 

opportunity, many novel approaches for the synthesis of Metal-Organic-Frameworks (MOFs) have been 

developed recently. These strategies present a critical step towards harnessing the myriad of potential applications 

of MOFs by enabling larger scale production and hence real-world applications. This review provides an up-to-

date survey (212 references) of most the promising novel synthetic routes, i.e, Electrochemical, Microwave, 

Mechanochemical, Spray drying and Flow Chemistry Synthesis. Additionally, the essential topic of downstream 

processes, especially for large scale synthesis, is critically reviewed. Lastly we present the current state of MOF 

commercialization with direct feedback from commercial players. 
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1. Introduction 

Metal Organic Frameworks (MOFs) have emerged as a focus of academic fascination and commercial opportunity 

due to their unprecedented structures that imply a plethora of potential applications.  The initial report from 

Hoskins and Robson instigated a new field of coordination chemistry, combining the tenets of organometallic 

cluster chemistry with established coordination motifs to form coordination polymers, a.k.a. MOFs.1,2 Later 

reports from key instigators including Yaghi,3,4 Kitagawa,5,6 Ferey,7,8 and Long9,10 projected the potential 

applications of MOFs, utilising the combination of unprecedented porosity with periodicity and versatile 

chemistries.  The applications envisaged were largely based on separation, storage, sensing or release 

characteristics.11–15 As a result, it is possible that MOFs could have revolutionary performance in areas that include 

natural gas storage,16–18 petrochemical separation,19,20 CO2 capture,21,22 or drug delivery.23,24 

However, central to the translation of these new materials into disruptive technologies is the ability to manufacture 

MOFs at the required scale, purity and price for implementation. For example, the potential application of the 

enormous natural gas reserves globally as a fuel for vehicles, adsorbed in MOFs within the tank would 

immediately require megaton scale production of MOFs.25 Or in CO2 capture, more than 8000 million tons of CO2 

are produced from coal-fired power stations annually, again requiring many millions of tons of MOF to 

capture.26,27  In the laboratory, MOFs are most commonly produced in milligram scales, with multi-day reaction 

times in expensive organic solvents.  Their synthesis is often the balance of a number of competing forces, with a 

range of kinetic and thermodynamic products possible, meaning that a narrow set of reaction conditions are often 

possible for a successful synthesis. The large gap between laboratory production and that required for commercial 

application has created a strong imperative to develop efficient and versatile means of producing MOFs at scale.   



As scale up production methods are developed, parameters for assessing their viability have become important.  

Of these, the key parameter is the space-time yield (STY), a measure of the amount of MOF able to be produced 

per unit volume of reactor in a 24 hour period.  In concert with this, we recently proposed that the absolute value 

(in g/h) is also important. Many new production techniques are still in the early stages, meaning that the calculated 

STY may be prone to over-extrapolation. Other important factors are measures of product quality (such as surface 

area and phase purity), particle size control, yield, and the versatility of the technique. This article will seek to use 

these criteria in describing the prospective production methods featured herein.   

There are several challenges common to the bulk of the prospective scale up methods: 

a) Use of organic solvents. At scale, their cost, toxicity and in some cases flammability become significant 

issues.  

b) Anion build up. Typically, metal salts are employed as precursor molecules.  At scale, nitrates present a 

safety hazard, and anions such as chlorides can prove corrosive.  Oxide and hydroxide metal precursors 

are preferable.   

c) Ligand availability.  Many MOFs require bespoke organic ligands.  Production methods that could also 

produce these starting materials are in development.   

d) Particle size control. Applications such as membranes require nanometre sized particles whereas in 

storage applications. Larger particles are desired to stop unwanted movement of the MOF particles.  

Control of this is an important attribute.   

e) Activation. MOFs require removal of non-volatile solvents and unreacted starting materials from their 

pores.  This is a major consideration at large scale.   

f) Shaping of MOF powders produced is also required for using them in real industrial applications. 

All these challenges, which are specific for each MOF family due to their different composition and coordination 

nature, together with their extreme porosity make the synthesis of these materials not as straightforward as for 

zeolites; meaning that each MOF requires bespoke conditions. In recent years, a number of approaches for 

addressing these challenges have been considered, including electrochemical, microwave and mechanochemical 

syntheses as well as spray drying and continuous flow production. Electrochemical synthesis of MOF was 

developed by BASF and their initial purpose was to exclude anions by using metal electrodes as metal sources. 

Microwave-assisted synthesis, flow chemistry and spray-drying synthesis allow for a faster crystallization rate 

and production of smaller MOF crystals. In mechanochemical synthesis, no external heating or solvent is needed, 

reducing the washing and activation labour after the synthesis.  



Given the rapid progress of these techniques, there has been a recent rise in commercial entities that seek to utilise 

and/or produce MOFs. This review seeks to provide an update on progress of these companies, with direct input 

from them.  BASF pioneered large-scale, bespoke solvothermal techniques primarily for use in vehicular natural 

gas storage. Following this, spin-out companies have been established, often based upon novel reaction techniques 

originally developed in a research setting.  Some spin-out companies also seek to develop MOF-based products 

in addition to the broader supply of MOFs to the research community.   

In the following, we review the novel synthesis routes developed to date. We also discuss important downstream 

processing considerations and provide a summary of recent commercial developments.   

 

2. Production of MOFs: from laboratory to industrial scale 

In 1995, Nalco Chemical Company and Omar Yaghi claimed the use of solvothermal synthesis to obtain MOFs.28 

Up until now, this synthetic approach is the most common way to obtain grams of MOFs in the laboratory around 

the world. This method involves mixing solutions of the inorganic salt with the organic linker in a sealed reactor 

vessel and subsequent heating to promote the growth of insoluble frameworks that precipitate as fine crystals.29,30 

This sealed approach allows the reaction mixture be heated up to temperatures and pressures above the solvent’s 

boiling point to solubilize, partially or completely, otherwise insoluble reagents and form extended networks. It 

has become a benchmark in MOF chemistry, and a large variety of MOF families such as MIL series,8,31 MOF-

74,32,33 UiOs34–36 and PCNs37,38 have been synthesized following this principle. 

However, despite the tremendous academic success that MOFs have had in the last two decades, with thousands 

of new structures and with very promising applications, only very few of them are produced at large scale and 

used in real world applications.18,22,23,39–41 The main reasons for this are the lack of stability of most of the 

structures towards temperature and humidity, the high cost of the raw materials and, above all, the difficulty of 

scaling up the synthesis and the post-synthetic stages in a cost-effective way maintaining the product quality and 

reproducibility between batches. In addition, while the solvothermal approach is a well-known industrial method 

for chemical synthesis, its application for large scale MOF production is not feasible as MOF synthesis relies on 

the nucleation at a reactor vessel surface. Up-scaling the reactor vessel significantly decreases the surface to 

volume ratio and consequently, reduces the efficiency of the reaction. Additional problems include: long reaction 

times (hours or days), large amounts of solvents used, low quality of materials obtained, high complexity and cost 

in the up-scaling.42 

In order for any production MOF process to be industrially viable a number of key aspects have to be considered: 

(i) a versatile method is crucial in order to accommodate the maximum number of MOF structures with the same 

piece of equipment; (ii) the possibility to avoid harsh processing conditions such as high temperature and pressure 

will reduce capital and operating costs and alleviate safety concerns; (iii) a switch from batch to continuous 



processing would be beneficial offering higher output per unit time and a continuous steady-state operation 

leading to significantly reduced downtimes, labour costs, reactor volumes, as well as constant and consistent 

production; and (iv) a high space-time-yield (STY) parameter which measures the amount of MOF produced per 

m3 of reaction mixture per day.  

All these factors make the scale-up of MOF production challenging and have motivated many researchers and 

engineers to explore and develop novel and commercially viable routes to produce MOFs in an efficient, 

reproducible and cost-effective way.43,44 Figure 1 shows the timeline of the most common synthetic processes 

developed in the last two decades. In this review, we will focus on energy-efficient processes with reduced reaction 

times that facilitate the up-scaling and the continuous operation. In the following sections, we will describe in 

detail the advances in electrochemical,45 microwave46 and mechanochemistry47 approaches and the more recent 

routes, the spray dryer48 and flow chemistry49. 

- Insert Fig 1 - 

2.1 Novel Synthesis Routes 

2.1.1 Electrochemical Synthesis  

Electrochemistry can be defined as the study of interconversion between chemical and electrical energy. It 

combines electricity and chemistry and deals with chemical changes caused by an electrical current.  

 Taking advantage of the potential of electrochemistry to synthesize materials and their large experience in the 

domain, the company BASF first patented the use of electrosynthesis to produce MOFs in 2005.50 The synthesis 

consisted on immersing a copper plate in a solution containing the organic linker, 1,3,5-benzentricarboxylic acid 

(BTC), and an electrolyte. The copper plate, which acts as the electrode, was used as the source of Cu(II) ions. 

When a certain current or voltage was applied, the Cu(II) ions were released from the copper electrode to the 

solution and reacted with the dissolved linker. In this patent, a powder of electrochemically produced HKUST-1 

that consisted of octahedral crystals (size: 0.5 - 5 µm) could be fabricated after applying a voltage of 12-19 V and 

a currency of 1.3 A for 150 minutes. The surface area of this synthesized HKUST-1 was 1820 m2.g-1, which is 

higher to that reported for the solvothermally synthesized HKUST-1 (1550 m2.g-1)51.  

Since this first patent, electrochemical synthesis of MOFs has attracted great attention because it can offer many 

advantages. One of them is the possibility to run the synthesis of MOFs in a continuous way. It also allows their 

synthesis under milder conditions than typical solvothermal or microwave syntheses, reducing the reaction time. 

Indeed, while solvothermal synthesis might take hours or days, electrochemical methods can produce the MOF 

material within minutes or hours. In addition to these, the electrochemistry method provides the ability to control 

the MOF synthesis directly during the reaction by controlling the passed current or applied voltage. Finally, the 

electrochemistry method offers the possibility to synthesize homogeneous thin films or coatings.52 



Electrosynthesis of MOFs can be classified in two main methods: i) the anodic dissolution, which was the first 

route patented by BASF; and ii) the cathodic deposition. In the anodic deposition, an applied electric potential 

induces the release of metal ions from the electrode, which then react with an organic linker present in the solution 

leading to the formation of a MOF film. In this case, the use of a metallic electrode (instead of metal salts) as the 

source of metal cations avoids the formation of any corrosive anions (mainly, nitrate and acetate anions) or any 

by-products. The anodic dissolution is typically carried out in a two-electrode set-up without a reference electrode, 

and the use of protic solvents is usually needed to ensure the evolution of hydrogen and avoid the reduction of 

metal ions at the counter electrode. In addition, the use of a sacrificial compound (e.g. acrylonitrile, acrylic or 

maleic esters) that are preferentially reduced or a counter electrode with a suitable overpotential for hydrogen 

evolution is recommended.53 In the cathodic deposition, a solution containing the organic linker, the metal ions, 

and a so-called probase is contacted with a cathodic surface. In this approach, the MOF film deposition results 

from increasing the pH near the cathodic surface, where the electrochemical reduction of the probase occurs. An 

example of a probase is the nitrite ions coming from the reduction of nitrates, which are able to deprotonate the 

organic linker and form the MOF.54  

 

-Insert Table 1- 

 

Since the electrochemical synthesis of HKUST-1 by BASF using the anodic dissolution was reported, there have 

been many efforts to understand and optimize this new route (Figure 2a). Fransaer et al. recently proposed a 

mechanism for the anodic dissolution synthesis of HKUST-1 that consists in four phases: (i) initial nucleation; 

(ii) growth of HKUST-1 islands; (iii) intergrowth; and (iv) crystal detachment.55 When an electric potential is 

applied, the oxidation of the anode starts and the Cu(II) ions are released in the solution. The nucleation of the 

HKUST-1 phase starts once the critical ion concentration on the surface of the anode is reached. The nucleation 

is progressive and the dimensions of the crystals depend on the synthesis time and choice of the solvent. The 

HKUST-1 layers grow at the MOF-solution interface confirming that Cu(II) ions, which are dissolved at the 

interface, diffuse through the HKUST-1 crystals before they react with the organic linker. This migration of ions 

is accompanied by the creation of voids at the substrate-HKUST-1 interface, resulting in the formation of fragile 

layers of HKUST-1 crystals that are easily detached from the substrate. Simultaneously, van der Veen and Domke 

et al. described this anodic dissolution mechanism from a more chemical point of view.56 These authors identified 

that chemical species involved in the electrosynthesis of HKUST-1 are initially Cu(I)2O, which results from the 

oxidation of the copper plate in the presence of H2O or O2. Then, Cu(I)2O is further oxidized to Cu(II)O that can 

react with the organic linker and lead to the formation of HKUST-1 crystals.  

