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Abstract

Background: We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms

that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated

data. The app was developed to make target information available to as large an audience as possible.

Results: We now report a major update of the iOS version of the app. This includes enhancements that use an

implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can

propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed

compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable

targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the

original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to

evaluate this version of the app with 805 compounds and associated targets.

Conclusions: TB Mobile can now manage a small collection of compounds that can be imported from external

sources, or exported by various means such as email or app-to-app inter-process communication. This means that

TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also

cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB

Mobile represents a valuable dataset, data-visualization aid and target prediction tool.
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Background

Efforts to make data accessible and useful for drug dis-

covery are needed perhaps now more so than ever be-

fore. Over the past decade we have seen considerable

investments in high throughput screening which adds to

the quantity of data available [1]. In particular the focus

of our work is on tuberculosis (TB) caused by Mycobac-

terium tuberculosis (Mtb). TB infects nearly 33% of the

entire world population and causes approximately 1.3

million deaths each year based on the 2013 WHO global

tuberculosis report [2-5]. Increased incidence of TB in

both developing and industrialized countries, including

the USA is of concern and exacerbated by the wide-

spread emergence of drug-resistant (multidrug-resistant

TB (MDR-TB)) strains [6] and co-infection with the hu-

man immunodeficiency virus (HIV). Even more troub-

ling is the emergence of extensively drug-resistant

(XDR) TB which is present in nearly 60 countries [7].

The pipeline for TB therapeutics is limited, [8,9], having

produced the first drug in 40 years in 2012 in the form

of bedaquiline for multidrug resistant TB [10,11]. Part of

the difficulty in drug discovery has been due to poor

success of target-based high-throughput screening [12].

In the last 10 years there has been a marked shift in

favor of high-throughput screening in whole cells

[13-18]. Unfortunately the hit rates of this approach are

usually low single-digit (or less) [1,16,19,20] which

makes this a very costly and wasteful exercise. In

addition, finding hits active in whole cells provides no

information on the likely target, which is important to
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enable drug optimization. Target identification in turn is

a generally very slow and a further costly process.

Various efforts have been described for predicting and

prioritizing which Mtb targets to consider for drug design

that represent sophisticated workflows combining methods

such as pathway/network analysis, flux balance studies and

comparative genomics, structure assessment and binding

pocket analysis [21-24]. The addition of binding site simi-

larity and docking have also been used to propose targets in

the TB proteome for FDA approved drugs [25,26]. Follow-

ing whole cell screening, whole-genome sequencing of re-

sistant mutants and recombineering it is possible to identify

targets for compounds experimentally [27]. In contrast to

these approaches, computational prediction of compounds

and their targets (target deconvolution) has involved ligand

similarity using Bayesian methods as a domain fishing

model [28] and other methods [29]. We previously de-

scribed [30] how we initially curated >700 molecules with

Mtb target/s along with various links to the target, genes

(tbdb.org), pathways, human homolog information [31]

and essentiality data [32]. This information initially

comprised a dataset publically available in the Collab-

orative Drug Discovery (CDD) database [31]. We then

used this dataset as the basis to generate a simple mo-

bile app called TB Mobile, which is useful for viewing

and manipulating data about compounds with activity

against Mtb, their targets and other related informa-

tion [30]. We had also used the app to make predic-

tions previously [33,34] including for a set of open

access compounds from GSK [17]. This work preceded

that of another group that used chemogenomics space

search, structural space search and historical assay

space search predict the same compounds [35]. The

historical assay space search used was proprietary to

GSK so this reported approach and data is not available

to other researchers. Also it would appear this group

did not take advantage of known ligands and their tar-

gets in Mtb.

Our previous work on TB Mobile demonstrated how the

app can be a useful resource to filter by target, essentiality,

human homolog and similarity search [30]. The app also

retrieves first line drugs that are present in the database as

we have previously shown. In addition we generated predic-

tions for an additional 20 compounds for which targets

were either known or unknown [30]. This testing pointed

out limitations and suggested future versions may use

predictive machine learning models [36,37] for sug-

gesting targets and it would likely require a larger set

of molecules to build further confidence. We proposed

addition of molecules for targets not currently repre-

sented or under-represented would be important as

well as balancing the bias towards over-represented

targets. At that time we had representatives of 68 tar-

gets in TB Mobile which is clearly a small fraction of

the over 1400 possible targets in Mtb [38], but in real-

ity it probably covers the majority of characterized tar-

gets adequately and is to our knowledge the most

extensive Mtb specific database related to small mole-

cules and their targets. However it is important to re-

member the targets of replicating cells do not overlap

with targets of nonreplicating bacteria and the number

of candidate target proteins may actually be higher

[39]. We now describe our efforts to curate new data,

provide new functionality and test the app that is now

available as TB Mobile version 2.0 for iOS (iPhone,

iPod, iPad) [40].

Methods

Dataset curation

The process of dataset curation was previously described

by us and for updating purposes we performed searches for

recent papers describing molecules and known targets in

Mtb. We manually curated molecules and data combined

with URL links to literature and TBDB [41,42] and these

were deposited in the CDD database [31].

