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Abstract. We investigate a strategy for reconstructing of buildings from
multiple (uncalibrated) images. In a similar manner to the Facade ap-
proach we first generate a coarse piecewise planar model of the principal
scene planes and their delineations, and then use these facets to guide
the search for indentations and protrusions such as windows and doors.
However, unlike the Facade approach which involves manual selection
and alignment of the geometric primitives, the strategy here is fully au-
tomatic.
There are several points of novelty: first we demonstrate that the use
of quite generic models together with particular scene constraints (the
availability of several principal directions) is sufficiently powerful to en-
able successful reconstruction of the targeted scenes. Second, we develop
and refine a technique for piecewise planar model fitting involving sweep-
ing polygonal primitives, and assess the performance of this technique.
Third, lines at infinity are constructed from image correspondences and
used to sweep planes in the principal directions.
The strategy is illustrated on several image triplets of College buildings.
It is demonstrated that convincing texture mapped models are generated
which include the main walls and roofs, together with inset windows and
also protruding (dormer) roof windows.

1 Introduction

The objective of this work is the automated construction of 3D texture mapped
models of buildings from a number of close-range photographs of the scene.
Much research into automation in the photogrammetry community has con-
centrated on reconstruction from aerial, i.e. long-range, views (e.g. [3,5,9,15,19,
20]). For close-range photographs there are several manual systems available
(e.g. Facade [27], Canoma [1], PhotoModeller [2]) which may be used to produce
excellent piecewise polyhedral and piecewise quadric scene models of buildings.
Automated close-range reconstruction of buildings [11,12,21,26], is less thor-

oughly explored than long-range. Two recent papers represent well the spectrum
of approaches currently available. Dick et al [12] cast the problem as model based
recognition, and attempt to fit very strong models using a Bayesian framework.
The models are highly tuned to the scene (e.g. a gothic window for a chapel)
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and the strong priors (e.g. on height and width) considerably narrow down the
search. The method recognises these models in a single image, and other images
may then be used to verify these recognition hypotheses. At the other end of
the spectrum Tao et al [26] cast the problem as that of fitting piecewise planar
patches over multiple views. The patches are determined by (over-) segmenting
a reference image using colour, and subsequently larger regions are assembled
by merging 3D patches. In contrast to [12] the method cannot proceed if only a
single view is available as it is completely rooted in multiple view stereo. Both
methods produce excellent results.
In this paper we explore a strategy that is located in the ‘middle’ of this

spectrum: we fit quite generic models (planes, polyhedra). These are weaker than
the scene specific models of [12] but stronger than the planar patches employed
in [26]. Our approach is inspired by that of Facade [27] and proceeds in two
stages: first, a coarse piecewise planar model of the principal scene planes and
their delineations is generated; and second, this coarse model is used to guide
the search for fitting more refined polyhedral models of the indentations and
protrusions from the coarse model, such as windows and doors.
The method is targeted on architectural scenes which typically contain planes

orientated in three dominant directions which are perpendicular to each other,
for example the vertical sides of a building and the horizontal ground plane. The
strategy assumes that the scene contains three such principal directions and that
the images contain sufficient information to obtain the vanishing points of these
directions.
At the technological level we considerably extend the one parameter ‘plane-

sweep’ method that has been used by several previous researchers for plane
fitting [4,8,11,16]. The extensions are of two types: previously the method was
employed with calibrated cameras with known external orientation. Here we are
in an uncalibrated setting, and the directions for the sweep are computed from
vanishing points in the images. The second extension is to sweep not only planes,
but also polyhedral models.

2 Preliminaries

In this section we describe the stages of camera computation, vanishing point
detection, image point and line matching, and the estimation of the 3D counter-
parts of the points and lines. This is the necessary starting point in preparation
for the ‘clothing’ of the scene by planar primitives. These stages do contain novel
elements, but they are not the main issue of this paper so will only be described
briefly in the following paragraphs. They will be illustrated for the image triplet
shown in figure 1.

Projective Reconstruction: Interest points are matched between the image
triplet and a trifocal tensor estimated using standard robust methods (see [17]
for full details and citations). The result is a camera corresponding to each image
and a set of 3D points, defined up to an unknown projective transformation of
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(a) (b) (c)

Fig. 1. Three images of a Merton College court acquired with a hand held low cost
Olympus digital camera. The image size is 1024× 768 pixels.