 

-Insert Figure 2- 

 



To date, it is known that small variations of the applied electric potential and passed current, nature of the solvent 

and its conductivity, and nature of the electrolyte have a strong influence on the anodic dissolution synthesis of 

HKUST-1. For example, the applied electric potential is important due to the direct influence on the generation 

of Cu(II) ions from the copper electrode. As observed by De Vos et al., higher voltages applied by square wave 

functions provided higher concentration of Cu(II) cations because of the higher dissolution rate of the copper 

metal (Figure 2b). These conditions let to the formation of coatings with smaller crystals of HKUST-1 in 

agreement with the nucleation theory.57 In the same line, Gascón et al. observed better results in terms of HKUST-

1 coverage of the electrode when square wave functions were used instead of a continuous mode.58 Denayer et al. 

found that the frequency of these square wave functions does not influence the HKUST-1 coating of the copper 

electrode.59 

Solvent media is also influencing the electrochemical crystallization of HKUST-1. De Vos et al.57 and Denayer 

et al. 59 observed the formation of larger crystals when the amount of water (from 10 to 50 % in volume) was 

increased in the electrolyte water/ethanol solution because it slowed down the reaction by the hydration of the 

Cu(II) cations. In addition, detachment of HKUST-1 crystals from the electrode was observed for water contents 

higher than 50 %. Under these conditions, Gascón et al. detected the formation of a secondary phase consisting 

of a catena-triaqua-mu-(1,3,5-benzene-tricarboxylate)-copper(II) compound.60 More recently, Deyaner et al. 

investigated the effect of other organic solvents (e.g. methanol, ethanol, 2-propanol, acetonitrile, N,N-

dimethylformamide (DMF), and dimethylsulfoxide (DMSO)) in the electrochemical formation of HKUST-1 

(Figure 2c).61 They observed that the crystal size increases when increasing the water content in methanol and 

ethanol; less dense and uniform HKUST-1 layers are obtained in 2-propanol; HKUST-1 crystal morphology is 

different when using acetonitrile instead of methanol or ethanol; octahedral crystals are generated in DMF; and 

the amount of water does not influence the synthesis of HKUST-1 in DMSO, as it does in methanol or ethanol.  

Because of the low conductivity of the reaction media, electrolytes that enhance charge transport in solution are 

generally used. Tributylmethylammonium methyl sulfate (MTBS) is usually recommended for syntheses carried 

out in organic media and, indeed, it showed a positive role on the HKUST-1 synthesis. For example, increase of 

conductivity by increasing the concentration of MTBS in the electrolyte solution reduced the ohmnic drop of the 

solution and increased the production yield of HKUST-1. However, Deyaner et al. found some disadvantages 

related to the use of MTBS in the electrochemical formation of HKUST-1 thin films. They observed structural 

damages of the copper mesh and the generation of non-adhesive HKUST-1 crystals to the surface of the anode. 

On the contrary, they could get more control over the synthesis in the absence of MTBS because of lower current 

density in the system.62 Another disadvantage of using MTBS was reported by Hartmann et al., who observed a 

decrease in the surface area of HKUST-1 that was attributed to the presence of the electrolyte salt in its pores.63 

Beyond the archetypical HKUST-1, the syntheses of other MOFs have been envisaged using anodic dissolution. 

Remarkably, Gascón et al. demonstrated the possibility to electrochemically synthesize ZIF-8, MIL-53 and MIL-

100(Al).58 Since then, De Vos and Fransaer et al. optimized the quality of the synthesized MIL-100(Fe) by 

performing the electrochemical synthesis under high pressure and high temperature.64 Also, Attfield and Dryfe et 

al. improved the synthesis of zeolitic imidazolate frameworks (ZIF) (e.g. ZIF-4, ZIF-7, ZIF-8, ZIF-14, and ZIF-

67) coatings (Figure 2d) by increasing the reaction times (a proxy for higher metal ion concentration), the organic 

linker concentration and the reaction temperature. 65 With this anodic dissolution, luminescent rare earth based 



MOFs were also prepared by Fransaer et al. on electrically conductive solid substrates.66 Here, Tb-BTC and Gd-

BTC layers were electrochemically synthesized on terbium and gadolinium metal foils by immersing the foil in a 

water–ethanol solution containing the organic linker, the electrolyte (MTBS) and applying a constant current of 1 

mA/cm2.  

Within this variety of MOFs, the electrochemical synthesis of MOF-5 has also been largely investigated. Cao et 

al. reported the anodic dissolution electrosynthesis of thin films of rod-like MOF-5 crystals.67 They could generate 

dense and thick MOF-5 films by using zinc electrodes in an aqueous solution containing H2BDC and ammonium 

fluoride as the electrolyte salt and applying voltage (2 V) at 65 °C. Liang et al. synthesized MOF-5 in the form of 

flower shape by using molten salt in the electrolyte solution and 1-butyl-3-methylimidazole (BMiM) bromine as 

a template (Figure 2e).68,69 This MOF-5 was synthesized using a zinc plate as the anode, a titanium plate as the 

cathode, and a DMF and BMIM bromide mixture containing H2BDC and zinc nitrate hexahydrate as the 

electrolyte solution. The reaction was done in atmospheric conditions and applying a current density of 0.025 

A·cm-2 for 2 hours.  

 

-Insert Figure 3- 

 

 As state above, the second main route for the electrochemical synthesis of MOFs is the cathodic deposition. In 

2011, Dinca et al. first investigated the cathodic deposition of MOFs70 to resolve two major limitations of the 

anodic dissolution (Figure 3a): i) the deposition surface (anode surface) is used to produce the metal cations and 

thus, it is eroded in a continuous manner throughout the synthesis; and ii) the selection of the anode metal is 

limited since the anode is also used as the metal resource. In this cathodic deposition, the metal salt, which is 

dissolved in the electrolyte solution together with the organic linker and the probase, is used as the metal precursor. 

To show the potentiality of this approach, Dinca et al. showed the synthesis of HKUST-1 and MOF-5 in only 15 

min at room temperature (Figure 3b). For it, they used fluorine dopped tin oxide (FTO) as the working electrodes, 

Ag/Ag(cryptand) as the reference electrode, and a DMF:water (100:1) (v:v) mixture containing the organic linkers 

and the metal salts as the electrolyte solvent. In these syntheses, it was found that the nature of the metal salt plays 

a crucial role. This importance is due to the nature of the counteranions, which act as a probase, can inhibit or 

favour the formation of the desired MOF.71 For example, as the synthesis of MOF-5 starts with the formation of 

Zn5(OH)8(H2O)2(NO3)2, the use of chlorine anions can inhibit its formation due to the formation of 

Zn5(OH)8(Cl)2(H2O)2. On the contrary, the use of nitrate anions can help on its formation since they can act as the 

probase and participate in the formation of the intermediate specie. 

The aptitude of the cathodic deposition to favour the formation films was also exploited by the same authors to 

form more complex biphasic MOF thin films at room temperature from single deposition baths using potential 

bias as the main user input. 72 In this case, bilayer structures of MOF-5 and (Et3NH)2Zn3(BDC)4 (applied potential: 

-1.7 V) (Figure 3c), mixed structures of MOF-5 and (Et3NH)2Zn3(BDC)4 (applied potential: -1.1 V), and layers 

of only (Et3NH)2Zn3(BDC)4 (applied potential: -1.5 V) were fabricated tuning the applied potential.  



Latter innovations on the electrochemical synthesis of MOFs have been centered on the development of new 

methodologies such as electrophoretic deposition,73,74 galvanic displacement,75 anodic-cathodic deposition76 or 

bipolar electrochemistry.77 For example, Ameloot et al. combined both anodic and cathodic deposition to perform 

the modulated synthesis of UiO-66 simultaneously on both anode and cathode surfaces.76 For this synthesis, 

zirconium films were used as electrodes and H2BDC was dissolved in a mixture of DMF, nitric acid (electrolyte), 

water and acetic acid (AA). AA was used as a modulator to increase the amount of linker defects and therefore, 

the BET surface area. However, increase of AA also decreased the crystallinity because of the increase of the 

competition between BDC and AA. It was found that denser packed films with smoother surfaces were formed 

on the anode when an AA concentration of 0.5 M or 1 M was used, and that larger octahedral UiO-66 crystals 

were obtained for AA concentrations higher than 5 M. In this process, when the AA concentration increased, the 

complexation of released Zr (IV) ions also increased leading to a decrease of the anodic deposition. On the 

contrary, when the concentration of AA decreased, the concentration of released Zr(IV) ions increased, thereby 

increasing the deposition on the cathode. 

Another interesting example was reported by Bradshaw and Kuhn et al. who used bipolar electrochemistry (BE) 

to produce Janus-type MOF composites inducing the site selective ZIF-8  or HKUST-1 crystallization on a 

polarized metallic wire under an electric filed. In BE, a conducting object is exposed to an electric field established 

between two electrodes in a solution this induces a positive and negative polarization between the two opposite 

sides of the object and a redox reactions can occur.77  

 

2.1.2 Microwave Synthesis  

Microwave (MW) irradiation is a widely used method in organic chemistry.  In recent years it has been used for 

the synthesis of inorganic nanomaterials - zeolites and MOFs, among others.78–81 The method is based on the 

interaction of electromagnetic waves with any material containing mobile electric charges, such as polar 

molecules in a solvent or conducting ions in a solid. Contrary to classical solvothermal methods, where thermal 

energy is transferred from the heat source to the solution through the reaction vessel, in MW synthesis the 

irradiation interacts directly with the reactants, resulting in more efficient and faster heating. Additionally, in MW 

synthesis crystallisation occurs at the hot spots that form due to the direct heating of the solvent, in contrast to the 

wall of the reactor vessel as with conventional heating methods. Consequently, it is much faster and results in a 

smaller particle size. In this section, we describe some remarkable examples of the preparation of MOFs via 

microwave irradiation. 

The pioneering work on MW synthesis of MOFs by Jhung et al. reported the water-based synthesis of the 

chromium trimesate MIL-100 MOF in the presence of hydrofluoric acid.82 The synthesis was performed in a 

microwave oven at 220 C̊ for 1, 2 or 4 hours with the reaction mixture in a sealed Teflon autoclave. The results 

showed the presence of unreacted metallic chromium species for reaction times less than 2 hours. The crystal 

yield obtained after 4 h was 44 %, which is comparable to the 45 % achieved in the conventional synthesis in 4 

days. Two years later, the same group reported the synthesis of spherical nanocrystals of chromium terephthalate 



MIL-101 MOF.83  In this work, they showed that crystal size increases with increasing irradiation time, ultimately 

allowing the isolation of particles with a high surface area.  

The MW synthesis of IRMOF-1, IRMOF-2, and IRMOF-3 was reported by Ni et al. who obtained microcrystals 

with a relatively uniform size and identical cubic morphology in less than 2 minutes.84 They showed that the 

crystal size can be varied from micrometer to submicrometer by manipulating the concentration of the starting 

material. The same synthesis was conducted by Choi et al. who investigated how the power level, irradiation time, 

temperature, solvent concentration and substrate composition affected the crystallinity and morphology of MOF-

5.85 The microwave irradiation lead to crystals after only 30 mins of reaction time while 24 h were necessary with 

the conventional method. The optimum microwave conditions lead to uniform cubic crystals with average size of 

20–25 μm and with a BET surface area of 3008 m2/g.  

MW irradiation is an attractive method to synthesize MOFs with biomedical applications, such as iron-carboxylate 

MOFs, because uniform nanocrystals are easily achievable. For instance, in 2009, Lin and co-workers described 

the MW synthesis of 200 nm nanoparticles of iron-MIL-101 MOF and its amino functionalized version.86 The 

starting materials were dissolved in DMF and then rapidly heated to 150 °C and held at this temperature for 10 

minutes.  