TB mobile app software development: open source

fingerprint implementation

A number of modelling projects in recent years have

successfully made use of the extended connectivity fin-

gerprints, commonly referred to as ECFP_n or FCFP_n

(n = 2, 4 or 6). For example we have experience in

apply the FCFP_6 descriptors to modeling phenotypic

HTS data for Mtb [32,36,37,43-49]. These fingerprints

are created by enumerating a collection of substruc-

tures using breadth-first expansion from a starting

atom. The fingerprint method was originally made

available as part of the Pipeline Pilot project [50,51] and

similar methods have been made available from ChemAx-

on’s proprietary JChem [52] and RDKit [53]. The Accelrys

fingerprint methodology was published in detail [54],

but the disclosure omitted a number of trade secrets,

which means that while it is now straightforward to

implement an algorithm that generates fingerprints

that are similarly effective, it is not possible to pro-

duce results that can be directly comparable between

the two different implementations.

We have need of a drop-in replacement for the

ECFP_6 fingerprints that can be readily ported be-

tween multiple toolkits and programming languages.

We have therefore built and validated an algorithm

that follows the published reference for ECFP and

FCFP fingerprints as closely as possible, and made the

resulting code available to the public as a feature in the

Chemical Development Kit (CDK) project [55,56],

under an open source license. While this is in itself a

valuable addition to the popular Java-based toolkit, we

have taken care to implement the algorithm in a
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concise manner with few external dependencies. By

avoiding toolkit-specific supporting algorithms, this

has allowed us to port the ECFP_6 algorithm to other

platforms, in particular the Objective-C programming

language used for native iOS apps, with literally com-

parable results, which is a key prerequisite for the new

functionality that is available in the TB Mobile app.

In the following section, we describe the ECFP_6 im-

plementation in sufficient detail such that a skilled

programmer can precisely re-implement the algorithm.

The freely available open source implementation that

is part of the CDK can be consulted for guidance, and

used to generate validation examples, to ensure that

the results are identical. The reference [54] should

first be consulted for an instructive overview of the

methodology.

Molecule preparation

The input is assumed to be a molecule that is represented

as a connection table with the lowest common denomin-

ator feature set of an MDL Molfile, i.e. all atoms are repre-

sented as symbols from the periodic table, and all bonds

have an integral bond order. Most organic molecules can

be represented using bond orders of 1, 2 and 3, but organo-

metallic compounds can also be described with bond

orders of 0 or 4 or higher [57]. Aromatic rings must be ini-

tially represented in Kekulé form, i.e. alternating single/

double bonds.

Implicit hydrogens are optional: the molecule can have

some, all or none of its hydrogen atoms listed as individ-

ual atoms, as long as the implicit hydrogen counting

method described in the algorithm obtains the expected

answer. The same identical fingerprints will be created

regardless of whether hydrogens are implicit or explicit.

Implicit hydrogens are calculated using a conservative

formula: only elements C, N, O, P and S are eligible for

auto-calculated implicit hydrogens. The respective for-

mula for each of these cases is:

carbon H = 4 - |C| - U - B

nitrogen and phosphorus: H = 3 - C - U - B

oxygen and sulfur: H = 2 - C - U - B

where C is the formal charge, U is the number of un-

paired electrons standing in lieu of bonds, and B is the

sum of the bond orders of neighbouring atoms. Note

that for carbon, the absolute value of the charge is

used. The unpaired electron count is typically listed as

1 for radicals and 2 for carbenes (it does not include

conventional lone pairs, such as those on oxygen or

nitrogen).

Any molecules for which the conservative implicit hydro-

gen calculation formula does not provide the correct struc-

ture must either be submitted using a file format that

allows the specification of the number of virtual hydrogen

atoms, or the hydrogen atoms for this atom must be cre-

ated explicitly as individual atom nodes in order that they

be counted.

Aromaticity is calculated by enumerating rings of size 6,

and labelling only those that are capable of adopting a 6π

aromatic alternating double bond forms. This does not in-

clude lone-pair aromatics (e.g. thiophene), large rings (e.g.

porphyrins), charged 5-rings (e.g. imidazolium) or exocy-

clics (e.g. cyclic amides). Ring systems such as naphthalene

or anthracene are considered aromatic for all rings, since

all rings have a qualifying resonance form.

The algorithm proceeds as:

� enumerate all 6-membered rings (excluding those

made up of smaller rings)

� evaluate each ring to see if it has alternating

single-double bonds; for each qualifying ring,

mark the atoms and bonds are aromatic and

remove the ring from the list

� loop:

� evaluate each ring for alternating single-double

bonds, whereby any bond previously marked as

aromatic is considered as a wildcard, i.e. it may be

considered as either single or double

� repeat until no more aromatic rings can be found

Stereochemistry may be encoded in a variety of ways,

e.g. wedge bonds, chiral parity, CIP labels, as long as

the algorithm is capable of making use of this descrip-

tion to derive the correct tetrahedral conformation. 3

otherwise identical molecules with different chiral

states (i.e. R, S or unspecified) can usually be expected

to deliver 3 different sets of fingerprints, though they

will be similar (note however that in some cases the

limited reach of the circular fingerprints means that

chirality does not resolve to different atom identities,

especially for FCFP class fingerprints).

