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A scheme to answer best-match queries from a file containing a collection of objects is described. A 

best-match query is to find the objects in the file that are closest (according to some (dis)similarity 

measure) to a given target. 

Previous work [5, 331 suggests that one can reduce the number of comparisons required to achieve 

the desired results using the triangle inequality, starting with a data structure for the file that reflects 

some precomputed intrafile distances. We generalize the technique to allow the optimum use of any 

given set of precomputed intrafile distances. Some empirical results are presented which illustrate 

the effectiveness of our scheme, and its performance relative to previous algorithms. 
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1. INTRODUCTION 

In this paper we are concerned with the best-match problem (also known as the 
“nearest neighbor problem” [35], or the “closest point problem” [31]). Given a 
file of objects, the best-match problem is to find the ones which are most similar 
or closest to a given target (or query) according to some (dis)similarity measure. 
This type of retrieval arises in many applications.’ In information systems, 
documents in a file are often ranked in order of decreasing similarity with a given 
query. One way of computing the similarity between a document and the query 
is to count the number of terms in common between them; the documents 
presented to the user first are those that contain the greatest number of terms 
specified in the query. The best-match searching procedure in such ranked output 

’ Depending on the application, the objects could refer to documents [30,38,39], records [42], patterns 

[15], points [31], strings [17-191, trees [32], graphs [6, 121, and so forth. 
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retrieval systems identifies the terms in common between the query and each of 
the documents in the file [36]. In molecular biology, to gain information about a 
newly sequenced protein, biologists compare the protein’s amino acid sequence 
against those of many known proteins, searching for ones with very similar 
sequences. From such sequence similarities it is often possible to infer similarities 
in the structures or functions of the related proteins [18, 191. In pattern classi- 
fication, a nearest neighbor assignment strategy is widely used: an unlabeled 
sample is assigned to the category to which a majority of its nearest neighbors 
belong [8, 251. In many other areas, the best-match type algorithm has been 
found effective for estimating multivariate density [4], minimizing head 
movement on direct access I/O devices [25], or sequencing pens for plotting 
devices [ 31. 

1 .l Previous Techniques for Best-Match Retrieval 

One straightforward way of solving the best-match problem is to compute the 
(dis)similarity value between each object of the file and the target, and then to 
search for the objects with maximum similarity (or minimum dissimilarity). The 
major problem with this approach is its computational expense, particularly when 
there are many targets to be identified and the file is large. To reduce computa- 
tional effort, many techniques have been presented in the literature. 

Smeaton and van Rijsbergen [35], Murtagh [22], and Perry and Willett [27] 
employ inverted files for best-match searching in document retrieval systems. 
The search procedure starts with the shortest inverted file lists and calculates an 
upper bound during (or before) the processing of each query list. The bound 
represents the maximum possible similarity value for those documents that have 
not yet been inspected; if it is less than the similarity for the current nearest 
neighbor, no further documents need to be processed because none of them can 
possibly be a better match. Various upper bounds have been derived by the 
authors; the similarity measures applied include Dice, Overlap, Cosine coeffi- 
cients, etc. (see [30, 391 for definitions of these measures). Other strategies that 
use bounding procedures to eliminate (dis)similarity computation in various 
contexts have been suggested by Mohan and Willett [21], Fukunaga and 
Narendra [15], Feustel and Shapiro [12], to name a few. Lucarella, in [20], 
describes a document retrieval system based on inverted file organizations and 
nearest neighbor search techniques. 

Special data structures other than inverted files have also been proposed. 
Shamos and Hoey [31], for example, employ the Voronoi diagram for the best- 
match problem for points on a plane. Ito and Kizawa [17] devised HL files 
(Hierarchically organized files based on a Linear ordering) for spelling correction 
applications. They give a recursive procedure to search the file for retrieving 
similar strings. Friedman et al. [ 141 partition a d-dimensional feature space using 
the k - d tree method and search by descending the tree. Eastman, Weiss and 
Zemankova [g-11] generalize k - d tree methods to high dimensional space, 
which are particularly useful for document retrieval. 