Several studies have been performed comparing conventional electric (CE) heating, MW and ultrasound (US) 

methods in order to understand the accelerated US and MW syntheses.87–90 For example, in 2009, Haque et al. 

performed a kinetic study on the synthesis of MIL-53-Fe.91 They found that the crystallisation rate (both nucleation 

and crystal growth) decreased in the order: US>MW≫CE. These results suggested that physical effects, such as 

hot spots, are more important than chemical effects in the accelerated syntheses performed under US and MW 

conditions (see Fig.4). A similar study was performed by Chalati et al. where the synthesis of iron fumarate MIL-

88A nanoparticles was compared with the classical solvothermal, MW and US methods.92 With the CE heating a 

polydesperse sample of 200 nm nanoparticles were obtained, whereas 100 nm monodisperse nanoparticles but 

with very low yields were obtained with the US method and <100 nm monodispersenanoparticle with high yields 

were obtained with the MW method.  

- Insert Fig 4 - 

The zeolitic imidazolate framework, ZIF-8, has been synthesized with MW irradiation and CE heating at 140  ̊C 

in 4 hours and 20 hours respectively.93 In addition to the reduced reaction time, the ZIF-8 obtained by microwave 

heating had a larger surface area and micropore volume compared with the ZIF-8 synthesized with CE heating.  

There are a few reports available showing the effectiveness of MW irradiation for the synthesis of 

lanthanide−organic frameworks. For example, Silva et al. obtained quality single-crystals of the microporous 

cationic [Ce2(pydc)2(Hpydc)(H2O)2]Cl (where pydc corresponds to the 2,5-pyridinedicarboxylic acid) by 



applying MW heating for 20 min at 200  ̊C.94 In 2014, Vileda et al. , synthesized a series of lanthanide (Eu, Gd 

and Tb) bisphosphonates using conventional hydrothermal synthesis (180 °C, 3 days), MW-assisted heating (40 

°C, 5 seconds) and US-assisted synthesis (room temperature, 5 minutes).95 Under CE heating, microcrystalline 

materials were obtained which did not possess any significant catalytic activity, whereas the application of MW 

and US resulted in nanocrystals that exhibited relatively high catalytic activity and excellent selectivity to 2-

methoxy-2-phenylethanol (100% yield within 48 hours of reaction time). A recent work by Cao and co-workers 

showed the gram scale production of a 9 isostructural microporous lanthanide MOFs via a microwave over 5 

min.96 The same synthesis but under conventional solvothermal reaction required seven days to produce the same 

materials with a similar yield. Moreover, with the solvothermal method only 10 milligrams of quality material 

could be obtained while MW synthesis yielded up to 2 grams. 

In recent years, zirconium-based MOFs have attracted great attention due to their exceptionally high thermal and 

chemical stability. In 2013, D’Alessandro and co-workers reported the efficient synthesis of MIL-140A, MIL-

140B and MIL-140A-NH2 frameworks using MW irradiation.97 They obtained products with purer phase and 

higher quality in significantly less time than the CE heating method. Recently, a process optimisation for the UiO-

66 MW assisted synthesis was presented by Taddei and co-workers.98 The optimized synthesis required 15 

minutes of pre-mixture of the initial solutions and 15 minutes at 120 °C. The reaction yield was 83% and no 

significant negative effects on morphology, crystal size, or defects were found from the use of MW assisted 

heating in comparison with those synthesized by CE heating. One exciting area that it has been explored with MW 

in the last 2 years is the defect engineering of UiO-66. Babarao and co-workers presented an experimental and 

theoretical study showing the correlation between the defect concentration composition in UiO-66 and their 

carbon dioxide adsorption properties.99 They presented a detailed MW-assisted solvothermal synthesis protocol 

to prepare pure phases of high-quality crystalline UiO-66 frameworks with different defect concentrations. Highly 

crystalline UiO-66 octahedral shaped crystals were obtained in a short reaction time of 5 minutes using 

hydrochloric acid and formic acid as modulators.  

2.1.3 Mechanochemical Synthesis  

Mechanosynthesis is a well-known technique in metallurgy and mineral processing but within the last few decades 

it expanded rapidly into many areas of chemistry such as catalysis, inorganic chemistry and pharmaceutical 

synthesis.100–103 The central concept behind this synthetic method is to promote chemical reactions by milling or 

grinding solids without any or with only minimal amounts of solvents.104,105 With this approach the conventional 

solvothermal MOF reactors are substituted by a mortar and pestle or in a mechanical process by automated ball 

milling. In general, the mechanical milling process is higher in energy and ensures the reproducibility between 

batches. In addition to the solvent-free conditions, this approach leads to a faster and more efficient synthesis of 

MOFs obtaining quantitative yields and allows to use MOF precursors with low solubility such as oxides, 

hydroxides and carbonates. However, the big limitation lies in up-scaling mechanosynthesis, it is essentially a 

batch processing technique with a relatively low rate of production. Furthermore, it should be note that despite a 

‘solvent-free’ synthesis, purification may still be needed and may require a solvent.106 Nevertheless this synthetic 



approach is the most environmentally friendly process to produce MOFs, and hence could reduce significantly 

the cost of production.107,108 

The three different mechanochemical approaches used for MOF production are Solvent-Free Grinding (SFG) 

which is the simplest method and avoids the use of solvent; Liquid-Assisted Grinding (LAG) which is more 

versatile, and quicker, as it uses catalytic amounts of liquid phases which increase the mobility of the reagents; 

and finally, Ion-and-Liquid Assisted Grinding (ILAG) which uses a catalytic liquid with traces of salt additives 

to accelerate the MOF formation. Using these techniques, the synthesis for almost all families of MOFs has been 

demonstrated, and selected studies will be explained in this section.109 

A first work by James and co-workers employed the SFG method, milling a dry mixture of copper acetate and 

isonicotinic acid (Hina) powder for 10 minutes resulting in the formation of copper(II) isonicotinate MOF with 

acetic acid and water molecules occluded in the pores (see Fig 5a).110 Using the same approach, the same group 

performed a screening study, grinding sixty different combinations of twelve different divalent metal salts, 

composed of copper, nickel and zinc together with five 5 different carboxylate organic linkers for 15 minutes.111 

As a result several crystalline structures, including two microporous metal–organic frameworks HKUST-1 and 

Cu(INA)2) were obtained. 

One important advantage of this approach is the possibility to synthesize MOFs with only water as a by-product 

allowing the complete elimination of the purification stage. This is achieved by using hydroxides or oxides as a 

metal source which then in combination with the protons generated from the organic ligand forms H2O.  

Following this strategy, Tanaka and co-workers presented the mechanical dry conversion of zinc oxide and an 

imidazole ligand into ZIF-8.112  The process was investigated for reaction times of 3 to 240 hours, yielding the 

best BET surface area (1480 m2/g) at 96 hours. The decrease of the BET surface area after 96 hours was due to 

the formation of amorphous domains during the mechanochemical reaction. The same year, Balema and co-

workers reported the preparation of the yttrium based MIL-78 MOF under completely liquid-free conditions and 

using a metal hydride for the first time as a starting material and forming hydrogen as a by-product.113  

Very recently, Xu and co-workers reported the synthesis of MIL-101 (Cr) without the addition of solvent and 

hydrofluoric acid.114 The chromium salt and the terephthalic acid were ground for 30 minutes at room temperature 

and then transferred into an autoclave at 220 C̊ for 4 hours, yielding a material with a BET surface area of 3517 

m2/g and with a reduced particle size compared to the batch process. 

- Insert Fig 5 - 

In 2006, Braga and co-workers demonstrated for the first time how the addition of small amount of solvent to the 

powder mixture precursors could effectively improve the crystallisation of the compounds and accelerate the 



synthesis.115 They synthesized the CuCl2(dace) (where dace is the trans-1,4-diaminocyclohexane) one-

dimensional coordination polymer by grinding the starting materials for 5-10 minutes in the presence of water or 

DMSO which were then removed by thermal and vacuum treatment. In 2009, Friščić and Fábián demonstrated 

the ability to selectively and quantitatively build different metal-organic architectures by simply changing the 

amount and type of solvent using the same starting materials. In this specific work, they presented the formation 

of four coordination polymers and two porous structures by grinding zinc oxide and fumaric acid in the presence 

of different types of solvents.116 In 2010, Klimakow et al. synthesized the well-known HKUST-1 and its 

benzenetribenzoate-based analogue MOF-14 via the LAG approach. The MOFs were obtained by grinding the 

copper acetate monohydrate salt with the corresponding organic linkers for 25 minutes. As a by-product, acetic 

acid was formed, which blocked the micropores and consequently resulted in a smaller BET surface area compared 

to other synthetic approaches. 117 James and co-workers showed that by adding small amounts of liquid by-

products, generated via the SFG method, before the mechanical process, that the synthesis could be accelerated.118  

By adding small amounts of acetic acid into the precursor mixtures, the formation of Cu(INA)2 MOF was 

dramatically accelerated, while for HKUST-1, due to the lower solubility of the trimesic acid, no improvement 

was reported. In 2010, the same group studied by X-ray diffraction the structural properties of [Zn2(fma)2(bipy)], 

where fma corresponds to fumaric acid and bipy to 4,4′-bipyridine, prepared by mechanosynthesis (see Fig.5b).119 

The acetic acid and H2O by-products occluded in the pores were removed by thermal treatment and the 

interpenetrated structure was refined using Rietveld methods.  

In 2015, Prochowicz et al. described the “SMART” (SBU-based Mechanochemical Approach for pRecursor 

Transformation) strategy for the synthesis of IRMOFs.120 The successful mechanochemical synthesis was 

performed by mixing pre-assembled oxo-zinc amidate clusters with terephthalic acid in the presence of microlitres 

of N,N-diethylformamide (DEF) over 60 minutes. Additionally, the study showed the importance of the acid-base 

relationship between reagents in this type of approach. 

Recent work by Friščić and co-workers presented the synthesis of UiO-66 and UiO-66-NH2 at gram scale by 

adding different amounts of N,N-dimethylformamide (DMF) and methanol to the solid mixtures of the reactants 

as well as exposing the powder mixture to methanol vapours at 45  ̊C for 3 days and 1 week respectively.121 The 

best BET surface area obtained for UiO-66 was 1020 m2/g with 75 minutes grinding, and 945 m2/g for UiO-66-

NH2 after 90 minutes grinding, both in the presence of methanol, for the materials exposed to methanol vapours. 

The third mechanochemical methodology, ILAG, was demonstrated to be highly efficient for the synthesis of 

pillared-layered MOFs. For example, the zinc pillared material based on terephthalic acid and dabco (1,4-

diazabicyclooctane) was synthetised after 45 minutes reaction by adding catalytic amounts of an alkali metal or 

ammonium nitrate salt into the mixture (Fig. 5c).122 Using the same starting materials, but replacing the 

ammonium nitrate with sulphates, yielded the same pillared-layered structure but on a hexagonal grid. A second 

example was presented, showing the mechanochemical ILAG approach for the room-temperature synthesis of 

ZIF-8, using zinc oxide as the starting material and stoichiometric amounts of ammonium salts.123 In this case the 



use of salts enabled synthesis with imidazole enabling the selective ZIF topology formation by changing the type 

of ammonium salt and adjusting the reaction times.   

Mechanochemistry is a versatile method that allows the synthesis of most of the common MOF structures, 

however so far all examples described a production at less than one gram scale. As an alternative, extrusion 

techniques have been explored for the scaling of MOFs under solvent-free conditions. Extrusion is one of the 

major continuous manufacturing processes used in industries such as food, metallurgy, plastics and 

pharmaceuticals and has shown very promising results for the synthesis and shaping of MOFs. In 2015, James 

and co-workers showed the synthesis of HKUST-1, ZIF-8 and aluminium fumarate MOF with twin-screw 

extrusion (TSE) at the gram scale. Figure 5d shows the TSE used for the synthesis of MOFs which consists of a 

feed port where the MOF precursors were introduced into a heatable barrel containing the screw and an exit port 

which a die can be attached to shape the final material. HKUST-1 was synthesized by extruding copper hydroxide 

and trimesic acid in the presence of methanol. The extrudate was stirred in ethanol and dried at 150  ̊C for 2 hours 

yielding a N2 BET surface area of 1738 m2g-1. In the case of ZIF-8 the synthesis was performed by a single screw 

extrusion (SSE) where the zinc carbonate and the 2-methylimidazole ligand were extruded at 200  ̊C without the 

addition of any solvent. In this case, the activation was carried out by stirring the material in methanol and drying 

the material at 150 C̊ yielding a N2 BET surface area of 1738 m2g-1. A last example was obtained by introducing 

a mixture of aluminium sulphate, sodium hydroxide and fumaric acid into the twin extruder at 150 C̊. In this case 

the by-product was removed by washing the extrudates with water and N2 BET surface area obtained was 1010 

m2g-1. Extrusion is an efficient way to produce MOFs solvent free with high with very promising space-time-yield 

(STY) (see figure 5e).  Kilogram scale production could be achieved by using a large-scale equipment and paired 

with a more detailed knowledge and understanding of the MOF synthesis by this methodology.  