The internal representation used by this algorithm is

done by considering every p-block element with 4 sub-

stituents (one of which may be an implicit hydrogen): if

it is marked with a chiral parity flag, or has at least one

wedge bond, then an attempt will be made to map the 4

substituents onto a tetrahedron:

If the 4 substituents are mapped onto a tetrahedron

in an order that is equivalent to the above, the atom
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indices can be entered into an array in a specific order,

e.g. [A, B, C, D] where the letters correspond to an

atom index, or none in the case of an implicit hydrogen

placeholder. For this array of size 4, there are a total of

24 permutations. Each permutation has an odd or even

parity relative to the starting geometry, e.g. [B, A, C,

D] is an odd permutation (one swap) while [B, A, D, C]

is an even permutation (two swaps). Even permutations

refer to an equivalent geometry, i.e. the tetrahedron

can be rotated around to its original position, while

odd permutations are inequivalent, i.e. if the substitu-

ents are different, then it cannot be restored to its

original state by rotation, which means it is enantio-

meric. Therefore by creating an array [A, B, C, D] that

is representative of the geometry, or any even permuta-

tion of it, the necessary chirality information is

encoded. This will be used during the fingerprint gen-

eration process. This array is referred to as the tetrahe-

dral rubric for the atom. Note that it is valid to

generate this for an atom even if it is not actually

chiral: the symmetry, or lack thereof, will be resolved

during the assignment process.

ECFP atom identity

For the ECFP-class of fingerprints, each non-hydrogen

atom is assigned an initial identity which is made up by

first determining the following properties:

� N = number of heavy atom neighbours

� H = number of hydrogen neighbours (implicit and

explicit)

� D = atom valence - number of hydrogens (implicit

and explicit)

� A = atomic number

� C = formal ionic charge (integer)

� R = 1 if the atom is in a ring (of any size), 0

otherwise

The initial hash code of each atom is composed by

adding the following bytes to a CRC32 calculation:

� (N < < 4) | D

� A

� C + 0x80

� (H < < 4) | R

The CRC32 calculation is the same method used by

PNG and ZIP files, and is described in: http://www.w3.

org/TR/PNG/#D-CRCAppendix. The link also provides

an implementation example in C.

An array of size equal to the number of atoms is used to

store the identity of each atom, and this is used in subse-

quent steps.

As well as assigning a value to each atom for subse-

quent use, each non-hydrogen atom is recorded in a

datastructure with the following properties:

� hash code (32-bit signed integer)

� iteration (integer)

� atom list (array of integers)

For these initial atom assignments, the iteration is set

to 0, and the atom list is an array with a single value,

that being the index of the atom.

Note that duplicate hash codes are retained in the fin-

gerprint list, because for the 0th iteration, entries with

duplicate hash codes have a different atom list, which is

important for subsequent steps.

If the requested fingerprint diameter is 0 (i.e. ECFP_0),

the algorithm stops at this point.

Propagation

Once the initial atom identities are established, some

number of iterations are performed. The most com-

monly used iteration count is 3, which gives rise to

the ECFP_6 and FCFP_6 fingerprints. Each iteration

generates zero-or-more additional hash codes. Tiny

molecules may not generate any new fingerprints in it-

erations 2 or 3, i.e. the results for ECFP_2 or ECFP_4

may not be any different than what would have been

obtained for ECFP_6 fingerprints.

The following process is repeated for each iteration,

i.e. 1, 2 or 3 times.

A new identity array is defined, and for each non-

hydrogen atom, a new identity value is calculated in the

following way:

An array of pairs is defined, with one entry for each

non-hydrogen neighbor. The values for each of these

pairs are defined as [bond,identity], i.e.

� literal bond order (0, 1, 2, 3, …) or 15 if the bond is

aromatic

� the identity of the neighbor atom from the previous

iteration

These pairs are then sorted literally, first number first, e.g.

� [1,1000] < [2,-500]

� [1,-500] < [1,1000]

This list of pairs is then prefixed by the current iter-

ation, and the current atom identity from the previous

iteration. For example, performing iteration 1 on an

atom with a previous identity of 200, and neighbour pairs

of [2,-500] and [1,1000] would result in a sequence of

[1,200,1,1000,2,-500].

Clark et al. Journal of Cheminformatics 2014, 6:38 Page 4 of 17

http://www.jcheminf.com/content/6/1/38

http://www.w3.org/TR/PNG/#D-CRCAppendix
http://www.w3.org/TR/PNG/#D-CRCAppendix


These values are hashed into a CRC32 in the follow-

ing way:

As a final addendum, if the atom has a tetrahedral

rubric array associated with it, then an additional byte

may be fed into the CRC32 hashing sequence. At the

beginning of the overall fingerprint calculation process,

each atom is assigned a chirality flag that is set to

false. At each iteration, if the flag is still set to false,

and there is a rubric array, then a determination is

done: the rubric array of [A,B,C,D] is substituted for

the atom identity (from the previous iteration) for each

of its neighbours. Any neighbour that is a hydrogen

atom (explicit or explicit) is given a value of 0. If any

two values of this array are the same, then this step is

skipped.

The new array of [a,b,c,d] is examined to determine

how many swaps are necessary to order the array from

lowest to highest. If the number of swaps is even, 1 is

appended to the CRC32 sequence, otherwise 2 is

appended. The chirality flag is set for the atom, so that

it will not be further annotated in subsequent iterations.

Once the new identities are calculated for each heavy

atom, the algorithm iterates over these atoms and cre-

ates a new fingerprint proposal for each one:

� hash code (newly computed for this iteration)

� iteration number (1, 2 or 3)

� atom list

� The last parameter, atom list, is a breadth first

growth corresponding to the iteration. The initial

fingerprints that were generated at iteration 0

defined this to contain a single atom index.

Fingerprint proposals for iteration 1 contain the

starting atom and all their neighbors; for iteration 2,

the neighbors’ neighbors are included, etc. The atom

lists may be cached for efficiency purposes or

recomputed. They should also be sorted and not

contain duplicates, e.g. if atom 10 has neighbors 5, 7

and 12, the atom list for the proposed fingerprint at

iteration 1 would be [5,7,10,12].