Another strategy for the best-match problem is to use hashing. Du and Lee [7] 
use Gray code as a multikey hashing function for finding closest symbolic records. 
The dissimilarity measure they use is the Hamming distance. Bentley et al. [4], 
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Rohlf [29], and Murtagh [ 231 give algorithms for points in Euclidean space. Their 

algorithms work by hashing points onto directly addressable cells and then 
searching for best matches in the same or closely adjacent cells. An excellent 
survey on using tree structures and hashing techniques for best-match retrieval 
can be found in [24, 251. 

In contrast to the above approaches, many of which need assumptions such as 
that the (dis)similarity measures have finite dimensionality (e.g., Euclidean), or 
that the objects can be ordered linearly, Burkhard and Keller [5] give an algorithm 
based on the weakest possible assumption on dissimilarity measures, namely, 
they only satisfy the fundamental properties of a distance metric. The authors 
precompute the distances of all objects in a file to a randomly chosen object, 
called the reference point, and develop cut-off procedures to eliminate certain 
distance calculations by simply using the triangle inequality. Shapiro 1331 later 
improved their method by having more reference points and by deriving stricter 
cut-off criteria for eliminating objects. He concluded that large improvements 
can be achieved by the proper choice and location of reference points. 

1.2 Motivation and Assumptions 

In this paper we introduce new techniques for best-match retrieval, assuming 
with [5, 331 that only distance metric information is available. We generalize 
Burkhard and Keller’s methods to make use of an arbitrary set of precomputed 
distances. Our motivation for considering arbitrary sets is that at times one may 
be given a set of distances which have been calculated, rather than being able to 
choose which ones to calculate. Also, in practice, files are dynamic rather than 
static-objects can be inserted or deleted from a file or may be updated in such 
a way that distances change. Hence, as time goes on, certain precomputed 
distances may become absent or obsolete, and thus our techniques can apply. 

Our cost assumption is that distance computation is the dominant cost, so our 
goal is to minimize such computation during searching. This assumption is 
reasonable when object comparison is an extremely time-consuming job (for 
example, when retrieving best matches from a sequence database, where it can 
take seconds or minutes to compare even one protein or RNA structure against 
another on a current model VAX [ 18, 321.) 

The paper is organized as follows. Section 2 reviews Burkhard and Keller’s 
methods. Section 3 describes our approach, where we use a Floyd-Warshall 
[l3, 411 style algorithm to approximate absent intrafile distances, and develop a 
search algorithm that best uses the given distance information. Section 4 reports 
some experimental results. We conclude the paper in Section 5. 

2. BURKHARD AND KELLER’S METHOD REVIEWED 

Let 9 be a file of n objects 01, 02, . . . , 0,. The best-match problem is defined 
as follow3 Given a target T, find the pairs (T, 0), VO E q with minimum 
distance. The distance between two objects 0 and 0’ is given by the value of a 
metric d(0, 0’). Specifically, a metric is a function d that takes pairs of objects 
into nonnegative numbers, satisfying the following three properties: for any 
objects 01, 02, 03, d (O,, 02) 2 0, and d (O,, 02) = 0 iff O1 = O2 (nonnegative 
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1. 
2. 

3. 
4. 
5. 

precompute d(0, O’), V 0 E 3, for a randomly chosen reference point 0’ E 3; 
coq;t$coT, O”); [ := d(T, 0’); B := {OO}; I := 3 - {OO}; 

. 

use a heuristic (described below) to pick an object 0 in I; 

update (B, 0, T, 0; 
Z := (0 1 (d(T,O) is not computed) A (Id(O,O’) - d(T,OO)l < E)} 

end; 

Fig. 1. Basic search algorithm of Burkhard and Keller. 

definiteness); d(O1, 0,) = d(Oz, 01) (symmetry); d(O1, 02) 5 d(O,, OS) + 
d( 03, 02) (triangle inequality). 