2.1.4 Spray-Drying Synthesis 

Spray-drying (SD) process has been a well-established method in industry for decades. The basic idea behind this 

method is the production of dispersed powder from a liquid or slurry that is rapidly evaporated with a hot gas. The 

development of the SD method evolved over a period from 1870s through early 1900s. SD was first patented in 

1872 by Samuel Percy,124 but it was not until the World War II when it gained importance due to transportation 

needs. SD was used to reduce the weight of food and other species by removing their liquid content (mainly, 

water). Since then, SD has been widely used for the production of dried pharmaceuticals, bone and tooth 

amalgams, beverages, flavors, milk and egg products, soaps and detergents, and many other products.125 More 

recently in history, SD has extended its use to the encapsulation and miniaturization of multiple species,126,127,128 

with the idea of protecting them, controlling their release, and increasing their solubility and dispersability. It has 

also been employed for preparing very homogeneous mixtures of reactants,129,130 a crucial step that has facilitated 

the fabrication of certain materials. 

Beyond the use of SD in these applications, the local heating of micro- and submicrometer droplets that occurs 

during the SD process can also be used to conduct chemical reactions. Thus far, this concept has mainly been 



utilized for discovering and isolating metastable phases of materials that can be only reached thanks to the fast 

drying conditions of the SD method.131  

In 2013, Maspoch et al. expanded this concept to the synthesis of supramolecular materials and, in particular, 

MOFs.132 The main principle of the process was based on the fast drying of atomized microdroplets of a solution 

that contains the MOF precursors. (Figure 6a, b) Thus, the process starts with atomization of a solution of the 

MOF precursors into a spray of microdroplets. This step is accomplished by simultaneously injecting one or more 

solutions, at a certain rate, (hereafter, feed rate) and compressed air or nitrogen gas, at another certain rate 

(hereafter, flow rate). Thus, each precursor droplet contacts -and is suspended by- a gas stream heated to a certain 

temperature (hereafter, inlet temperature), causing the solvent to be heated and evaporated and inducing the MOF 

precursors (e.g. metal ions and organic ligands) to react forming MOF nanoparticles inside each droplet. At this 

moment, the newly formed MOF nanoparticles accumulate and merge into compact or hollow spherical MOF 

superstructures/beads while the solvent is fully evaporated. These MOF superstructures/beads are finally collected 

inside a collector located at the end of the spray drier instrument. 

- Insert Figure 6- 

Table 1 lists all MOFs –together with the optimized conditions and yields- that have been synthesized using the 

SD method so far. Besides the optimization of the synthetic parameters such as type of reagents/solvents, 

feed/flow rates and inlet temperature, a very important aspect that needs to be carefully selected when one wants 

to synthesize a specific MOF by SD is how the precursor solution is introduced into the spray drier. To date, there 

are four major modes for introducing the MOF precursor solution: i) use of a two-fluid nozzle (Figure 6c); ii) use 

of a three-fluid nozzle (Figure 6d); iii) use a T-junction (Figure 6e); and iv) use a continuous flow coupled to a 

reactor (Figure 6f).  

- Insert Table 2- 

The use of two-fluid nozzle is the simplest process. It is based on the preparation of a homogeneous solution or 

suspension that contains all MOF precursors, which is then injected through a two-fluid nozzle.132 This two-fluid 

nozzle allows the simultaneous injection of this precursor solution at a certain feed rate and compressed air or 

nitrogen gas at another certain flow rate. In general, this method is very useful to synthesize MOFs that are built 

up from mononuclear metal ions or smaller metal clusters or secondary building-units (SBUs). An archetypical 

class of MOFs that can be fabricated using this approach is the large family of MOFs constructed from Cu(II) 

paddlewheel units and polycarboxylate linkers. For example, HKUST-1 (also known as Cu-BTC or BasoliteTM 

C300) can be synthesized by spray-drying a solution of Cu(NO3)2·2.5H2O and trimesic acid (H3BTC) (3:2 molar 

ratio) in DMF, ethanol and water (1:1:1) with a feed rate of 4.5 ml·min-1, a flow rate of 336 ml·min-1 and an inlet 

temperature of 180 °C. They could be obtained as hollow spherical MOF superstructures (size: 2.4 0.4 µm) or 

nanoparticles (size: 75  28 nm) (Figure 7a).  



- Insert Figure 7- 

Second and third routes for introducing the MOF precursors inside the spray drier instrument are very similar.132 

They are based on using multi-fluid nozzles, to independently atomize the solutions containing the MOF 

precursors, or additional channels, to independently inject them. Both approaches enable mixing of the precursor 

solutions just before they are heated into the atomized droplets. In the first approach, mixing occurs inside the 

drying chamber, thanks to the coalescence of the atomized droplets, whereas in the second one, mixing is done 

through a connector inserted before the two-fluid nozzle. Using either variation decreases the probability that 

unwanted species or micrometre-sized MOFs will form in the precursor solution before it is spray-dried. They 

also enable use of reagents (e.g. bases) to accelerate MOF formation, thus increasing yields and purities and 

enabling the synthesis of new hollow MOF superstructures and related nanocrystals. To date, both approaches 

have allowed the synthesis of several MOFs, including MIL-88A132, ZIF-8132,133 and Fe-BTC/MIL-100133 (Figure 

7b,c). 

In the last approach, the MOF precursor solution is passed through a continuous-flow reactor just before the 

entrance of the spray dryer.134 This process begins by injecting the precursor solution into a continuous coil flow 

reactor encased in a thermostatic oil tank, where it is heated at a certain temperature (T1) to promote the SBU 

formation and nucleation. Here, the residence time of the precursor solution in the coil flow reactor is controlled 

by the rate of the pump (the feed rate). Since the outlet flow of the reactor is connected directly to the nozzle of 

the spray-dryer, the pre-heated solution is automatically injected into the spray-drier at the same feed rate. The 

solution is then atomised using a two-fluid nozzle, and is dried at a certain inlet temperature and flow rate, such 

that the MOF growth is confined to the atomised microdroplets.  

In most of the cases, this last continuous process enables the collection of dried MOFs shaped in the form of 

compact micrometre superstructures/beads instead of the hollow ones usually obtained in the first three strategies. 

This difference is attributed to the formation, inside the reactor, of a suspension containing a primary nucleus. In 

a general spray-drying process, the atomised droplets are exposed to hot air, the solvent evaporates and 

consequently, the droplet surface shrinks. During this process, hollow superstructures are formed when there is a 

non-linear change in precursor concentration at the droplet: specifically, it causes the formation of an impermeable 

shell and the generation of gas at the core. However, in this latter case, uniform precursor concentration and 

droplet temperature are reached, owing to the presence of the uniformly-distributed nuclei in the droplet. The rate 

at which the nucleus can be brought to the surface by diffusion is lower than the rate at which the nucleus can 

grow during the drying-evaporation process. This difference favours a linear change in precursor concentration 

and temperature at the droplet, and consequently, drives the formation of dense superstructures. 

The main advantage of this last SD approach is that it allows the synthesis of MOFs assembled from high-

nuclearity SBUs. Indeed, numerous members of the family of UiO-66 (e.g. UiO-66-NH2, UiO-66-Br, etc.) as well 

as Fe-BTC/MIL-100 and [Ni8(OH)4(H2O)2(L)6]n (where L = 1H-pyrazole-4-carboxylic acid) series were 

synthesized using the resulting spray-drying continuous flow-assisted synthesis. For example, UiO-66 was 



synthesized using ZrCl4 and BDC as reagents, DMF and H2O as solvents, an initial concentration of 0.1 M for 

both reagents, a final molar ratio (Zr/BDC/H2O/DMF) of 1:1:30:135, a T1 of 115 oC; an inlet temperature of 180 
oC, and a flow rate of 336 ml·min-1. Under these optimized conditions, in which the amount of water, the feed rate 

and the coil temperature were found to be very important, UiO-66 was fabricated with a space-time yield of 19.6 

kg·m-3·d-1 (Figure 7d).  

Lastly, the innovations of using SD in the MOF field have been centered on the use of new chemistries to build 

and/or modify MOFs;135,136 the synthesis of multivariate or multimetallic MOFs;137,132 and the mixture of MOFs 

with other materials to make composites.132,138 With this aim, the use of SD has been extended to the synthesis of 

porous materials that are not based on coordination bonds but on hydrogen bonds. 136 For instance, MPM-1-

TIFSIX, a porous material based on the hydrogen-bonded assembly of [Cu2(ade)4(TiF6)2] (ade = adenine) 

paddlewheels (Figure 8a), was synthesized by spray-drying an aqueous solution of Cu(NO3)2·2.5(H2O) and 

TiF6(NH4)2 along with a solution of adenine in water/acetonitrile mixture using a 2-fluid nozzle and an inlet 

temperature of 150 oC. Moreover, SD was also very recently found to be a fast method to post-synthetically modify 

MOFs using conventional covalent chemistry (Figure 8b).135 To perform this modification, a suspension of pre-synthesized MOF crystals are spray-dried together with the desired reagent. With this simple method, 

two MOFs, the amine-terminated UiO-66-NH2 and the aldehyde-terminated ZIF-90, were rapidly post-

synthetically modified with aldehydes and amines, respectively, using the well-known Schiff-base condensation 

reaction and achieving conversion efficiencies up to 20 % and 42 %, respectively. Moreover, it was demonstrated 

that the aldehyde groups of ZIF-90 could be cross-linked using a diamine molecule with a conversion efficiency 

of 70 %.  

- Insert Figure 8- 

Another advantage of SD as a synthetic method in the MOF field is the possibility to synthesize multi-metallic 

and multi-variate MOFs. From an experimental point of view, the synthesis of these multi-component MOFs does 

not require technological changes. Its main principle is based on mixing different metal ions or organic linkers in 

the MOF precursor solution that is spray-dried. With this approach, Wang et al. showed the synthesis of 

lanthanide-based MOF nanoparticles in which the ratio of Tb(III)/Eu(III) was controlled (Figure 8c).137 They 

proved that the resulting MOF nanoparticles could be used as promising nanothermometers with high detection 

sensibilities, spatial resolutions and short acquisition times. Similarly, multi-variate UiO-66s were synthesized by 

mixing different ratios of two (benzenedicarboxylic acid and 2-bromobenzenedicarboxylic acid) or three 

(benzenedicarboxylic acid, 2-aminobenzenedicarboxylic acid  and 2-Bromobenzenedicarboxylic acid ) organic 

linkers in the MOF precursor solution (Figure 8d).134 The resulting UiO-66 materials showed tunable pore surface 

area. For example, the surface area decreased with increasing equivalents of 2-bromobenzenedicarboxylic acid : 

818 m2·g-1 for 0.6; 678 m2·g-1 for 1.3; and 570 m2·g-1 for 2.3. 

Finally, SD is also a very simple and fast method to produce MOF-based composites. As above, these MOF-based 

composites can be created just mixing other materials – pre-synthesized or their precursors for in-situ synthesis- 



in the MOF precursor solution. With this basic idea, Maspoch et al. demonstrated that different substances such 

as magnetic inorganic nanoparticles (Figure 8e),132 inorganic salts (NaCl, CaCl2 and LiCl)132,139 (Figure 8f) and 

fluorescent molecules132 can be combined with MOFs, thereby creating different type of composite materials that 

combine the intrinsic properties of MOFs and these other materials. Finally, same authors showed that SD method 

can be also used to combine MOF with organic polymers.138 In this specific case, pre-synthesized HKUST-1 

nanocrystals were encapsulated into polystyrene spheres to improve the hydrolytic stability of HKUST-1. 