Once the proposed fingerprint is defined, the existing

list of fingerprints is searched: if the sorted unique list of

atoms matches any of the fingerprints already in the list,

then only one of them may be retained:

� If the existing fingerprint has an earlier iteration

number, discard the new one; else

� replace the existing fingerprint if the new one has a

lower hash code.

This is done in order to reduce the degree of redun-

dancy. Once the propagation steps are complete, the

final output is the list of retained hash codes (signed 32-

bit integers), sorted, with duplicates removed. These lists

of integers are used for all of the similarity metrics de-

scribed in this work.

Similarity

TB Mobile allows the user to draw or paste a chemical

structure as a query molecule, which causes the main

compound display list to be sorted by most-to-least

similar to the provided reference structure. Version 2 of

the app has been updated to use the ECFP_6 fingerprints

described in this work. Similarity is evaluated by com-

puting the Tanimoto coefficient [58]. The calculation is

done using the raw list of unique 32-bit hash codes, ra-

ther than folding into packed bitmasks.

Clustering

The algorithm behind the visual clustering interface in

TB Mobile performs a simple 2D embedding of a collec-

tion of molecules, then dynamically repositions them

based on predefined tethers. The input parameters con-

sist of a selection of compounds, and a central reference.

For performance and display space purposes, the num-

ber of compounds is reduced by keeping the 50 most

similar compounds to the reference, as determined by

Tanimoto coefficient. The remaining compounds are

converted into a graph by ensuring that each compound

has an edge to each of the 10 most similar other com-

pounds in the remaining set. If the resulting graph has

multiple components, all components other than that

which contains the reference are discarded. Once this

process is complete, any compounds that are contained

in the user-provided collection are added to the set, and

tethered in the same way (i.e. they are always a part of

the display, and are never pruned out).

Initial placement is done in a greedy fashion: the refer-

ence compound is placed at (0,0). The tether graph is

walked in a breadth-first fashion, and for each bracket,

the candidates are ordered by their average similarity to

already placed compounds. Each is placed roughly by

sampling positions that minimize the distance to teth-

ered neighbors, but does not permit overlap, assuming

that each node has a fixed radius. Once the initial place-

ment is complete, the layout is shown to the user, and a
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background thread iteratively adjusts individual nodes to

optimize a scoring term that encourages closeness teth-

ered atoms vs. repulsion of non-tethered atoms. This is

conceptually analogous to a forcefield, except with arbi-

trary terms tailored to aesthetic positioning.

Target prediction

We updated TB Mobile with 60 new compounds and

data (Additional file 1: Table S1) so the app now con-

tains 805 compounds, (as of March 2014). There are 96

unique targets, for which 53 have 2 or more known

binders in the dataset. The target/compound distribu-

tion is shown in Additional file 2: Table S2. We have

evaluated the app with an additional set of 20 com-

pounds (Additional file 3: Table S3). First they were all

drawn in the Mobile Molecular DataSheet (MMDS) app

and copied into the TB Mobile app (an example of app-

to-app communication). Molecules can also be drawn

within the TB Mobile app itself. The similarity searching

component was used to rank the content in TB Mobile

of molecules with known targets (Additional file 4:

Figure S1-20). We have used this as an example of infer-

ring potential targets and compared this to the pub-

lished data for these molecules (Table 1). It should be

noted that such data is far from definitive as these pub-

lished compounds have not been tested versus all Mtb

targets and it is possible the same compound may be active

against more than one target. We generated screenshots

for the top compounds (Additional file 4: Figure S1-20) and

output the Bayesian scores into MMDS (Table 1).

In order to provide a guide for whether a proposed

compound is likely to be active against any of these tar-

gets, a simple modified Bayesian approach is used. For

each listed target with at least two binders, it is first as-

sumed that all of the molecules in the collection that do

not indicate this as one of their targets are inactive. For

each of the 805 constituent molecular structures, the

ECFP_6 fingerprints are calculated. For each molecule, a

score is determined using the Laplacian-modified naïve

Bayesian classified described by Jenkins et al., among

others [50,51,67]. The estimation score is a sum of log

values, which can be transformed into a probability or used

to classify as true or false based on a selected threshold.

The score for each molecule is calculated in a leave-

one-out fashion, i.e. its own contribution is excluded

from the list of known fingerprints and activities. The

score is a sum of log values of probabilities, with arbi-

trary upper and lower limits. For these a threshold can

be selected, above which a molecule is predicted to be

active against the target. By varying the threshold be-

tween the upper and lower bounds, it is also possible to

create a receiver-operator-characteristic (ROC) curve, by

determining the true/false positives and negatives for

each threshold. Figure 1 shows response metrics for the

InhA target which has 157 compounds targeting it. We

have generated similar analyses for other targets in TB

Mobile (Additional file 5: Table S4).

The ROC curve in Figure 1a shows the response for

both the ECFP_6 fingerprints described in this work, as

well as the FCFP_6 variant. At the same time as we sub-

mitted the ECFP fingerprint capabilities to the CDK pro-

ject, we also made available the FCFP equivalent, which

is identical except that it initially describes each atom by

whether it is an H-bond donor/acceptor, positive/nega-

tive charge center, aromatic and/or halogen. For the TB

Mobile app, we use only the ECFP variant. Figure 1b

shows the Bayesian estimator scores, binned at intervals

to produce a bar chart. As can be seen, there is little over-

lap between the scores for the known binders and the

remaining compounds in the collection, with the caveat

that the small dataset is biased by a number of recurring

structural motifs, some of which are shown in Figure 1c.