3-space. The projective reconstruction computed from the images of figure 1
has 684 3D points, which after bundle adjustment achieve a RMS reprojection
accuracy of 0.14 pixels, with a maximum error of 1.01 pixels.

Vanishing points: Much previous work has been devoted to automatic van-
ishing point detection (e.g. [6,7,10,18,22,23,25,28]), and we employ a standard
method where lines are computed independently in each image, and the van-
ishing points corresponding to the three principal directions estimated using a
RANSAC method. The typical line sets used to compute the vanishing points are
shown in figure 2. The vanishing points are then matched across the images by a
simple combinatorial algorithm. The principal direction (which is a point in 3D,
the pre-image of a vanishing point) is estimated by minimising the reprojection
residuals from the lines supporting each vanishing point.

(a) (b) (c)

Fig. 2. Vanishing point computation. (a), (b) and (c) shows the lines (in white) sup-
porting the vanishing points corresponding to the three principal directions for the
first image of figure 1. The thick line in (b) and (c) is the horizon computed as the line
through the vanishing points.

These principal directions (which are points at infinity) then play an impor-
tant role throughout the reconstruction strategy. For example, in determining a
vertical facade plane by a RANSAC search on 3D point triplets, the directions
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provide two of the points with only one point required to be sampled from the
matched scene points. This is described in section 3.

Metric rectification: The approach used here to upgrade the projective re-
construction to metric is based on two metric constraints: the three principal
and orthogonal scene directions; and that the cameras have square pixels. The
method proceeds in three steps. First, the three principal directions (points at
infinity) are computed from their images (the vanishing points). This deter-
mines the plane at infinity as the plane defined by the three directions, and
consequently the projective reconstruction is upgraded to affine. Second, the
principal directions are forced to be mutually orthogonal. This determines a re-
construction which differs from metric only by a scaling in each of the principal
directions. In the last step, these scalings are determined (up to an overall scale)
using the constraint that the camera pixels are square by linearly minimizing an
algebraic residual.
This linear, non-iterative algorithm yields a very good initial estimate of

the metric cameras, i.e. both the internal and exterior orientation. For exam-
ple the computed internal parameters for the first image are: principal point
(580.5, 349.0), aspect ratio 1.00055, angle between image axes 89.8944◦, and
focal length 1085.4 pixels. Their further improvement is possible by a bundle
adjustment constrained by orthogonality and square pixels assumptions. The
reconstructed 3D point cloud after the metric rectification is shown in figure 3.

Fig. 3. Two views of the cloud of 3D points after metric rectification. The spheres
depict the camera centers.

Line matching: We use a local implementation of the line matching method
of Schmid and Zisserman [24]. Line segments are detected independently in each
image, and then matched across the triplet using a combination of photometric
constraints and trifocal geometry. In total 434 line segments are matched. Special
attention is paid to horizontal lines as these tend to lie in epipolar planes for
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typical acquisition geometries. The resulting ambiguity is resolved by a search
to register the photometric neighbourhood – a ‘line sweep’.
We then carry out another stage of processing where the lines are classified

into disjoint direction sets and re-estimated with this additional constraint. This
is crucial for (i) accuracy of the estimated 3D lines, and (ii) organizing the
subsequent search for higher level building primitives (planes, polygons). In more
detail, from the intersection point of the line with the plane at infinity, the
lines are labeled (using χ

2 statistics on reprojection residuals) as belonging to
one of seven classes: principal direction (3), principal line (3), other (1). For
example if a line is vertical, then it intersects the plane at infinity at the vertical
direction. When it is re-estimated under this (hard) constraint, the minimization
of reprojection error is only over the two remaining parameters of the line. Figure
4 shows the resulting matched lines in 3D.

(a) (b)

Fig. 4. Reconstructed 3D lines, shown reprojected onto the first image (a) and in 3D
(b). Of 193 matched lines, there are 7 mismatches (mostly due to repeated structure
on the lawn). Of the rest, 168 lines go through a principal direction (e.g., vertical), 19
go through a principal line (e.g., are parallel to a wall), and none is unconstrained.