2.1.5 Flow Chemistry  

Flow chemistry is a continuous processing technology used in the pharma and agrochemical sectors over the last 

two decades. Recently, its application to the synthesis of functional nanomaterials such as inorganic nanoparticles, 

quantum dots, metal oxides and MOFs has shown great promise. Contrary to batch reactions, in a flow chemistry 

setup, the chemical reactions occur in a continuously flowing stream in a tube or pipe rather than in a reactor 

vessel. This results in several main advantages: (a) the surface area-to-volume ratio for a reaction mixture in a 

flow reactor is much higher than in a batch-type reactor giving inherent improvements to heat and mass transfer 

leading to a much rapid syntheses; (b) flow chemistry allows for precise control over the reaction parameters 

which facilitates the synthesis optimization and the reproducibility between batches; (c) harsh reaction conditions 

can be safely reached due to excellent transport intensification properties of the reactors; (d) typically less solvent 

is used and the energy consumption is lower; (e) downstream processes and quality control methods can be easily 

integrated in the flow processes and (f) these type of reactors are readily scaled-up. Flow chemistry is thus a cost-

effective method that follows the green principle and satisfies the requirements for industrial production.  Not 

surprisingly, several researchers have started to use flow chemistry to synthesize MOFs. In the last year, numerous 

works have been reported in the literature and in this review we will classify such reports into three different 

categories : (a) microfluidic reactors (MR), which manipulate the reagents in channels that are geometrically 

constrained at the microscale; (b) plug flow reactors (PFR) where the reagents are pumped through a tube or pipe 

and consumed as they flow down the length of the reactor and (c) stirred tank reactors (CSTR) where the MOF 

precursor are introduced into a tank reactor while products are continuously removed. Table 4 lists all MOFs –

together with the optimized conditions and space-time-yields- that have been synthesized using the flow chemistry 

method so far. 

- Insert Table 3 - 

In 2011, Ameloot and co-workers were first to show that microfluidics could be used for the synthesis of metal-

organic materials.140 They synthesized metal-organic crystals in a micro-scale reactor, in which the reagent phases 

were injected into an immiscible carrier fluid, causing the spontaneous formation of droplets where the reaction 

occurs (Figure 9b). In this case, the immiscibility of the water and oil phases was exploited as a template for the 

controlled formation of hollow metal–organic copper trimesate HKUST-1 microcapsules. The authors described 

the crystallisation process as a dynamic on-going process of nucleation and crystal growth that resulted in the 

formation of crystalline MOF membranes with a uniform wall thickness.  



Two years later, Faustini et al. reported the solvothermal and hydrothermal synthesis of MOFs and MOF-

composite superstructures using oil microdroplets as a reactors.141 Four representative MOF structures, copper 

trimesate HKUST-1, zinc terephtalate MOF-5, zinc aminoterephtalate IRMOF-3 and zirconium terephtalate UiO-

66, were synthesised, yielding substantially faster kinetics in comparison to the conventional batch processes (see 

Fig 9a). In addition, they reported the possibility to create MOF heterostructures using imidazolate frameworks 

(ZIFs) in a two-step process. Firstly, the iron oxide precursor solution and the oil phase were injected and reacted 

in a microreactor at 80 ºC for 2 minutes. Then, the resulting iron oxide particles were transported downstream to 

a second microreactor, where they merged and reacted with a mixture of ZIF-8 precursor (zinc nitrate and 2-

methylimidazolate in methanol, and polystyrenesulphonate). This lead to the creation of core-shell Fe3O4@ZIF-8 

composite superstructures.  

The same year, Coronas and co-workers demonstrated the feasibility of the droplet-based microfluidic approach 

for the crystallisation of the iron fumarate MIL-88B MOF. In this study, they confirmed that the size of the 

resulting crystals was dependent of the temperature and residence time. They observed a continuous increase in 

particle size from average sizes ranging from 90 to 900 nm with higher residence times and/or higher temperatures. 

- Insert Fig 9 - 

In addition, D’Arras and co-workers demonstrated the possibility to synthesise new structures using 

microsystems.142 They reported the structure of a new cerium(III)–terephthalate MOF which was synthesized in 

a very short residence time and using a high temperature and pressure flow-type reactor. 

The latest MR studies were reported by Polyzoidis et al. and Tai et al., where they synthesized ZIF-8 and UiO-66 

nanoparticles respectively in a PFA microreactor showing that varying the residence time and the molar ratio of 

the reaction.  They were able to modify the size and shape of the final crystals from a few nanometres to several 

micrometres.143,144 As these two last examples showed, microfluidic systems are ideal for reaction optimisation 

and screening experiments within a laboratory. However, in order to synthesize large quantities of MOFs, it is 

better to use reactors with larger channel dimensions, as these are more suitable for large volumetric throughput.  

Moving to the PFR reactors the first work was reported in 2012 by Gimeno-Fabre et al.  showed the synthesis of 

HKUST-1 and Ni-CPO-27 in a counter current mixing reactor where the MOF precursors were mixed with a 

preheated supercritical water stream at high pressures.145 The high temperatures were used in order to increase the 

rate of crystal growth, with a limitation in that heating beyond 300 °C could lead to the formation of metal oxides 

as a waste-product. Three years later, the same reactor was used to demonstrate the large scale production of ZIF-

8 and the control of the size and shape of the crystals by adding ammonium hydroxide or trimethylamine in the 

reaction mixture.146 The STY obtained in this process was 11625 kg m-3day-1 and with a surface area of 1800 m2g-

1. Retaining the use of supercritical water and an ethanol stream, Bayliss et al.  developed a system to produce 

MIL-53(Al) and HKUST-1 under continuous flow conditions obtaining a STY of 1300 kg m-3day-1 and 730 kg m-



3day-1, respectively.147 These last two methods produced high quality materials with high STY, however high 

temperatures and pressures were still required, which increase the overall cost of the process and could limit the 

practicality of the technique at industrial scale. 

In 2013 Chang et al.  reported a proof of concept mesoscale flow production of HKUST-1 using 5 minutes as a 

residence time and with a surface area of 1673 m2g-1.148 The particle size of the MOF can be adjusted by changing 

the relative ratios of the solvents and reaction temperatures from 150 nm to 4µm. To demonstrate the versatility 

and efficacy of flow reactors to produce MOFs, Rubio-Martinez and co-workers used a PFA reactor to synthesize 

the copper trimesate HKUST-1, the zirconium terephthalate UiO-66 and the scandium biphenyl-tetracarboxylate 

NOTT-400, all with different reaction requirements (see Fig. 98).149  The materials were obtained in 5, 10 and 15 

minutes, respectively, without loss in yield or product quality. It was demonstrated that the results could be 

extended 30-fold in scale, allowing a production rate greater than a kilogram per day and a STY of 4533 kg m-

3day-1 using a bench-top reactor. The successful up-scaling of this process was demonstrated in a second 

publication where the production of the aluminium fumarate MOF was proved in 4 different stainless-steel tubular 

flow reactors: a 10 mL coil tubing at laboratory scale, two intermediate stages with 107 mL and 374 mL reactor 

volume, and a pilot-scale 1.394 L reactor, delivering unprecedented production rates and STYs (97 159 kg m-3day-

1) while maintaining the product quality.150 To our best knowledge, this is the highest reported value of STY for 

a MOF produced by continuous methods. Additionally, the reactor design used in this work demonstrated the 

possibility to readily translate reaction parameters from the laboratory scale to pilot scale without any re-

optimization of the reaction conditions, while maintaining the STY values within the same range. 

The last work using PFR comes from Stock and co-workers who presented the synthesis of UiO-66, CAU-13 and 

STA-12 - a new cadmium phosphonate network using a 16 mL PTFE reactor yielding a STY of  428 kg m−3 d−1 

and 3049 kg m−3 for UiO-66 and CAU-13, respectively.151 One year later, the same was group reported the water-

based synthesis the zirconium fumarate and UiO-66-NH2 starting from a slurry of the starting solutions. 

In a slightly different reactor design, two recent works reported the combination of microwave assisted heating 

with PFR system. The first study from 2015 by Albuquerque et al. reported on a system where the microwave 

reactor was attached to the flow reactor in order to accelerate the nucleation of the MOFs and to improve the 

reproducibility of the synthesis.152 The MOF precursors of MOF-74(Ni) were introduced first into the nucleation 

zone that consisted of a microwave reactor and consequently the material was introduced into a PFA coil for 8 

min to growth the final crystals. As a result, they obtained a better crystallinity in a shorter reaction time and 

achieved a STY of 2160 kg m−3 day−1. The second work by Taddei et al. presented the synthesis of UiO-66, 

HKUST-1 and MIL-53(Al) in a 6.2 and 53 mL PTFE flow reactors heated by microwave.153 The materials were 

obtained in 7, 1 and 4 minutes of residence time, while maintaining the product quality and  resulting in  high 

STY of 7204 kg m−3 d−1, 64800 kg m−3 day−1 and 3618 kg m−3 day−1 for UiO-66, HKUST-1 and MIL-53(Al) 

respectively.  



The use of stirred CSTR was showcased by two groups, synthesizing NH2-UiO-66 and MOF-5. The first work in 

2013 by Schoenecker and co-workers who synthesized the amine-functionalised UiO-66 in DMF by convention 

heating.154 In this system the MOF precursors were pumped into a pre-mixing tank over 15 min and then 

introduced into a 2 litre flow crystallisation reactor over 8 to 40 hours during which time small aliquots of the 

intermediate product were collected at different times to bulk reaction kinetics. The product obtained had good 

crystallinity but the BET surface area and the yield were below the values reported in batch. A later study by 

McKinstry et al. presented the synthesis of MOF-5 in a CSTR at atmospheric pressure obtaining the desired 

quality and with a STY of 1000 kg m−3 day−1 (see Fig 9c).155  

3.  Downstream processes 

After any MOF synthesis, careful processing is required to obtain the final functional nmaterial. Directly after the 

synthesis, the product slurry needs to be washed with the reaction solvent to remove any unreagents and by-

products, e.g. using a centrifuge or a Buchner filter. Subsequently, an activation process is required to remove 

guest molecules, trapped within the framework, to obtain the expected surface area of the structure. Depending 

on the MOF structure, these two stages can be the most time-limiting stages of the process and become hugely 

significant in the large-scale production. The last stages of the process consist in drying and shaping the MOFs as 

well as a heat activation step before testing. Figure 10 shows a diagram of the typical downstream processes for 

the synthesis of a MOFs.  

- Insert Figure 10 - 

Despite promising advances in MOF synthesis, there are still challenges remaining related to the downstream 

processing. On the laboratory scale these processes are well established and sufficient to obtain milligram of 

quality materials. For larger scale production, however, these conventional downstream methods are not well-

suited to high production rates. The first stage, the washing and separation of the small crystals from the mother 

liquid still is a major obstacle for the large scale production MOFs. There are many well established types of 

equipment for solid–liquid separation such as centrifuges, cyclones, settling chambers, classifiers or filters, in 

addition to the direct evaporation of the mother liquor. However, the small size of the MOF particles, their low 

concentration in the solvent, as well as their density approaching that of the solvent (due to the high porosity), 

makes separation via most conventional methods inefficient or expensive at an industrial scale.156 

Once the MOF slurry has been cleaned of the excess linkers and by-products, the activation stage is the next step 

of the process in order to obtain the highest porosity and BET surface area of the framework. Several  strategies 

exist to remove the unreagents and solvent molecules trapped in the pores of the MOFs without collapsing the 

framework.157 The most common procedure is a simple heating of the MOF to certain temperature under vacuum. 

Each MOF has its optimal protocol in order to obtain the highest surface area but generally the temperature should 

be between the boiling point of the solvent and the decomposition temperature of the structure. However, in most 

cases this strategy leads to a lower surface area, or to a collapse of the structure due to the high surface tension 



and capillary forces imposed on the structure by the liquid-gas phase transition of the trapped solvent molecules. 

An alternative strategy to exchange the solvent used for the synthesis with one that has a lower-boiling point such 

as methanol, chloroform or acetone prior to heating the sample under vacuum. This strategy is laborious as 

generally most MOFs require soaking for a long period of time to ensure that the new solvent infiltrates. For 

example, in the case of MOF-74 and UiO-66 both MOFs require a soaking in daily refreshed methanol for 3 and 

7 days respectively to ensure the complete removal of DMF (solvent used for the synthesis and washing stage)  

from the pores.36,158  Some frameworks, such as ZIF-8 and MIL-53 (Al) require a solvent exchange process with 

methanol with an additional thermal treatment, 300 ̊C for 2 hours and 330 ̊ C for 72 hours to obtain the BET 

surface areas of 1630 m2.g-1  and 1590 m2.g-1,  respectively.31,159 

An attractive substitute for the solvent exchange method is the use of supercritical CO2. This relatively new 

strategy consists of exchanging the synthetic solvent for a one that is miscible with liquid CO2 such as ethanol or 

methanol and then subsequently exchanging this second one for liquid CO2 at high pressure and temperature for 

several hours. The difference here is that the CO2 supercritical phase eliminates surface tension and capillary 

forces making this activation method much milder than the conventional and solvent exchange methods. There 

are several MOFs that have been effectively activated with this strategy. For example, MOF-200 and MOF-210, 

where a simple solvent exchange followed by pore evacuation under vacuum was not effective, were successful 

activated, without losing the porosity, by a full solvent exchange with liquid CO2.4 The surface areas obtained 

were 4530 and 6240 m2.g-1, respectively. Another example is the supercritical CO2 activation of bio-MOF-100 

were the DMF solvated samples were soaked in ethanol for 48 hours, and a an exchange/activation with CO2 

liquid over a period of 8 hours yielded a BET surface area of 4300 m2g-1.160 In a variant of this method the sample 

is placed in a column and the supercritical CO2 flows through the sample instead of using static CO2 exchange. 