When the mobile app considers a user-proposed com-

pound for possible activity against a given target, the

modified Bayesian score is calculated in the same way. If

the resulting score falls within the range of the ROC

plot, i.e. if the score were to be used as a threshold then

the confusion matrix would report at least one false

positive or false negative, then the probability of activity

is expressed as a value between 0 and 1, depending

where it falls between the lower and upper bounds. If

the score lies outside of the range of the ROC plot, it is

set to 0 or 1.

This prediction method is essentially a normalized

similarity metric, for which proposed compounds are

ranked favorably if they are similar to known target

binders. This approach compliments the sorting of mol-

ecules in TB Mobile by similarity described herein.

Interoperability

The TB Mobile app supports a number of ways of mov-

ing data into and out of the app, which is in keeping

with the mobile app interoperability features we have de-

scribed previously [68,69]. Other than providing a built-

in structure editor [70] and the ability to read structure

formats from the clipboard, the importing capability is

offered by registering the app as a receiver for a several

common structure formats, such as MDL Molfile and

SDfile. As shown in Figure 2, this can be used to con-

nect the app with content downloaded from the mobile

browser. The same mechanism applies to downloaded

email attachments, files from hosting apps such as Drop-

box, and the launching of content dynamically generated

by other apps.

Exporting content can be achieved in several ways.

From within the detail view for any given compound,

the molecular structure can be copied to the clipboard

or launched into another app. From the main menu, it is
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Table 1 20 compounds used to evaluate the app and target and predictions

Molecule Name Published target
and reference

Top
target
with
similarity
search

Bayesian target Bayesian target

Prediction with
vers. 1 data
(Bayesian-derived
scores)

Prediction with vers. 2 data
(Bayesian-derived scores)

Mathew
cpd 1

Rv2150c FtsZ* [59] InhA Rv3790 DprE1 (0.35)
Rv3423c Alr (0.57)
Rv0206c MmpL3
(0.25)

Rv3791 DprE2 (0.09) Rv3790
DprE1 (0.16) Rv0005 GyrB (0.03)
Rv3423c Alr (0.56) Rv0206c
MmpL3 (0.01)

Khan C-1 ATP synthase [60] FabH Rv1885c (0.002)
Rv2150c FtsZ (0.08)

Rv2150c FtsZ (0.07)

Khan C-2 ATP synthase [60] KasB Rv2150c FtsZ (0.06)
Rv3423c Alr (0.11)

Rv2150c FtsZ (0.04) Rv3423c Alr
(0.01)

Khan C-3 ATP synthase [60] KasB Rv2150c FtsZ (0.09)
Rv3423c Alr (0.08)

Rv2150c FtsZ (0.07) Rv3423c Alr
(0.06)

Khan C-4 ATP synthase [60] InhA Rv1885c (0.25)
Rv3790 DprE1 (0.24)

Rv1885c (0.24) Rv3791 DprE2
(0.15) Rv3790 DprE1 (0.08)

Khan C-5 ATP synthase [60] KasB Rv2150c FtsZ (0.14) Rv2150c FtsZ (0.12)

Khan C-6 ATP synthase [60] KasB Rv2150c FtsZ (0.09) Rv2150c FtsZ (0.08)

Vasudevan
CymA

Rv 3596c ClpC1*
[61]

PtpB Rv2150c FtsZ (0.009)
Rv2155c MurD
(0.006) Rv2964 PurU
(0.006)

Rv2150c FtsZ (0.01) Rv2155c
MurD (0.007) Rv2964 PurU
(0.007)
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Table 1 20 compounds used to evaluate the app and target and predictions (Continued)

Vasudevan
CymA1

Rv 3596c ClpC1*
[61]

PtpB Rv2150c FtsZ (0.08) Rv2150c FtsZ (0.08)

Gao
Domiphen

Rv 3582c IspD [62] InhA Rv2150c FtsZ (0.17)
Rv1484 InhA (0.29)
Rv3423c Alr (0.33)
Rv0129c FbpC (1)
Rv3794 EmbA (0.16)

Rv2150c FtsZ (0.15) Rv2780 Ald
(0.35) Rv3791 DprE2 (0.008)
Rv3790 DprE1 (0.03) Rv1484
InhA (0.17) Rv3423c Alr (0.34)
Rv0129c FbpC (1) Rv3794 EmbA
(0.15)

Kale cpd
23

Rv0005 GyrB* [63] AroD
(GyrB 4th)

Rv2150c FtsZ (0.59)
Rv3423c Alr (0.04)
Rv3248c SahH (0.02)

Rv2150c FtsZ (0.53) Rv3791
DprE2 (0.06) Rv3790 DprE1
(0.13) Rv0005 GyrB (0.19)
Rv3800c Pks13 (0.02) Rv3248c
SahH (0.001)

Pauli zinc
09137707

Rv1484 InhA* [64] InhA Rv2150c FtsZ (0.44)
Rv3790 DprE1 (0.13)
Rv1484 InhA (0.37)
Rv3423c Alr (0.18)

Rv2150c FtsZ (0.39) Rv2780 Ald
(0.46) Rv3791 DprE2 (0.03)
Rv3790 DprE1 (0.15) Rv1484
InhA (0.009) Rv0005 GyrB (0.11)
Rv3423c Alr (0.14) Rv3800c
Pks13 (0.09)

Pauli zinc
12509636

Rv1484 InhA* [64] Kas B
(InhA 2nd

and 3rd)

No prediction Rv3791 DprE2 (0.009)