Using the terminology of [5, 331, [ = the current minimum distance to T, 
I3 = the set of current best matches, and the function update (B, 0, T, E) tests 
whether d(T, 0) 5 [ and, if so, updates B and [. Let I = the set of candidates 
(i.e., objects that haven’t been eliminated, nor been compared). Burkhard and 
Keller’s algorithm proceeds in stages and is paraphrased in Figure 1. 

Step 3 picks objects according to the criterion: ] d(Xk, 0’) - d( T, 0’) 1 5 

I d(&+l, 0’) - d (T, 0’) 1, where X,, k = 1,2,3, . . . , is the object picked at stage 
k. Observe that I d (0, 0’) - d (Z’, 0’) 1 is a lower bound for d (T, 0). The heuristic 
used picks the object with the smallest lower bound first. Each stage eliminates 
objects whose lower bounds are already greater than [, the current minimum 
distance (step 5, cut-off criterion). The algorithm stops with the closest objects 
being in B and the minimum distance being ,$. 

Shapiro improves step 1 above by precomputing d(0, O’), VO E 9$ i = 1, 2, 
. . . ) s, for s reference points Oi E 52; Step 2 is then refined by computing the 
distances between T and the s reference points, and 5 is set to the minimum of 
these distances, In step 3, objects are chosen such that ] d(Xk, 0’) - d(T, 0’) 1 

5 ldL&+~, 0’) - d(T, Ol) 1, and the I obtained at each stage is {O ) (d(T, 0) is 

not computed) A (V:==,( I d(0, 0’) - d(T, 0’) ] 5 t))] (cut-off criterion). 
Let us construct a weighted graph on Sz; which reflects precomputed informa- 

tion, such that there is an edge e between Oi and Oj iff d (Oi, 0, ) has been 

computed, and the weight of e, denoted w(e), is d(Oi, 0, ). It can be seen that 
Burkhard’s algorithm starts with a star, whereas there are s stars for Shapiro’s, 
each centered with a different reference point. In the next section we relax this 
requirement by accepting any topology on the weighted graph and present an 
algorithm that achieves the optimal approximation for those unknown intrafile 
distances. 

3. OUR APPROACH 

Our data structure must handle an arbitrary set of precomputed distances and 
allow us to approximate, with the greatest possible accuracy, other distances. We 
call our structure an approximate distance map (ADM) for x which is an n X n 
matrix with each entry ADM[i, j] being either the exact distance between objects 
Oi and Oj , or (if that is not computed) being a lower bound for d(Oi, Oj ). This 
bound may be rather crude (i.e., too low) initially, and it will be gradually refined 
after new distances between T and objects in Y are computed. 
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To compute the ADM, consider the weighted graph constructed on 97 Define 
a path from Oi = Oi, to Oj = Oin as a sequence of distinct objects Oi,, O,, . . . , Oin 
such that (Oi,, Oi,], (Ok, Oi,), . . . , (Oi,-,, Oi,,) are edges in the graph, and the 
weight of the path is the sum of the weights of its constituent edges. 

LEMMA 1. (Generalized Triangle Inequality). Suppose there is a path P from 

Oi to Oj. Let .G be the edge of maximum weight in P. Then 

d(Oi, Oj) 2 W(6) - C w(e). 
&P-Ii) 

PROOF. By induction on the number of objects in P and repeated application 
of the triangle inequality. Cl 

Lemma 1 states that one can obtain a lower bound for d (Oi, Oj ) by applying 
the triangle inequality to a path from 0; to Oj. Of course, such a bound is useless 
if the term on the right-hand side of the inequality is less than or equal to 0. 
Generally, we want this bound to be as high as possible. Let P(i, j) be the set 
containing all paths from Oi to Oj. We define ADM[i, j] i’.o be the maximum 
bound obtained from all paths in P(i, j). So, ADM[i, j] 5 d(Oi, Oj). By the 
triangle inequality, ADM[i, j] = d(Oi, 0;) if edge (Oi, Oj] E P(i, j). 