This method was presented by Koh and co-workers who activated UMCM-9 microporous coordination polymers  

via supercritical CO2 flow activation yielding a surface area BET of 4970 m2.g-1 .161  

Latter novelties on the activation have been based on freeze-drying activation techniques which uses thermal 

cycling and the vacuum sublimation of solvents (benzene and cyclohexane) at low temperatures to avoid the 

impact of capillary forces on porous structures in order to control the frameworks stability and improve its 

porosity.162 Recently Rubio-Martinez et al. presented for the first time the use of megasonics as an alternative 

strategy for the simultaneous separation and activation of MOF crystals.163 Its operating principle is based on the 

application of high frequency ultrasound to the MOF solution, leading to the separation of the solid MOF particles 

from the solvent. Additionally, the megasonic treatment leads to an activation a simultaneous removal of occluded 

reagents of the MOFs crystal. This one-step process showed an improvement of up to 47% the surface area of the 

final product and compared to conventional methods. The method removes one stage from the downstream 

processing and is readily scalable and thus capable of producing commercially usable product at a large scale. 

Shaping of MOF powders produced in any of the fabrication methods explained above is also mandatory for using 

them in real industrial applications. For instance, extruded or compact MOFs in the form of beads, pellets and 

monolithic bodies are required if MOFs want to be used for gas separation and storage applications. In methane 

storage (e.g. Adsorbed Natural Gas or ANG), for example, it is utmost important to fill the storage tanks with the 

largest amount of adsorbent; a condition that can only be achieved if MOF powders are highly packed. 

Furthermore, powdered MOFs are usually more difficult to be handled and can potentially contaminate pipes 



during chare/discharge cycles. For other applications such as functional textiles,164 alternative shaping and/or 

integration methods that process MOFs into paper sheets,165 fibers166, membranes,167,168 foams169 or coatings170 

are also needed (Figure 11).  

 

- Insert Figure 11- 

 

Considering the potential adsorption-related applications of MOFs, most of the efforts done in shaping MOFs 

have been dedicated to their densification. The objective of densification is to pack the maximum amount of an 

active MOF on a certain volume without losing its integrity and adsorption capacity. Dailly et al. calculated that 

doubling the density of HKUST-1 powder would result in an adsorbent with performances comparable of those 

of the state-of-the-art carbons at intermediate pressures (30-100 bars).171 However, despite the high industrial 

importance of shaping MOF powders, the interest of academic research groups to face this problematic is quite 

recent. In fact, the structuration of MOFs into shaped bodies was initiated by some companies (mainly, BASF), 

which tend to keep these shaping processes as in-house know-how or are only disseminated in patents. In this 

context, BASF published the first patent application concerning “shaped bodies containing metal-organic 

frameworks” in 2002. This patent was centered in the fabrication of MOF-2 and MOF-5 pellets using an eccentric 

press. In this process, both MOFs were mixed with graphite that acts as a binder improving their mechanical 

strength.172  

Pelletization under pressure is probably the most common method used for densifying MOFs. In this process, a 

fine powder is pressed at a certain pressure to give pellets that can be crushed or fractionized by sieving. In some 

cases, before MOF powder is pressed, it can be blended with a binder to improve the cohesion between crystals 

and their mechanical strength. There are however two factors of this method that tend to affect the final adsorption 

properties of the pellet shaped MOFs. From one side, the pressure applied can crush the structure of the MOF due 

to its low mechanical stability. From the other side, the use of binders can dilute the porous powder and/or cause 

pore blockage, resulting in a reduced performance per unit mass (or volume) of the adsorbent.   

As shown in Table 4, the influence of the pressure applied during pelletization of MOF powders was studied in 

some representative MOFs. However, systematic studies that correlate the pelletization conditions with the 

resulting adsorption properties of MOFs are very limited, and some discrepancies can be found. A general 

tendency when compressed pellets are processed is a decrease of the BET surface area and porosity of MOFs. 

This is specially the case for HKUST-1 that is mechanically fragile. For HKUST-1, it has been described that a 

significant loss of its BET surface area occurs at moderate pressures. Ahn et al. reported a loss of 50 % of its BET 

surface area when the applied pressure was around 10 MPa,173 whereas Bazer-Bachi et al.174 and Peterson et al.175 

found a similar decrease when pressures of 80 MPa and 70 MPa were applied, respectively. Other MOFs have 

shown better mechanical resistance. For example, UiO-66 and analogues, which are known for their high 

mechanical and thermal stability owing to their 12-fold connected clusters in the three spatial directions, were 

shown better stability during the compression process. Here, Peterson et al. observed a loss lower than 10 % of 

the BET surface area of UiO-66 when it was pelletized under a pressure of 70 MPa.175 Dietzel et al. also reported 

the total conservation of the BET surface area of CPO-27 after tableting it at 100 MPa, whereas its porous character 

totally disappears at 1GPa.176 In the case of ZIF-8, the BET surface area was well preserved until a pressure of 

700 MPa. Above this pressure, different reports revealed some discrepancies. While Bazer-Bachi et al. observed 



a loss lower than 20 % of its BET surface area,174 Chapman et al. observed a loss of 50 % at pressures above 1 

GPa.177 This difference can be attributed to non-reported parameters, such as the pressure increase rate and the 

dwell time, which can dramatically influence the integrity of the final pellet.  

 

Insert Table 4 

 

Binders are sometimes utilized during this pelletization process. As state above, they basically serve to improve 

the cohesion between MOF crystals and their mechanical stability. Some tested binders include graphite,178 

polyvinyl alcohol (PVA)179 and cellulose ester.174 To our knowledge, however, there is no a systematic, rational 

study on the influence of the nature and concentration of these binders on the BET surface area and general 

properties of MOFs during their pelletization.  

The presence of binders is also necessary in other shaping processes, including foaming, extrusion, granulation 

and cake crushing. In all these procedures, MOF powders are initially dispersed in a solvent/binder mixture. The 

choice of the binder gives a certain texture and property to the mixture, which is then manipulated in different 

ways to obtain the desired MOF shapes. For example, in the extrusion process, the MOF solvent/binder mixture 

forms a paste that can then be extruded to induce shaping of the MOF into different morphologies (Table 4). 

Following this latter method, Kaskel et al. mixed HKUST-1 crystals with a silicone resin and a plasticizer to form 

a paste that was subsequently extruded into monolithic HKUST-1 strings in a ram extruder. In this case, the 

decrease of the BET surface area was significant (70% of its initial BET surface area) due to the presence of 

binders and heating conditions, but the performance of the extruded monolith was higher than the monolith 

obtained by in situ synthesis of HKUST-1 in cordierite honeycombs.180 The extrusion method was also used by 

Ren et al. to prepare UiO-66 spherical pellets (with a BET surface area of 674 m2.g-1 that corresponds to 50 % of 

its initial value) from a paste made of UiO-66 and 10 wt.% sucrose/H2O mixture using a granulator .181 

Starting from the binder-solvent-MOF mixture, monolithic MOF foams can also be formed (Table 4). In this case, 

the nature of the binder tends to form macroporous foam-type solids in which the MOF can be entrapped. Similar 

MOF foams can also be produced by synthesizing the MOF in the presence of pre-formed foam. Using both 

approaches, foams with MIL-101,182 HKUST-1183 and UiO-66184 were prepared. For example, Wang et al. 

synthesized a foam monolith composed of HKUST-1@Fe3O4-MF (MF means magnetic fluid) by dispersing 

HKUST-1@Fe3O4-MF particles in an aqueous carboxymethlcellulose solution. The treatment with acetonitrile 

and posterior drying let to the formation of monolithic foams with high catalytic activity for C-H oxidation.185 

Other shaping processes require the formation of a dried MOF cake that is crushed. Here, the MOF powder is 

mixed with a certain amount of a binder (typically, polyvinyl alcohol (PVA)) and the resulting mixture is dissolved 

in a solvent forming a paste. This paste is then dried, crushed and sieved into the wanted particle size fraction. 

Denayer et al. used this method to prepare MIL-53(Al) pellets using PVA as the binder. As revealed by N2 

adsorption isotherms, the MIL-53(Al) pellets showed a loss of BET surface area of 32 % but maintained good 

CH4/CO2 selectivity capacities.179 Finally, other methodologies have also started to be explored to incorporate 

MOFs into fibers186 and papers, and shape them into alginate-based spherical beads187 or ceramic beads.188  

With this few examples, it is obvious that the shaping of MOFs for specific applications is still in an embryonic 

stage and strong efforts have still to be dedicated to the rational study of this process if we want to be able to 

access to the real commercial applications. It is also clear that, in adsorption-related applications, this shaping 



process must respect the relatively low thermal, chemical and mechanical stability of MOFs so that their 

adsorption capacities are mostly preserved. For other applications, however, this latter condition should not be so 

important. In catalysis, for example, Bazer-Bachi et al. observed that, even though pelletization of ZIF-8 decreased 

its adsorption properties, it did not change its catalytic activity.174 

 

 

4. Perspectives and commercial developments  

Since the first patent filed in 1995 and assigned to the Nalco Chemical Company, commercialisation of MOFs 

progressed gradually until the first MOF-based products released in 2016 by MOF Technologies and Numat 

Technologies (see Figure 12).189,190 MOF production at scale is now underway which will help secure customer 

confidence and open the door for other MOF-based products. However, the growing market will push the MOF 

suppliers for further cost-efficiency, reproducibility and environment sustainability to remain competitive. Here 

is a brief summary of companies working with MOFs in production, technology development and retail to date.        

- Insert Figure 12 - 

MOF Technologies was founded in 2012 based on patented mechanochemical manufacturing technology invented 

at the Queen’s University of Belfast.47 This innovative process allows the production of MOFs using little or no 

solvents. Solvent-free synthesis has advantages in both waste and energy management. Solvent waste is a major 

issue in the chemical industry. The energy required to initiate reaction can sometimes be reduced using mechanical 

energy rather than thermal energy. Recently this method has been configured for continuous production through 

extrusion which is scalable. 

It is unknown how many MOFs can be manufactured using mechanochemical synthesis, however MOF 

Technologies offer a wide catalogue for direct purchase. At the end of 2016 they sold around 100 kg of MOFs 

from their catalogue: Magnesium formate, Cu-BTC (HKUST-1), ZIF-8, Al(OH) Fumarate, ZIF-67, Mg-MOF-74 

and Zn-SIFSIX-Pyrazine. See Table 5 for summary of MOFs for sale from each manufacturer. 

MOF Technologies were the first to announce a MOF-based commercial product available through fruit and 

vegetable supplier Decco Worldwide Post-Harvest Holdings. The product has been registered with the U.S. 

Environmental Protection Agency under the proprietary name NT-7815 (EPA reference: 2792-79). NT-7815 is 

described as a micro-adsorbent delivering 0.7 w.t% of 1-MCP, which is a gas that blocks postharvest ethylene 

responses, extending the storage life and quality of many fruits and vegetables. MOF Technologies has not 

released any details regarding the MOF incorporated within the product. With the announcement of the new 

product, MOF Technologies have expanded their production facility capable of producing 15 kg/h in preparation 

for full scale between 5 and 10 tonnes per year from 2018 depending on which MOF.191 

-Insert table 5 - 



NuMat Technologies established in 2013, have also released a MOF-based product called ION-X based on a 

proprietary set of MOFs for storing gases such as arsine, phosphine and boron trifluoride for the electronics 

industry.192 The company is setting up a facility in Asia that will receive MOF-filled tanks from the United States. 

NuMat has a partnership with one of the top gas companies in Asia who will pump the tanks with gas which will 

then be distributed to customers. Asia also contains most of the major manufacturers of electronics in the world 

and therefore this position will likely offer direct access to this market which is 70% of the total demand. NuMat 

will lead the initial production of the proprietary set of MOFs for ION-X and have explored multiple 

manufacturing methods including flow, mechanochemical, solvothermal and others.   