Pauli zinc
02931014

InhA Rv2150c FtsZ (0.31)
Rv2150c FtsZ (0.27), Rv2780 Ald
(0.55), Rv3790 DprE1 (0.03),
Rv0005 GyrB (0.04)

Pauli zinc
02931014

Rv1484 InhA* [64] InhA Rv2150c FtsZ (0.31) Rv2150c FtsZ (0.27) Rv2780 Ald
(0.55) Rv3790 DprE1 (0.03)
Rv0005 GyrB (0.04)

Wang cpd
4

Acetohydroxyacid
synthase [65]

InhA Rv1885c (0.07)
Rv2155c MurD (0.11)
Rv2964 PurU (0.11)
Rv3790 DprE1 (0.09)
Rv1484 InhA (1)

Rv1885c (0.07) Rv2155c MurD
(0.11) Rv2964 PurU (0.11)
Rv3790 DprE1 (0.03) Rv3791
DprE2 (0.16) Rv1484 InhA (1)

Wang cpd
5

Acetohydroxyacid
synthase [65]

Dxs1 Rv2150c FtsZ (0.4) Rv2150c FtsZ (0.3) Rv3790 DprE1
(0.05)

Clark et al. Journal of Cheminformatics 2014, 6:38 Page 8 of 17

http://www.jcheminf.com/content/6/1/38



possible to initiate an outgoing email with attachments that

contain structures for all of the compounds currently being

displayed. Figure 3 shows an example where all structures

that bind the InhA target (a) are shown, and the outgoing

email (b) in progress. The datasheet attachments are in-

cluded automatically by the app. The personal collection of

compounds can also be exported by launching with other

apps, as shown in Figure 4a. If target predictions have been

made for these compounds, then they will be included as

additional fields, which can be viewed and manipulated

using other apps such as MMDS, shown in Figure 4b.

The clustering feature can be used to create presenta-

tion quality graphics, as shown in Figure 5. On request,

the app will create a PDF document with a single page

representing the cluster, which is previewed onscreen.

From there it can be sent as an email attachment, or

printed directly from the app, if there is a printer config-

ured and accessible.

TB mobile app software application

We have previously described the functions and applica-

tions of the TB Mobile app in detail [30] which uses

Figure 1 Predictions for the InhA target: (a) the ROC curve with ECFP_6 and FCFP_6 fingerprints; (b) modified Bayesian estimators for

active and inactive compounds; (c) structures of selected binders.

Table 1 20 compounds used to evaluate the app and target and predictions (Continued)

Wang cpd
7

Acetohydroxyacid
synthase [65]

AroD Rv2150c FtsZ (0.36)
Rv2155c MurD (0.03)
Rv2964 PurU (0.03)
Rv3790 DprE1 (0.09)

Rv2150c FtsZ (0.32) Rv2155c
MurD (0.03) Rv2964 PurU (0.03)
Rv3790 DprE1 (0.12) Rv3791
DprE2 (0.11)

Wang cpd
15

Acetohydroxyacid
synthase [65]

Rv1885c Rv1885c (1), Rv3790
DprE1 (0.18)

Rv1885c (1), Rv3790 DprE1
(0.18), Rv3790 DprE1 (0.11)

Li cpd 4 Rv0548cMenB [66] Glf Rv1885c (0.26)
Rv2150c FtsZ (0.13)

Rv1885c (0.26) Rv2150c FtsZ
(0.13) Rv2780 Ald (0.06)

Li cpd 5 Rv0548cMenB [66] Glf Rv1885c (0.22)
Rv2150c FtsZ (0.13)
Rv2155c MurD (0.06)
Rv2964 PurU (0.06)

Rv1885c (0.22) Rv2150c FtsZ
(0.13) Rv2780 Ald (0.07) Rv2155c
MurD (0.06) Rv2964 PurU (0.06)

(*targets in TB mobile version 2.0, Targets in Bold are correctly predicted based on published data).
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Figure 2 Importing compounds from the web: (a) setting up an SDfile download with CDD Vault; (b) selecting the TB Mobile app as

the destination; (c) molecule import on launch; (d) the personal stash, with imported structures.

Clark et al. Journal of Cheminformatics 2014, 6:38 Page 10 of 17

http://www.jcheminf.com/content/6/1/38



molecule structures and their targets. In version 2.0 we

have updated the aesthetics and we still enable the ori-

ginal features such as scrolling through molecules and

similarity searching but now we based the similarity

comparisons on our ECFP_6 implementation. Most

similar compounds are listed first (from top left to bot-

tom right) in the app.

Results

Fingerprints comparison with published data

Several collections of TB related compounds have been

previously used for generating Bayesian Models by us.

For two TB in vitro screening datasets, with activity

expressed as true or false, a simple Bayesian model was

constructed, using a popular Laplacian-corrected variant

implemented in this study for TB Mobile [50,51,67]. The

activity for each compound was predicted using leave-

one-out. Using a grade of cutoff thresholds, an ROC plot

is created, by plotting false negatives against false posi-

tives. This enabled comparisons to the previously pub-

lished ROC values for the two datasets using FCFP_6

descriptors, noting that in these published models sev-

eral interpretable descriptors were also included. It also

enabled us to compare how ECFP_6 and FCFP_6 de-

scriptors perform for the same datasets.

We observed that for the models generated in this

study and previously published, the ROC values were

comparable (Table 2). In addition there was no appre-

ciable difference between the performance of ECFP_6

and FCFP_6 descriptors for the same datasets.