3 Coarse Model Fitting

The objective of this section is to automatically construct a coarse polyhedral
model of the scene, given the cameras, 3D points, directions and lines, whose
computation was described in the previous section. Numerous methods have been
given for plane and polyhedral fitting and we employ these with the addition of
direction constraints.
In overview we organize the search in the following stages: first we search for

planes intersecting two principal directions (typically walls). The intersections
of these planes give a partial delineation, and visibility is then used to determine
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which parts of the delineation are included. Second, we search for planes incident
with the selected wall planes and intersecting one principal direction (roofs). The
vertical walls are consequently completely delineated: above by the roof plane,
below by the ground plane, and laterally by other planes or the image boundary.
To give an example of a plane search, suppose we are searching for the vertical

wall. Two types of methods are employed. One is the standard RANSAC [13]
robust estimation. The novelty here is that samples are not simply based on three
random points, but on one of the following particular samples: one point and
a 3D line of the appropriate class (in this case not oblique); one point and the
appropriate line at infinity (the one corresponding to vertical planes); two points
and the appropriate point at infinity (e.g. the vertical direction). This ensures
that only planes of the required type are estimated, and has a considerable
advantage in reducing complexity – e.g. one finite 3D point match is sufficient
to instantiate a plane. The second type of method is plane sweeping which is
described in more detail below. Both types of method are attempted and the
result of the most successful is used. The other planes (e.g. the roof planes) are
searched for in a similar manner.

(a) (b) (c)

Fig. 5. Coarse model: wire frame projected to image 1 (a), shaded (b) and texture
mapped (c) 3D model.

In most cases to date finding the principal vertical planes is straightforward.
The ground plane often contains fewer point and line matches, and is found by
plane sweeping. Once the vertical and ground planes are known, the search for
roof planes is simpler because much of the erroneous data can now be ignored.
The coarse model is shown in figure 5.

3.1 Plane Sweeping

The objective here is to determine scene planes by a one parameter search (the
sweep) of a virtual plane. The support for the virtual plane as it is swept is
measured using the planar homography induced by the plane to define a point-
to-point mapping between the images, and aggregating cross-correlation scores
directly from the images. The novelty of the application here is that we define the
sweep about a line at infinity. A line determines a plane up to one parameter,
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superimposed images plan view
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Fig. 6. Plane sweep under translations along a principal scene direction. (a,b,c) show
images in figure 1a and 1b superimposed by a homography map corresponding to
a translating a virtual scene plane. This scene plane is parallel with the left wall.
The right-hand figures illustrates position of the wall and swept plane from a plan
view. (d) shows a plot of the score function against translation. The circles correspond
to the translations in (a,b,c), respectively. The middle translation is the one which
best registers the planes, and this is visible in (b) where the plane of interest is most
“focussed”.
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and in this case the parameter defines a translation of the plane since planes
through a line at infinity are parallel.
For example, to search for the ground plane, the horizontal line at infinity is

used, and the resulting sweep is in the vertical direction across the scene. When
the swept plane corresponds to the actual ground plane, then image regions
mapped by the homography will be highly correlated in the region correspond-
ing to the ground. By determining the swept plane which produces the highest
correlation (measured by an appropriate robust score function described below)
the true position of the ground plane is determined. The sweeping is illustrated
for one of the principal directions in figure 6.
Plane sweeping is able to determine scene planes even in the absence of any

point or line correspondences for that plane (as are required in RANSAC fitting).
The cross-correlation is measured as follows: first image points at significant

image gradients are determined (e.g., [14]); second, a sample of these points are
selected as the key points at which to measure the cross-correlation. Only these
points are used in order to improve the signal to noise ratio by discarding uninfor-
mative points in homogeneous image regions. Approximately 10% of image pixels
are selected as the keypoints. At each of the key points the cross-correlation is
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o

re

translation

mode B

mode A

(a) (b) (c)

(d) (e)

Fig. 7. (a) Aggregated similarity score in the neighbourhood of the wall plane com-
puted over three views. Mode A corresponds to the wall plane, and B to the plane
of the windows. The magnitude of the similarity scores for individual key points are
represented by pixel darkness in (b) for the swept plane at the position of mode A,
and (c) for the position of mode B. The key points belonging mostly to the wall plane
score highly (are dark) in (b) and those belonging to the window plane score highly
in (c). Points belonging to windows, (d), are obtained by thresholding depths at the
value denoted by the cross in plot (a). (e) Rectangles robustly fitted to clustered points
shown on the rectified facade.
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computed between the point’s neighbourhood and the corresponding neighbour-
hood in the other image mapped by the homography induced by the sweeping
plane. A neigbourhood size of 7× 7 pixels is used here. The cross-correlation is
computed between all pairs of images, and the result averaged. A score function
consists of the cross-correlations averaged over all points as a function of plane
translation. Typical score functions are shown in figure 6.