MOF Apps, founded in 2013, are the exclusive licensee for UiO-66 and the zirconium-based family of MOFs. 

With a focus on MOF Application Services, the company aims to bring research and industry together to identity 

and develop commercially viable application opportunities in the areas of gas storage, industrial cooling, toxic 

gas protection and healthcare. MOF Apps develops and offers integrated solutions using MOFs which are cost-

competitive and which outperform state-of-the art systems. MOF Apps have sold the most amount of MOF to a 

leading vehicle manufacturer in August 2015 to test as adsorbed natural gas fuel platform.193  

ProDia is a Horizon 2020 project funded through the European commission. It is a consortium of over 15 parties 

focused on the development of reliable production methods of nanoporous materials and their applications. Pilot-

scale production of up to 100 kg will be led by Johnson Matthey for water-based synthesis, MOF Technologies 

for mechanosynthesis and Axel One for spray-drying synthesis.194   

ProfMOF founded in 2015 by a group of scientists at the University of Olso, Inven2 and Kongsberg, focused on 

the commercialization of the MOF-material. ProfMOF prefer water-based and continuous flow production of 

MOFs. Prof Norbert Stock, inventor of CAU series and advisor for ProfMOF, has developed the water-based 

synthesis method for some of the zirconium MOFs and CAUs series.43,195,196 The ProfMOF catalogue includes: 

CAU-10, UiO-66, UiO-66-ADC, UiO-66-FA, UiO-66-BDC, UiO-66-BDC-NH2, UiO-66-BDC-COOH and UiO-

66-BPDC/UiO-67.197 

STREM Chemicals Inc. has become a distributor of MOFs manufactured in agreement with various MOF 

companies including KRICT, Inven2 and Framergy. Their catalogue includes: (CuI)4(DABCO)2, 

(CuI)4(C6H14N2)2, C6H12N4(CuCN)5, PCN-250(Fe) CONEKTIC™ F250 by Framergy, MIL-100(Fe) KRICT F100 

by KRICT, ZIF-8 and UiO-66 by Inven2.198 

Sigma-Aldrich is a distributor of MOFs supplied by BASF under the product names Basolite® and Basosiv™. 

Figure 13 shows the total number of academic publications that reference these products. The actual number of 

sales or quantities is unavailable and therefore these numbers represent the minimum. According to this data, 

Sigma-Aldrich has made at least a total of 1198 sales for research purposes. Their catalogue includes: Cu-BTC 

Basolite® C300 by BASF, MIL-53 Basolite® A100 by BASF, Fe-BTC Basolite® F300 by BASF, ZIF-8 



Basolite® Z1200 by BASF, MOF-177 Basolite® Z377 by BASF, Mg-Formate Basosiv™ M050 by BASF and 

Al-fumarate Basolite® A520 by BASF (no longer available).199 

-Insert Figure 13- 

Pseudo-startup MOFWORX from CSIRO Australia is commercializing MOFs based on patented flowchem 

manufacturing technology together with a diverse material and application-based portfolio. The group have built 

a reactor called Mindi (the aboriginal name for a mythological serpent that spits out white powder) that is capable 

of 10 kg/h production. The company aims to become a product development house for MOF-based technologies 

supported by their own manufacturing capability.200  

Other companies are working towards the commercialization of MOFs such as the MOFcompany, MOFGen, 

Framergy, ACSYNAM and Promethean particles.201–204 MOFGen are developing nanoporous materials for 

materials for a number of applications including medical devices, wound-healing and consumer healthcare. 

Framergy own the license for PCN-250 which can be used for natural gas capture and storage, and currently sold 

through STREM Chemical Inc. Promethean Particles have commissioned a continuous flow reactor based on 

super critical water capable of producing 1,000 tonnes per year. The company has focused on nanoparticle 

production for inks electronics industry but are capable of shifting to MOF production if the market becomes more 

attractive. 

5 Conclusions and Future priorities  

The last two decades have seen great progress in the field of Metal Organic Frameworks both in the discovery of 

new structures and the development of new functional properties of these nanomaterials. However, a crucial pre-

requisite for accessing this potentiality in real world applications is the ability to routinely synthesise these 

materials in large quantities with high efficiency. It is only within the last five years that interest has arisen in the 

scientific community to develop novel synthetic methods and explore the scale up the synthesis of MOFs, focusing 

on economically viable strategies that do not reply on expensive or rare raw materials and also consider safety 

and environmental issues. 

In this review, the advances in several synthetic methodologies were discussed. These new synthetic methods 

allow an unprecedented level of control over the reaction conditions, which in turn lead to a better control over 

particle size morphology, and reproducibility between batches. However, there are still a few issues remaining 

before MOF production reaches the level of a mature commercial technology.  The solvent free approach and 

water-based synthesis are the most likely strategies to succeed in becoming economically and environmentally 

feasible for large ton scale production.  Aside from the development of synthetic routes, another critical area is 

downstream processing, as the conventional downstream methods used at the laboratory scale are not well-suited 

to high production rates. This means that large scale application of MOFs will be limited by their commercial 

availability and thus most likely also the sustainability of the synthesis procedure until these methods are further 



developed. This future research, which will involve researchers of many different fields, will certainly introduce 

metal–organic materials up to their use for real practical applications. 

Efforts in MOF commercialization have lead to the creation of several spin off companies, and the two new MOF 

markets recently released open a new and exciting time. 
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Figure 1: Timeline of the most common synthetic approaches patented for the synthesis of MOFs.28,45,46,48,49,205–210  

 



 

Figure 2: Electrosynthesis of MOFs by anodic dissolution. a) Schematic illustration showing the anodic dissolution cell 

(right) and the formationof HKUST-1 on the anode electrode (left). b) SEM image of HKUST-1 on a copper electrode. c) SEM 

image of HKUST-1 on a copper mesh. d) SEM image of ZIF-8 particles on a zinc electrode. e) SEM images of flower-shaped 

MOF-5 on a zinc electrode. (© Elsevier, American Chemical Society and Royal Society of Chemistry, reprinted with 

permission from ref 57, 59, 65 and 68)  

 

 



 

 

Figure 3: MOF synthesis by cathodic deposition. a) Schematic illustration showing the cathodic dissolution cell (left) and 

the reaction that takes place on the cathode electrode (right). b) SEM images of MOF-5 deposited on the cathode surface. c) 

SEM images of bilayer structures of MOF-5 and (Et3NH)2Zn3(BDC)4. (© Royal Society of Chemistry and American Chemical 

Society, reprinted with permission from ref 71 and 72) 

 

 

 

 

 



 

Table 1: Electrochemical synthesis of MOFs with different routes and conditions. 

Anodic deposition     

MOF Substrates Solvent Electrolyte 
BET surface 
area (m2.g-1) 

Ref. 

HKUST-1 Copper electrode MeOH - 1820 50 

 Copper electrode EtOH:H2O MTBS - 57 

 Copper mesh EtOH: H2O - - 59 

 Copper electrode EtOH:H2O MTBS 1440 58 

 
Copper electrode 

Copper mesh 

EtOH: H2O, 
organic solvents MTBS - 61 

 Copper electrode EtOH, EtOH: H2O MTBS 1309 63 

ZIF-8 Zinc electrode AcN: H2O MTBS 1600 58 

 Zinc electrode DMF:H2O MTBS 1730 65 

ZIF-4 Zinc electrode DMF:H2O MTBAMS 75 65 

ZIF-14 Zinc electrode DMF: H2O MTBAMS 598 65 

ZIF-7 Zinc electrode DMF:H2O MTBAMS 358 65 

ZIF-64 Cobalt electrode DMF: H2O MTBAMS 1521 65 

MIL-53(Al) Aluminium 
electrode DMF:H2O KCl or NaCl 1200 58 

MIL-100 (Al) Aluminium 
electrode EtOH: H2O - 969 58 

MIL-100 (Fe) Iron elecrtode EtOH:H2O MTBS - 64 

Tb-BTC Terbium foil EtOH: H2O MTBS - 66 

Gd-BTC Gadolinium foil EtOH:H2O MTBS - 66 

MOF-5 Zinc plate EtOH: H2O NH4F - 67 

 Zinc  plate and 
titanium plate DMF BMIM 914.7 68,69 

Cathodic deposition      

MOF  Substrates Method Ref. 

MOF-5  FTO Cathodic 70 

UiO-66  Zirconiumr foil Anodic and cathodic 76 

MOF-5  FTO Cathodic 71 

MOF-5 
/(Et2NH2)2Zn3(

BDC)4 

 
FTO Cathodic 72 

Others   



MOF  Substrates Method  

ZIF-8  Zinc wire BE 77 

UiO-66  FTO Electrophoretic deposition 74 

HKUST-1  FTO Electrophoretic deposition 73 

  Glass Galvanic displacement 75 

  Porous stainless 
steel Electrophoretic deposition 73 

  Cu bead BE 77 

MIL-53  FTO Electrophoretic deposition 74 

NU-1000  FTO Electrophoretic deposition 74 

Abbreviations: MTBS, methyltributylammonium methyl sulfate; MTBAMS, methyltributylammonium methyl sulphate; BMIM, 1-butyl-3-
methylimidazole; FTO, fluorine dopped tin oxide; BE, bipolar electrochemistry.    

 

Figure 4: SEM images of synthesis of MIL-53(Fe). Synthesis at 70 °C with a) ultrasounds for 35 min, b) microwave for 2 h, 

and c)  conventional electric heating for 3 days d) Comparison crystallization curves for the synthesis of MIL-53(Fe) in two 

steps by a) microwave, b) microwave and conventional electric heating, c) conventional electric heating and microwave and 

d) conventional electric heating.91 (© Elsevier, reprinted with permission from ref 80). 



 

 

Figure 5: Mechanochemical synthesis of MOFs. a) neat grinding, b) liquid-assisted grinding c) ion- and liquid-assisted 

grinding, exploiting the catalytic effect of nitrates and sulphates d) twin screw extruder with key parts highlighted. e) Table of 

space time yields (STYs) and BET surface area for the synthesis of MOFs synthesized by extrusion methods (© The Royal 

Society of Chemistry, reprinted with permission from ref 106 and 107) 

 

 

 



 

Figure 6: Spray-drying method for the production of MOFs. a) Photograph of the spray-dryer while it is used to fabricate 

HKUST-1. b) Schematic illustration of the spray-drying synthesis of MOFs. The MOF precursor solution can be introduced 

into the spray drier using a: c) two-fluid nozzle; d) three-fluid nozzle; e) T-junction; and f) continuous flow rector coupled to 

a two-fluid nozzle. ((©Springer Nature and The Royal Society of Chemistry, adapted with permission from ref. 132 and 134). 

 

 

 

 

 



 

Figure 7: SEM and TEM images of several MOFs synthesized by spray-drying. a) Hollow spherical superstructures of 

HKUST-1 synthesized using a two-fluid nozzle. Inset shows a TEM image of a single HKUST-1 nanoparticle. b) Spherical 

superstructures of MIL-88A synthesized using a T-junction. Inset shows a SEM image of MIL-88A particles. c) 

Superstructures of ZIF-8 synthesized using a three-fluid nozzle. Inset shows a TEM image of a single ZIF-8 nanoparticle. d) 

Compact superstructures/beads of UiO-66 synthesized using a continuous flow reactor coupled to a two-fluid nozzle. Inset 

shows a SEM image of a single bead. Scale bars: 10 • m (c), 5µm (a,d), 2 µm (b, inset d), 200 nm (inset b), and 50 nm (inset 

a,c). (©Springer Nature and The Royal Society of Chemistry, reprinted with permission from ref 132, 134). 

 

 

 

 

 

 

 

 



 

Figure 8: Spray-drying method for building and/or modifying MOFs. a) Crystal structure and SEM image of MPM-1-TIFSIX. 

Scale bar: 20 µm and inset: 5 µm. b) Schematic illustration of the post-synthetic modification of MOFs using spray-drying 

and 13C MAS-NMR spectra that confirms the formation of the CH=N imine group. c) SEM image of a multi-metallic 

lanthanide-based MOF and excitation spectra of it. Scale bar: 10 µm and inset: 2 µm. d) SEM image of a multi-variate UiO-

66 and NMR spectra confirming that both BDC and BDC-Br are forming the UiO-66 structure. Scale bar: 10 µm. e) HKUST-

1 coupled with magnetic nanoparticles. Scale bar: 200 nm. f) SEM image of UiO-66 coupled with CaCl2 and XRD pattern of 

the composite material showing the presence of both components. Scale bar: 20 µm. (©Springer Nature and The Royal Society 

of Chemistry, reprinted with permission from ref 132, 134, 135, 136, 137, 139). 