It is impractical, in general, to enumerate all paths in P(i, j ) to get ADM[i, j], 
because there may be an exponential number of them. Instead, we use a dynamic 
programming technique similar to the transitive closure algorithm [41] to com- 
pute the ADM. To facilitate the computation, we also maintain an additional 
matrix MIN, where MIN[i, j ] is the minimum weight of any path from Oi to Oj . 
Thus, MIN[i, j ] gives the least upper bound of the distance between Of and Oj, 
given the current distance information. So, MIN[i, j] > d(Oi, Oj). Clearly, 
MIN[i, j] = d(Oi, Oj) if {Oi, Oj) E P(i, j). 

Following [2], let ADM,[i, j] (respectively, MINJi, j]), 0 5 k 5 n, be the 
greatest lower bound (respectively, least upper bound) of any path from Oi to Oj 
that does not pass through an object numbered higher than k. 

LEMMA 2. Let Sk(i, j ), 1 5 k 5 n, denote the set of paths going from Oi to 0, 
and then from Ok to Oj, without passing through an object numbered higher than 
k. Suppose Sk(i, j ) # 0. Let Bk(i, j ) be the greatest lower bound obtained by 
applying the generalized triangle inequality to all the paths in Sk(i, j). Then 

ADMkml[i, k] - MINkeI[k, j] 
ADMkwl[ j, k] - MINk-, [k, i] 

for 1 5 k 5 n 

PROOF. Let P E &(i, j ) be a path yielding Bk(i, j). Let P, be the segment of 
P between Oi and Ok and Pz be the segment of P between Ok and Oj. Suppose 
first that the edge G of maximum weight is in P,. By Lemma 1, we get 

Bk(i, j) = w(e) - C w(e) - C w(e). 
eEP*-(iI C?EPZ 

Claim that 

ADMkdl[i, k] = w(e) - C w(e). 
c&P,-lil 
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Proof of Claim. By induction, 

ADMk--l[i, k] I w(e) - 2 w(e). 
&P1-{ij 

If inequality held, we could construct a path P’ in Sk(i, j ) by concatenating a 
path Pi, which yields ADMkpl[i, k], and Pz. The bound achieved by P’ would be 
greater than Bk(i, j ), contradicting the definition of Bk(i, j ). 0 

By an analogous argument, 

MINkel[k, j] = C w(e). 
&P, 

Thus, Bk(i, j) = ADMkpl[i, k] - MINLel[k, j]. 
If 6? is in Pp, symmetric arguments yield Bk(i, j ) = ADMkml [j, k] - 

MINkeI[k, i]. q 

From the lemma above, we have, for each k, 

ADMk-1 [i, j 1 
ADM,[i, j] = max ADMk-,[i, k] - MINLpl[k, j] 

ADMkpl[j, k] - MINkel[k, i] 

Moreover [ 21, 

MINk[i’ j1 = min 
MIX-1 16 j 1 
MINkel[i, k] + MINk-1 [k, j] 

These formulas give rise to a Floyd-Warshall style algorithm for computing 
the approximate distance map. The procedure is given in Figure 2.2 

Using induction on k, we obtain 

THEOREM 1. Algorithm APPROXIMATE correctly computes matrices ADM 
and MIN; that is, the lower (respectively, upper) bound of any path going from 
Oi to Oj is less (respectively, greater) than OF equal to ADM[i, j] (respectively, 
MIN[i, j]), given the distances that have been computed. 

Thus, given a weighted graph G of arbitrary topology (i.e., an arbitrary set of 
precomputed distances), we can apply algorithm APPROXIMATE to it and 
obtain two matrices ADM and MIN. Theorem 1 guarantees that each entry 
(i, j ) in the matrix ADM (respectively, MIN) represents the greatest lower bound 
(respectively, least upper bound) of all paths between Oi and Oj in G. Using the 
bound information, we are able to eliminate the largest possible number of objects 
that could not be a best match, given the computed distance information. 