Performance assessment. In practice plane sweeping is a very powerful fitting
method, and we may ask why it is so successful. There are two main reasons: (i)
it correctly models and corrects for distortion of the correlation region between
the image, in a similar manner to wide baseline stereo matching (cf. stereo
rectification which doesn’t correct) – this is the reason that the matching of
individual key points is so precise (see figure 7b and c), and (ii) the scoring
function aggregates over a large number of points in order to estimate depth (cf.
traditional stereo where the depth of each point is estimated independently).

4 Refinement

In this section we refine the coarse polyhedral model computed in the previous
section by attempting to fit two types of polyhedral model to account for de-
viations from the plane. The models are a rectangular block (this fits to doors
and windows, described in section 4.1), and a wedge block (this fits to dormer
windows (in roofs) and wall protrusions, described in section 4.2).
These models are quite generic, and in contrast to the approach of [12] there

is no use of strong priors to define (for example) their aspect ratio. Fitting is
initiated in regions on either side of the fitted plane where there is evidence of a
perturbation from the plane. All models are fitted by variations on sweeping as
described below.

4.1 Fitting Rectangular Block Models

The idea is to determine regions of the plane which do not coincide with the
coarsely fitted scene plane, and then to model these regions as rectangles aligned
with the principal scene directions. Note, each region is modelled independently
and from depth information alone.
Points which lie behind the fitted plane (indentations) are determined by

thresholding depths of individual keypoints. The threshold value is obtained
from the score function recomputed for the image region corresponding to the
current facade, see figure 7a. Two modes are clearly discernable in the function
– one corresponding to the coarse facade plane, and the other to the window
plane.
The keypoints labeled by thresholding as being behind the wall are shown

in figure 7d. Contiguous regions (corresponding to each of the windows and
doors) are then computed by robustly clustering these points. The fitted plane
has essentially simplified this task to that of clustering a set of pixels in a 2D
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Fig. 8. Refining the position of the vertical window boundaries. (a) Search regions
consisting of two adjacent rectangles which are translated horizontally. In rectangle
A the similarity score is based on the wall plane. In rectangle B the window plane is
used. (b) plots the two scores and their product, which peaks at the actual window
boundary location (the dashed line). (c) For non-occluding window edges (the left one
in this case), a gap is inserted between the rectangles. The width of the gap is the
distance between the wall and window planes projected to the image.

initial

wedge front plane

axis
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segment
hypothesized

segment
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Fig. 9. Fitting a wedge model (to reconstruct a dormer window). (a) Fitting is initiated
if a single oblique 3D line segment (depicted in yellow) is detected. A symmetry related
line segment is determined by searching for intensity gradient maximum, the gradient
is summed along the hypothesized line segment. (b) The detected symmetric segment.
(c) The top and lower line segments are determined by a similar search. (d) The model
is then completed in a straightforward manner, using the known roof plane.

image as the analysis can be carried out on a rectified version of the image
(where the principal scene directions are orthogonal in the image). Standard
image processing methods, such as simple operations of binary morphology, are
used. Rectangular boxes are then fitted to the clusters. The resulting windows
boundaries are shown in figure 7e.
The window boundaries are then refined using a further correlation based

search, but now concentrated in the vicinity of the putative window boundary.
For each boundary a one-dimensional search is carried out perpendicular to that
boundary. For example for a vertical boundary the search is horizontal. Two
score functions are computed, one based on the homography induced by the
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wall plane, the other based on the homography induced by the window plane,
as illustrated in figure 8. For the wall plane the score is high when the pixels in
the rectangle belong to the wall and small otherwise. Conversely, for the window
plane homography the similarity score is high for window pixels, and low for wall
ones. The product of these two scores peaks at the actual window boundary, as
shown in the figure. In essence this is another sweep-like fitting of a model.