 

 

 

 

 

 



Table 2: MOFs synthesized by spray-dryer with different introducing modes and conditions. 

Two fluid nozzle       

MOF Metal salt/ Ligand/ Solvent Feed rate 
(mL/min) Inlet T (°C) Yield (%) BET 

(m2/g) Ref. 

HKUST-1 Cu(NO3)2.2.5H2O/ BTC/ DMF:EtOH: H2O 4.5 180 70 1260 132 

Cu-BDC Cu(NO3)2.2.5H2O/ BDC/ DMF 4.5 180 70 543 132 

NOTT-100 Cu(NO3)2.2.5H2O/ BPTC/ DMF: H2O 4.5 180 54 1140 132 

MOF-14 Cu(NO3)2.2.5H2O/ BTB/ DMF:EtOH:H2O 4.5 180 30 - 132 

Zn-MOF-74 Zn(NO3)2·6H2O/ DHBDC/ DMF: H2O 4.5 180 50 - 132 

Mg-MOF-74 Mg(NO3)2·6H2O/ DHBDC/ DMF:EtOH:H2O 4.5 180 35 - 132 

Ni-MOF-74 Ni(NO3)2·6H2O/ DHBDC/ DMF:EtOH: H2O 4.5 180 40 - 132 

MIL-88B FeCl3/ 2-amino-BDC/ DMF:MeOH:H2O 4.5 180 27 - 132 

Three fluid nozzle       

MOF Metal salt/ Ligand/ Solvent Feed rate 
(mL/min) Inlet T (°C) Yield (%) BET 

(m2/g) Ref. 

ZIF-8 Zinc acetate/ MiM/ H2O 4.5 180 10 941 132 

Cu-PB Cu(NO3)2/ K3Co(CN)6/ H2O 4.5 180 20 617 132 

SIFSIX-3-Co CoSiF6/ Pyrazine/ MeOH 2.4 85 44  136 

SIFSIX-3-Ni NiSiF6/ Pyrazine/ MeOH 2.4 85 -  136 

SIFSIX-3-Cu CuSiF6.H2O/ Pyrazine/ MeOH 2.4 85 55  136 

SIFSIX-3-Zn ZnSiF6.xH2O/ Pyrazine/ MeOH 2.4 85 57  136 

SIFSIX-1-Zn ZnSiF6.xH2O/ 4,4’-bipyridine/ MeOH 2.4 85 40 1300 136 

TIFSIX-1-Cu Cu(NO3)2.2.5H2O/ 4,4’-bipyridine/ MeOH 2.4 130 79 1650 136 

T junction       

MOF Metal salt/ Ligand/ Solvent Feed rate 
(mL/min) Inlet T (°C) Yield (%) BET 

(m2/g) Ref. 

MIL-88A FeCl3/ Fumaric acid/ DMF:MeOH:H2O 4.5 180 40 - 132 

MOF-5 Zinc acetate/ BDC/ DMF 4.5 180 60 1215 132 

IRMOF-3 Zinc acetate/ 2-amino-BDC/ DMF 4.5 180 70 - 132 

MPM-1-TIFSIX TiF6.(NH4)2/ Cu(NO3)2.2.5H2O/ H2O:MeCN 2.4 150 74 805 136 

Continuous Flow       

MOF Metal salt/ Ligand/ Solvent Feed rate 
(mL/min) T1(°C) Inlet T (°C) Yield(%) BET 

(m2/g) Ref. 

UiO-66 ZrCl4/ BDC/ DMF: H2O 2.4 115 180 70 1106 134 



UiO-66-NH2 ZrCl4/ 2-NH2-BDC/ DMFH2O 2.4 115 180 67 752 134 

UiO-66-NH2 ZrOCl2/ 2-amino-BDC/ DMF: H2O 2.4 90 180 83 1150 212 

UiO-66-NO2 ZrCl4/ 2-nitro-BDC/ Acetic acid:H2O 2.4 115 180 62 679 134 

UiO-66-Br ZrCl4/ 2-bromo-BDC/ DMF: H2O 2.4 115 180 68 527 134 

UiO-66-(OH)2 ZrCl4/ 2,5-dihydroxy-BDC/ DMF:H2O 2.4 115 180 81 401 134 

UiO-66-acetamido ZrCl4/ 2,5-dihydroxy-BDC/ DMF: H2O 2.4 115 180 51 586 134 

UiO-66-1,4-NDC ZrCl4/ 1,4-NDC/ DMF: H2O 2.4 115 180 45 431 134 

UiO-66-2,6-NDC ZrCl4/ 2,6-NDC/ DMF:H2O 2.4 115 180 49 557 134 

Fe–BTC/MIL-100 Fe(NO3)3.9H2O/ BTC/ DMF 2.4 135 180 78 1039 134 

Ni8(OH)4(H2O)2(L)6 
Ni(CH3COO)2.4H2O/ 1H-pyrazole-4-

carboxylic acid/ DMF: H2O 
2.4 100 180 60 377 134 

Abbreviations: BTC, trimesic acid; BDC, 1,4-benzenedicarboxylic acid acid; BPTC, biphenyl-3,3',5,5'-tetracarboxylic acid; 

BTB, 1,3,5-tris(4-carboxyphenyl)benzene; DHBDC, 2,5-dihydroxyterephthalic acid; DMF, dimethylformamide; EtOH, 

ethanol; MeOH, methanol; MiM, 2-methyl imidazole; NDC, naphthalenedicarboxylic acid. 

 

 

 

 

 

 

 

 

 

 



 

Figure 9. Flow chemistry methods for the production of MOFs. a) Schematic representation of a continuous flow 

microfluidic device for producing MOF crystals (top). Optical and SEM images of HKUST-1 crystals obtained via the 

microfluidic approach at different residences time. b) Schematic representation showing the continuous flow synthesis of 

HKUST-1, UiO-66 and NOTT-400 of MOFs. c) Reaction profile of the solvothermal synthesis of MOF-5 crystals with its 

corresponding x-ray pattern diffraction and BET surface area value. (© The American Chemical Society, Springer Nature and 

Elsevier, reprinted with permission from ref 141, 149 and 155) 

 



 

Table 3: MOFs synthesized by flow chemistry with different approaches and conditions. 

Method MOF Residence 

time 

Temperature 

( ̊C) 

STY 

(kg m-3 day-1) 

SA BET 

(m2 g-1) 

MF HKUST-1140 - RT - 620 
 

HKUST-1 141 1 min 90 5.8 1105 
 

MOF-5141 3 min 120 - 3185 
 

IRMOF-3141 3 min 120 - 2428 

 UiO-66141 15 min 140 - 1509 

 MIL-88b137 4 min 95 - - 

 ZIF-8 143 15 s RT 210000 1770 

 Ce-BDC142 30 s 230 - - 

 UiO-66 144 0.44-2.2 min 120 - 922-1206 

PFR HKUST-1 149 1.2 min 85 4533 1805 
 

UiO-66 149 10 min 130 1186 672 
 

NOTT-400 149 15 min 85 1078 741 

 Al-Fum150 1 min 65 97159 1054 

 HKUST-1 148 5 min 60 - 1673 
 

MIL-53(Al) 147 20 min 250 1021 919 
 

MIL-53(Al) 147 20 min 250 1300 1010 

 STA-12(Cd)151 5-20min 70 - 134 

 ZIF-8146 <5s 100 11625 1806 

 ZIF-8146 <5s 100 - 1780 

 CAU-13 151 20 min 130 3049 401 

 CPO-27 145 <5s 300 1501 1030 

 HKUST-1147 20 min 250 730 1554 

 HKUST-1 145 <5s 300 4399 1950 

 UiO-66151 45 min 120 428 1263 

 STA-12151 20 min 70 428 134 

 HKUST-1153 1 min 360 W 64800 1550 

 MIL-53(Al)153 4 min 200 W 3618 1376 

 UiO-66153 7 min 200W 7204 1052 

 MOF74(Ni)152 <1s 150 2160 840 

CSTR UiO-66154 8-40h 100-120 - 810 

 MOF-5155 5h 140 

 

1000 2302 

 



 

Figure 10. Continuous MOF process. Schematic representation of the different stages of the continuous process for MOFs 

production: synthesis, washing, activation, drying and shaping. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Examples of shaped MOFs using pelletization, foaming and extrusion methods. 

Pellet     

MOF Pressure Binder Property Ref 

HKUST-1 - Alox C and 
grahite Very high adsorption capacity for CO2 

178 

 70 and 700 MPa Without 
binder 

50% decrease of the BET surface area 
(after 700 MPa) 

Maintained ammonia removal capacity 

175 

 0.24 – 40 MPa Cellulose 
ester, K15M 

76% decrease of the BET surface area 
(after 40 Mpa) 

174 

 3-35 MPa Without 
binder 

50% decrease of the BET surface area 
(after 10 MPa) 

173 

MIL-53(Al) 1-8 bar Polyvinyl 
alcohol 

Below 5 bar, constant selectivity 
Above 5 bar, selectivity decreased. 

179 

UiO-66 - Graphite 

22% decrease of the BET surface area 
Suitable material for o-xylene over  p- 

and m-xylene separation at low 
concentrations 

214 

 70 and 700 MPa Without 
binder 

Maintained BET surface area 
16% decrease in octane loadings (after 

700 MPa) 

175 

ZIF-8 398-1432 Mpa Cellulose 
ester, K15M 

10% decrease of the BET surface area 
(after 1432 MPa) 

No change in catalytic reactivity 

174 

SIM-1 40-398 Mpa Cellulose 
ester, K15M 

28% decrease of the BET surface area 
(after 398 Mpa) 

174 

CPO-27-Ni 0.1-1 GPa Without 
binder Maintained methane storage capacity 

176 

Foam 

MOF Binder Property Ref 

MIL-101 (Cr) Ni foam Decrease in hydrogen storage capacities 
(19%) 

182 

UiO-66 Polyurethane 
Maintaining more than 70% of the 

adsorption capacity for benzene and n-
hexane 

184 

UiO-66-NH4, Mg-
MOF-74, HKUST-1, 

ZIF-8 
Carboxymethylcellulose - 

185 

HKUST-1@Fe3O4 Carboxymethylcellulose High catalytic activity in C−H oxidation 
185 

Extrusion 

MOF Binder Property Ref 

HKUST-1 Silres MSE 100 
Culmial MHPC 20000 P 70% decrease of the BET surface area 

180 

Zr-MOF Sucrose and water 50% decrease of the BET surface area 
182 

 



 

Figure 11. Examples of shaped MOFs. a) Functional textiles; b) Paper sheets; c) Pellets; d) Extruded monolith; e) Fibers; f) 
Membrane; g) Foams; and h) Granules. (© Nature Publishing group, American Chemical Society, Royal Society of Chemistry, 
Elsevier  with permission from ref 163, 164, 165, 167, 180, 184)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Sales catalogue of MOFs available by each manufacturer.  

MOF Manufacturer 
Al(OH) fumarate MOF Apps 

MOF Technologies 
CAU-10 ProfMOF 
Cu-BTC BASF 

MOF Apps 
MOF Technologies 

Fe-BTC BASF 
Magnesium formate BASF 

MOF Technologies 
Mg-MOF-74 MOF Technologies 

MIL-100 KRICT 
MOF Apps 

MIL-101-NH2 MOF Apps 
MIL-53 BASF 
MIL-68 MOF Apps 

MOF-177 BASF 
PCN-250(Fe) Framergy 
UiO-66 series Inven2 

MOF Apps 
ProfMOF 

ZIF-67 MOF Apps 
MOF Technologies 

ZIF-8 BASF 
MOF Apps 
MOF Technologies 
STREM Chemicals Inc. 

Zn-SIFSIX-pyrazine MOF Technologies 

 

 

 



 

Figure 12.  Commercially available MOF-based products released in 2016. a) NT-7815 micro-adsorbent for extending the 

storage life and quality of many fruits and vegetables by Decco Post-Harvest and MOF Technologies and b) ION-X gas storage 

tank for storing speciality gases used in the electronics manufacturing industry by Numat Technologies. (© The Springer 

Nature reprinted with permission from ref 191) 

 

Figure 13: Number of publications referring to the Basolite® and BasosivTM products supplied by Sigma-Aldrich. 
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