3.1 Searching Using an ADM 

We first augment the ADM with an additional row, row n + 1, for object T 
(i.e., treating T as 0,+1) with ADM[n + 1, i] being the current greatest lower 

‘Due to the symmetry, one may improve the running time of the presented algorithm by only 
computing the lower triangular part of the matrices. 
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for i := 1 to n do 
for j := 1 to n do 

if d(Oi, Oj) is known then begin 
ADM[i, j] := d(Oi, Oj); MZN[i,j] := d(Oi, Oj) 

end 
else begin 

ADM[i, j] := 0; MZN[i, j] := co 
end; 

for k := 1 to n do 
for i := 1 to n do 

for j := 1 to n do begin 
ADM[i, j] := max (ADM[i, j], ADM[i, k] - MZN[L, j], ADME, k] - MZN[b, i]); 
MZN[i, j] := min (MZN[i, j], MZN[i, k] + MZN[k, j]); 

end: 

Fig. 2. Algorithm APPROXIMATE. 

bound for d (T, Oi).3 After comparing an object with T, we update I so that it 
contains only the objects 0;‘s whose ADM[n + 1, i] is still less than or equal 
to [. Figure 3 gives our search algorithm. 

The algorithm picks candidates (i.e., objects that are still in I) according to 
the following heuristic (step 3). It picks the first object randomly, and in 
subsequent stages, it selects an object Oi such that the lower bound of the distance 
between Oi and the given target T is minimized based on all previous candidates 
(i.e., ADM[n + 1, i] 5 ADM[n. + 1, j], VOj E I). The object having the least 
lower bound is expected to be the closest object to T. If several candidates have 
the same lower bound, the algorithm selects one that has the least upper bound 
(i.e., the one with the smallest MIN value). The reason for doing so is that the 
smaller the difference between the lower and upper bounds, the more precise the 
estimated distance is. Ties on the difference are broken arbitrarily.4 

It is worth noting that, starting with an optimal approximate distance map 
(Theorem l), the algorithm developed here is the best possible for the best-match 
problem, in the sense that given an object at stage i, it throws out all the objects 
that can be inferred to be irrelevant to the solution at that stage. What may 
influence the performance of the algorithm is the heuristic utilized in selecting 
objects at each stage-the better the heuristic (or the better our luck), the better 
performance the algorithm achieves. 

3.2 Updating Augmented ADM and MIN 

Each computation of the distance between T and some object 0, may lead to 
modifications of the augmented ADM and MIN. Observe that the value of 
d(T, Ok) affects only the paths going through (T, OkI. Let L (respectively, U) be 
the new lower (respectively, upper) bound of the paths from 0; to 0, via {T, Ok); 

- 
3 We discuss how to update such an augmented ADM in Section 3.2. For now, let us assume that this 
map can somehow be maintained. 

4 We have tested several other heuristics for picking candidates, such as picking objects with the 

greatest lower bound, picking objects with the least (or greatest) upper bound, or picking objects at 

random. It is shown [40] that the heuristic presented here (i.e., picking objects with the least lower 
bound) achieves the best performance over all other heuristics. 
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5. 

6. 

( := co; B := 0; z := F. 

initialize and approximaie ADM and MZN as done in Figure 2, and 

augment ADM and MZN with an additional row for object T; 
while Z # 0 

use a heuristic (described below) to pick an object 0 in I; 

update (B, 0, T, 0; 
update the augmented ADM and MZN; 
Z := {Oi 1 (d(T, Oi) is not computed) A (ADM[n + 1, i] 5 [)} 

end; 

Fig. 3. Our search algorithm. 

as in Lemma 2, we obtain 

L = max 
ADM[1’, n + l] - d(T, O/J - MIN[K, j] 
ADM[i k] - d(Z’, Ok) - MIN[n + 1, j] 

ADM]j, k] - d(T, 0,J - MIN[i n + l] 

.ADM[n + 1, j] - d(Z’, Ok) - MIN[1’, k] 

*d(T, Ok) - MIN[ i, n + l] - MIN[k, j] 
d(T, 0,J - MIN[i k] - MIN[j, IZ + l] 

and 

U = min 
1 

MIN[1’, n + l] + d(T, Ok) + MIN[k, j] 
MIN[i, k] + d(T, Ok) + MIN[n + 1, j]’ 

Thus, after computing d(T, Ok), to find the new (tighter) bounds for the 
distances between objects Oi, Oj E (T) U z it suffices to compare ADM[1’, j] 
(respectively, MIN[& j]) with L (respectively, U) (recall that ADM[n + 1, ;] 

always gives the current greatest lower bound for d(T, 0;)). 