Dataset curation

An additional 60 molecules with target related information

from the literature (Additional file 1: Table S1) were curated

for use in CDD and TB Mobile. These compounds were

assessed using principal component analysis (PCA) using

Discovery Studio with the interpretable descriptors chosen

previously (AlogP, molecular weight, number of rotatable

bonds, number of rings, number of aromatic rings, number

of hydrogen bond acceptors, number of hydrogen bond do-

nors, and molecular fractional polar surface area) to assess

their overlap in chemical space (Figure 6a). The new com-

pounds appear to be within the existing chemical space of

the original dataset.

TB mobile version 2.0

As with the previously described version 1 of TB Mobile

[30] the app first organizes its data, then displays the

main screen. We will now describe and focus on the

newly added features.

Predicting targets for new compounds

We have curated an additional set of 20 compounds

(Additional file 3: Table S3) which were scored with

Figure 3 Sending selected compounds by email: (a) initiating the transmission for structures shown onscreen; (b) writing the email,

with prepackaged attachments.
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version 2 of the app (Table 1). Only a few of the targets

represented in this set were in TB mobile e.g. FtsZ,

InhA, ClpC1, GyrB. Interestingly the one compound tar-

geting FtsZ was predicted based on similarity ranking in

the app to target InhA (Additional file 4: Figure S1),

while the Bayesian predictions suggested multiple targets

(Table 1). While bedaquiline is known to target ATP

synthase [10,11] it was not shown to be similar in TB

Mobile to the ATP synthase targeting compounds in the

test set (Additional file 4: Figure S2-7). The very large

macrocyclic compounds were not predicted by similarity

ranking or Bayesian approaches in the app (Additional

file 4: Figure S8-9). These compounds do however look

similar to PtpB compounds for which there are 3

examples in TB Mobile (Additional file 5: Table S4e).

The GyrB inhibitor was correctly ranked in the app

(Additional file 4: Figure S10) and was one of the

targets selected with the Bayesian model approach

(Table 1). The three InhA compounds (Additional file

4: Figure S11-13) were well predicted based on ranking

in the app with 2 out of the three being ranked as

the top targets, while one was selected also using

the Bayesian approach alongside several other targets

(Table 1). A set of acetohydroxyacid synthase and

MenB inhibitors were predicted to be similar to several

targets (Additional file 4: Figure S14-S20), based on

searching TB Mobile and using Bayesian approaches

(Table 1). The comparison of Bayesian models gener-

ated with version 1 data (N = 745 molecules) and ver-

sion 2 data suggests that some targets are added with

the Bayesian approach (see Kale cpd 23, (Table 1)

for which GyrB is predicted in version 2 but not ver-

sion 1). These 20 compounds were also assessed

using PCA. Most of the compounds were within the

space of the 805 compounds although there were

several that were outside or on the edge of this

chemistry space such as the macrocyclic compounds

(Figure 6b). This evaluation set illustrates how diffi-

cult it is identify targets for new compounds. Many

contain substructures that are present in compounds

known to bind other targets. In addition limitations

of the approach are clear if the target is not repre-

sented in the dataset to begin with. This approach

also illustrates an opportunity to try to identify or

design compounds targeting multiple Mtb targets by

using features shared by several targets.

Figure 4 Exporting the personal collection: (a) initiating the export, the molecules in the compound collection havebar icons

representing predicted targets using the Bayesian models with extended connectivity fingerprints. The top icons (from left to right)

represent adding molecules – which can be drawn in the app, drawn with other apps on the device, pasted in from elsewhere or there is the

option to remove all structures. The second icon allows the contents of the molecule stash to be opened in other apps on the device. The third

icon allows you to email the contents of the molecule stash and the fourth icon generated target predictions.The arrow icon aligned with each

molecule allows the molecule to be either copied to the clipboard, transferred to the main window on the app or the structure can be edited or

deleted; (b) importing the datasheet into MMDS, with predictions included.
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Discussion and conclusions

Our goal in creating TB Mobile [30] was to make this

potentially useful drug discovery data from CDD avail-

able in a form accessible to scientists in general and pro-

vide a novel way to predict potential targets. We have

seen in recent years a clear development in apps that

can be used in drug discovery or chemistry [71], which

suggested to us that creating a mobile app would ensure

we reached a much wider audience. This work also fol-

lows on from our efforts to make other types of science

data more readily accessible such as green solvent data

[72] and rare and neglected disease data [73]. TB Mobile

was made freely available for iOS (iPhone, iPod, iPad) in

2012 and Android devices in 2013 and has been updated

regularly. It has been downloaded nearly 2000 times to

date and has been used by us elsewhere [33]. While

our initial apps have focused on performing one or two

functions we have proposed that apps can be used in

workflows [68,69]. With version 2 we have greatly ex-

panded TB Mobile so that not only does it provide a

look up of the molecules with known targets and other

information, we can also load a library of molecules

which can then be used for prediction. The prediction of

target-molecules is enabled using extended connectivity

fingerprints (ECFP_6) and a naïve Bayesian method and

can in turn output the data.

This report now highlights a more valuable component

of mobile app workflows to see if the compound had been

Figure 5 Exporting presentation graphics for a cluster. An example of clustering with the known targets of molecules highlighted in

different colors. This is enabled by selecting the icon on the top left and choosing the desired targets. Molecules from the collection are shown

with a white circle, molecules from the app have a grey background and compounds of interest for clustering have a blue background. The

cluster image can be expanded or contracted with a pinching motion on the screen. and molecules can be moved which causes the network

clusters to reconfigure. The cluster image can be output and printed as a PDF. (a) the interactive display; (b) previewing the PDF file, prior to

sending by email or printing.