4.2 Fitting Wedge Models

Wedge shaped protusions are frequently found in architecture, for example they
might form part of the roof or a bay windows. We illustrate here how a wedge
model is instantiated and fitted automatically in order to reconstruct dormer
windows in the vicinity of a roof plane.
The method is demonstrated in figure 9. Initially, all reconstructed scene

lines that intersect exactly one principal line are considered as belonging to
a potential wedge shape. The principal line of the segment defines the wedge
front plane. If the other wedge edges have been matched and are available in
3D, finishing the wedge is straightforward. However, usually these lines are not
available – for example in figure 1 many dormer edges are not even detected
by the Canny edge detector due to the complicated roof texture. In this case
a search for a line segment symmetrical to the initial segment is performed.
The search is parametrized by a single parameter (the horizontal position of the
symmetry axis) and the true location maximizes the intensity gradient along
the segment. In a similar manner, the remaining wedge edges are localized. All
dormer windows in figure 1 are successfully reconstructed.

4.3 Results

The facade model updated with models found in sections 4.1 and 4.2, and texture
mapped from the appropriate images is shown in figure 10.
The results of applying the same algorithms (coarse then refinements) to an

another image triplet are shown in figure 11. In this case, a fitting algorithm
similar to one described in Section 4.2 automatically finds the protrusion in
the left wall. The algorithm works on the same principle, but uses a different
protrusion model. It is instantiated by the horizontal oblique edge at the top
of the protrusion. The dimensions of the protrusion are then found by sweeping
hypothesized edges in directions determined by the initial edge and the principal
directions. High gradient along the swept edge is used as evidence for the true
edge. Again, the classification of principal directions is crucial here.

5 Discussion

In this work we have systematically explored a particular strategy for scene
reconstruction.
Clearly a strategy of this type is not applicable to non-urban scenes (trees,

mountains) or cluttered interiors (rooms with tables, table legs, piles of books).
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(a) (b) (c)

(d) (e)

Fig. 10. The automatically computed 3D model augmented with indented windows
in the vertical planes, and dormer windows in the roof. (a) wire frame projected onto
the image, (b) shaded wireframe, (c) textured mapped 3D model. Compare the same
view of the coarse model (d) and the augmented final model (e) – explicit modelling of
dormer windows and indented windows on the walls is clearly an improvement. Note,
in textured models the occluded parts of the roof and wall planes (e.g. behind the
dormer windows) are removed and appear as white.

A more interesting question is where it will fail in its targetted domain of ar-
chitectural scenes. By and large, and for obvious reasons, many buildings have
many horizontal and vertical parts (bricks, edges, windows, doors) so that a ver-
tical direction and line at infinity for horizontal plane may be estimated from
images. The weakest point of the current strategy is that two orthogonal hor-
izontal directions are not always available in the scene, e.g., on an octagonal
building, or a circular church. The lack of these directions affects the strategy at
several points. Fortunately, alternatives are available and these are currently be-
ing incorporated so that the strategy is not so limited. For example, when plane
sweeping for perturbations the direction of the sweep can simply be chosen as
perpendicular to the planes of the coarse geometric model.

One of the important contributions of this work is the development of fitting
geometric models by sweeping, and three new techniques are described in the
previous sections, namely sweeping scene planes about a line at infinity (used
for obtaining or refining positions of the main walls in section 3.1), correlation
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 11. (a,b,c) Input images of another court of Merton College, Oxford, acquired with
the same camera as figure 1. Reconstruction results: (d) reconstructed and classified
line segments, (e) model wire frame projected onto image 1, (f,g) final model with
indented windows and protrusion reconstructed.

based search for building edges using translating rectangles and inter image
homographies (used for refining window boundaries in section 4.1), and search for
local gradient maxima along translating line segments (used for dormer window
reconstruction in section 4.2). They have much in common: (i) A single unknown
parameter, making the search fast and simple. (ii) Evidence is aggregated over
relatively large region of interest, enabling features to be found that would not be
detected by local operators such as Canny edge detectors or correlation based
stereo on individual pixels. (iii) Results of the previous reconstruction stages
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allow sweep algorithms to focus only on relevant image parts, achieving a high
signal to noise ratio.
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