Note that we update only the pairs whose distances are still unknown. For 
those pairs of objects whose distances have been calculated, the distance values 
already represent both the best lower bounds and upper bounds, and hence they 
need not be modified. Calculating L and U takes only constant time. Thus the 
overhead incurred by updating a map is negligible when most intrafile distances 
are present. 

If, however, there exist a large portion of object pairs in the file whose distances 
are absent, the recomputation would be quite expensive. In such a situation we 
could update the bounds for pairs (T, Oi), Oi E 3; while keeping the initial bounds 
for (Oi , Oj ), Oi, Oj E St (this strategy is similar to the one suggested in [l] for 
maintaining shortest paths in a sizable graph), or could only update the bounds 
for pairs (T, 0), where 0 is still a candidate. In [34], both the updating policies 
have been shown empirically to be very competitive to the one that globally 
updates the bounds for all object pairs (including the target), yet saving a 
significant amount of computation time. 

4. PERFORMANCE ANALYSIS 

A series of experiments were performed to evaluate the effectiveness of our search 
algorithm, as well as its performance relative to those proposed previously. 
Table I shows the basic parameters used in the experiments. 
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Table I. Experimental Parameters 

Parameter Meaning 

Size Number of objects in the file 
Density Portion of known distances in the map 

MinDistance Minimum distance between objects 

MaxDistance Maximum distance between objects 

[MinDistance, MaxDistance] specifies the range over which distances between 
objects (including the target) are distributed. The Density parameter represents 
the portion of known distances in a map, and is computed by dividing the number 
of object pairs with known distances by the total number of object pairs in the 
corresponding file. To compare different algorithms for the best-match query, 
the following metric was used: 

pERl.70 = NumCompared X 1007 
Size 

0 

where NumCompared is the number of objects actually compared. PERFO stands 
for PERcentage of brute Force cost (i.e., the cost of comparing the target with 
every object in the file). One would like this percentage to be as low as possible. 

4.1 Uniformly Distributed Distances 

In the first set of experiments we showed how varying densities and file sizes 
impact the performance of our search algorithm. The sample maps used in the 
experiments were synthesized as follows. We used a random-number generator 
to produce interobject distance values for each pair of objects (including the 
target), where the values were distributed uniformly over some positive interval. 
Each such value was inserted into a (Size + 1) X (Size + 1) auxiliary map, 
provided that it did not violate the triangle inequality. After generating the map, 
we randomly selected Density X (Size X (Size - 1))/2 entries from the lower 
triangular part of the Size x Size matrix of interobject distances, excluding the 
target. (Entries in the (Size + 1)th row and (Size + 1)th column represented 
distances between the target and objects in the file.) 

Figure 4 presents the result, where distances between objects (including the 
target) were drawn from the range [0, 10000].5 Files with sizes 100,150, 200, 250, 
300 were examined. It can be seen that PERFO drops (i.e., improves) as the 
density of a map increases; the improvement slows down after the density is 
greater than 0.3. No trend is evident with regard to file sizes, though PERFO 
seems slightly lower (i.e., better) for larger files. This probably happens because 
the larger the file, the more entries need to be generated. Since the distance 
range is fixed, it becomes more likely that several objects have the same distance 
from the currently examined object (which may cause them to be eliminated at 
the same time). 