Table 2 Testing the fingerprints used in TB Mobile 2.0

Dataset Leave one out
ROC published

Reference Leave one out ROC
in this study

Combined model (5304 molecules) ECFP_6 fingerprints N/A N/A 0.77

Combined model (5304 molecules) FCFP_6 fingerprints 0.71 [47] 0.77

MLSMR dual event model (2273 molecules) and ECFP_6 fingerprints N/A N/A 0.84

MLSMR dual event model (2273 molecules) and FCFP_6 fingerprints 0.86 [46] 0.83

Previously published Mtb HTS datasets were used for Bayesian model building. Published studies used FCFP_6 descriptors and several interpretable descriptors

were also included [46,47].
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previously identified by others, what the most similar mole-

cules are and their known targets which could help in lead

optimization. We also should highlight that there will be

compounds that we are unable to predict with the Bayesian

models in TB Mobile but they can be used for a similarity

searching (Table 1, Additional file 4: Figure S1-S20). This

may represent a useful way to identify compounds that

may be too dissimilar to compounds in TB Mobile. Clearly

the app was developed to suggest potential targets to assist

researchers in identifying potential targets. But it is a pre-

diction based on a relatively limited number of targets and

their known ligands and should be used with some caution.

We are not trying to predict affinity for the targets but to

narrow down the potential number of targets for experi-

mental verification.

In the process of curating data we have added an add-

itional 18 targets/mechanisms as well as a number of

additional compounds for other recent targets of interest

such as MmpL3 which should help balance the bias to-

wards targets that are over represented like InhA. We

previously suggested the need to normalize the similarity

search for the frequency of a target in the dataset which

essentially we have achieved with the Bayesian method

that builds models for the individual targets (Additional

file 5: Table S4). These efforts to collate data for individ-

ual Mtb targets may in itself be useful for drug design

purposes. The curation of the 20 molecule evaluation set

could in turn be added back into the app so that it now

includes the additional targets unique to this set.

Version 2 of TB Mobile expands on the delivery of high

quality data by adding some advanced workflow capabil-

ities, in a manner that is interactive and very accessible to

scientists who are not experts in cheminformatics. As data

regarding tuberculosis targets continues to be collated (e.g.

80 molecules are included here in total), we intend to re-

lease periodic updates of the app. Presently the source data

is delivered within the app itself, and so additional data is

made available by issuing updates through the iTunes

AppStore. In the future we may further enhance TB Mobile

so that it is capable of automatically adding new data from

an online source, as it becomes available, which will ensure

that the content is current.

The proof of concept for bringing together high qual-

ity cheminformatics and bioinformatics data and easy to

use visualization on a mobile device has been carried

out for the tuberculosis domain, since it is an area of

high interest on account of the emergence of new strains

of drug resistant bacteria and its massive toll on global

public health. We can also use the app as a test case to

develop such approaches on the desktop and enhance

the CDD database. We are also actively looking into

ways to bring this mobile app workflow to other do-

mains that have a tradition of relatively nonproprietary

data access, whether that be by creating a separate app

for each subject, or looking for ways to deploy the app

more generally.

We are further investigating ways to increase the plat-

form independence of this product. Mobile devices are

popular, and building a native app is the most effective

way to provide a comprehensive and responsive user ex-

perience. The high cost of porting the product to every

major device platform is prohibitive. Our development

priority targets Apple’s iOS platform as the most import-

ant category since it has an overwhelming advantage in

the western hemisphere, but the same cannot be said for

emerging economies, which is particularly pertinent for

a disease that has the most devastating effects on trop-

ical nations. For this reason we are actively monitoring

Figure 6 Principal component analysis. a. Using the 745 compounds in TB Mobile version 1 and the 60 additional compounds added in TB

Mobile 2. 3 Principal Components represent 88.4% of the variance. b. Using the 805 compounds in TB Mobile version 2 and the 20 additional

compounds used to evaluate it. 3 Principal Components represent 88.4% of the variance.
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the evolution of cross-platform and pure-web technolo-

gies. In this case we may update the Android version

content alone and not the features for the foreseeable

future.

As we have previously used the molecules in TB Mobile

to compare to other sets of molecules to assess how they

compare to target space using PCA [44,47], the addition of

the additional compounds increases the number of targets

covered. This updated dataset will be useful for future PCA

comparisons like those described here (Figure 6a and 6b).

Now that we have an open source version of the extended

connectivity fingerprints and naïve Bayesian algorithm, we

could incorporate other predictive models in TB Mobile

such as those we have described to predict whole cell activ-

ity alongside predicting targets [32,36,37,43-47,49]. We

could also extend the concept of TB Mobile to other dis-

eases, for example diseases like malaria might be obvious

examples where there is considerable recent data on

screening that could benefit from target prediction methods

to prioritize compounds.

Additional files

Additional file 1: Table S1. The 60 compounds and targets added into

TB Mobile version 2 are in Table S1.

Additional file 2: Table S2. MtbTarget distribution in TB Mobile

Vers.2.0.

Additional file 3: Table S3. The test set of 20 compounds and their

target and pathway details are shown in Table S3.

Additional file 4: Figure S1-20. The results of the similarity searches

for compounds in Table S3 are shown in Figures S1-20. The TB Mobile

app is freely available from the Apple iTunes AppStore [40].

Additional file 5: Table S4. The Bayesian models for targets are shown

in (a-e) and shows the target prediction charts and selected binders for

targets with at least 3 examples.
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