One interesting finding is that most irrelevant objects tend to be discarded in 
the initial stages of a search. For example, for Density = 0.9 and Size = 150, our 

‘In this, and subsequent figures, each point of the graph represents the average value over thirty 

maps. 
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Density 

Fig. 4. Effect of densities for uniformly distributed distances; distances 
between objects (including the target) are drawn from [0, lOOOO]. 

algorithm completes a search in 27 stages, eliminating 123 objects on the average, 
among which nearly 80 objects are eliminated in the first 10 stages; only 
43 objects are discarded in the remaining 17 stages. A possible explanation for 
this behavior is that most objects whose lower bounds are greater than the current 
minimum distance are eliminated in the earlier stages, leaving few to discard in 
the later stages. 

We next examined the behavior of our search algorithm for varying distance 
ranges. It was expected that the parameters MinDistance and MaxDistance have 
strong influence on the performance of the algorithm. If MaxDistance 5 2 X 

MinDistance, the algorithm cannot eliminate any object because the greatest 
lower bound that could possibly be attained is (MaxDistance - MinDistance): if 
this difference is less than or equal to the minimum distance a best match could 
have, our cut-off procedure becomes useless (cf., Figure 3, step 6).6 On the other 
hand, if one enlarges the difference, the algorithm should improve, as more 
objects farther away from the target than the current minimum distance can be 
generated, which may cause more objects to be eliminated at each stage. 

Figure 5 confirms this speculation. Here, PERFO is plotted as a function of 
ln(MaxDistance/MinDistance) for different densities. The MinDistance is fixed 

’ An extremum situation is that all objects (including the target) are equally distant from each other, 

in which case the proposed algorithm degenerates to the brute-force method (linear search over all 
objects in the file). 
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Fig. 5. Effect of distance ranges for uniformly distributed distances; 

file size = 150, minimum distance between objects (including the target) 

= 1000. 

at 1000. We can see from the figure that when the value of MinDdance is large 
relative to MaxDistance, a small increase in the distance range improves PERFO 
considerably. The improvement slows down asymptotically.7 

We also compared the number of distance computations our heuristic (for 
picking objects) required with the minimum number possible. That number was 
obtained by trying all possible permutations of distance calculations and finding 
the one that answered the query with the fewest possible of such calculations. 
The experiment was conducted using 30 files of size 20; the distances were drawn 
from the range [0, lOOOO]. It was found that our heuristic was within 20%, on 
the average, of the optimum. This result is encouraging, given the fact that we 
have no way of knowing a priori what the best distances to calculate are. 

4.2 Nonuniformly Distributed Distances 

To see the effect of nonuniform distribution for distances between objects, two 
extremum experiments were performed on maps with size 150 and densities 1, 
0.5, and 0.01 (they represent complete, half complete, and very sparse maps, 
respectively). 

‘We repeated the same size and range experiments for Burkhard et al.‘s algorithms and obtained 
similar results. This was unsurprising because all the algorithms essentially depend on the triangle 

inequality to eliminate distance calculations when searching a tile. 
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In the first experiment, we considered files in which objects are far from one 
another, but one is very close to the target T. We generated a target-object 
distance value from the range [0, 1OO],8 and then generated all other distances 
from the range [lOOO, lOOOO].’ Our results show that the values of PERFO, in 
this case, are very low (1.3% for Density = 1, 3.4% for Density = 0.5, and 60.4% 
for Density = 0.01, respectively). In particular, for complete maps, at most two 
comparisons are needed to get the closest object. This is not surprising, since our 
heuristic for picking objects can always make the right choice after its first try. 

In the second experiment, we considered files in which objects are close to 
one another, but far from T. We generated distances between file objects from 
the range [0, l’OOO], and then generated target-object distances from the range 
[lOOOO, b]. Figure 6 shows how PERFO varies with b (the maximum distance 
from file objects to T).l” 

We see from the figure that PERFO improves dramatically as b increases. The 
reason is similar to that for the distance range experiments presented earlier 
(i.e., the larger the maximum distance to T, the more objects farther away from 
T than the current minimum distance there are, and hence the more objects that 
can be eliminated at each stage). Notice also that, under this circumstance, our 
algorithm suffers when objects in a file have approximately the same distance 
from T. 

4.3 Results for Protein Data 

To learn more about the performance of our algorithm in real applications, we 
have run it on a set of proteins. The data set was chosen, since protein comparison 
is expensive, as marked in Section 1. One hundred fifty-one proteins were 
randomly selected from the sequence database of Thinking Machines. Each 
protein has between 4 and 20 amino acids. (An amino acid is represented by 
a numerical or alphabetical character.) The interprotein distances were com- 
puted based on the dayhoff score metric [18].” (Unlike the data generated in 
Section 4.1, we found that the interprotein distances were distributed very 
unevenly. In the sample database, there are lots of small clusters in which 
proteins are close to one another. Clusters and all other nonclustered proteins 
are (roughly) equally distant from each other.) 

’ Here, “generated distances from the range [a, b]” actually means “used a random-number generator 

to produce distances, which were distributed uniformly over the range [a, b].” The distance maps 

were synthesized as described in Section 4.1. 

‘This type of distance distribution is analogous to what Perry and Willett described in [27, p. 611, 

where they considered the distributions of the similarity values for a set of documents and queries. 

They observed an extremely skewed distribution for the test collections: the great majority of 

the documents have a very small, or zero, similarity with the query. Few documents (less than 3% 

of the documents on the average) are close to the query (having similarity values greater than 0.2, 
measured by the Dice coefficient). 

lo Due to the triangle inequality, b in this case cannot he greater than 11000. 

I1 The dayhoff score metric differs from, albeit is isomorphic to, a distance metric in the sense that 

the higher the score between two proteins, the closer they are. We used the following formula to 
compute the distance between two proteins based on their scores: d (p,, pz) = c - s (p,, pz), where c 

is an empirical constant assuring that the difference satisfies the conditions of distance metrics, and 

s ( p, , pz) is the score between proteins p1 and pz . 
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Our algorithm was run on these proteins thirty times, each time a randomly 
selected (distinct) protein was used as the target. Table II shows the means and 
standard deviations of the number of proteins compared for various densities. 

Comparing Table II with Figure 4, the values of PERFO obtained from the 
proteins are higher (i.e., worse) than those from the generated data. Moreover, it 
was observed that proteins are eliminated rather unstably-in some runs no 
protein is eliminated; in others a large number of proteins are suddenly eliminated 
within some stage. The reasons are obvious in retrospect. If the target is a 
member of a cluster, our heuristic (for picking objects) can quickly locate best 
matches, yielding a very low PERFO. On the other hand, if the target does not 
belong to any cluster, our cut-off procedure becomes ineffective, which results in 
many proteins being computed. 

4.4 Comparison to Previous Methods 

We performed a number of experiments to compare the relative performance of 
our search algorithm to those proposed by Burkhard and Keller [5] and Shapiro 
[33], with the condition that the same distance information is given. The 
experiments were carried out using both uniformly distributed data and proteins. 
The data were made up as described in Sections 4.1 and 4.3. (In the following, 
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Table II. Statistics for Protein Data 

. 153 

Density 

1 0.9 0.7 0.5 0.3 0.1 0.05 0.01 

Mean 95 98 106 111 125 138 143 147 

Deviation 66 62 53 46 32 14 7 3 

PERFO 63.3% 65.3% 70.7% 74.0% 83.3% 92.0% 95.3% 98.0% 

Burkhard and Shapiro’s algorithms are collectively referred to as BKS and ours 
is called SW.) 

Figure 7a illustrates the behavior of these algorithms for various numbers of 
reference points. The reference points were chosen arbitrarily and, as suggested 
in [33], were kept outside clusters when running proteins. To better exploit the 
precomputed distances, instead of picking its first object randomly, SW was 
modified to first pick the reference points, and then pick objects with the least 
lower bound in subsequent stages (cf., Figure 3, step 3). 

Recall that BKS picks objects with the smallest lower bound first, estimated 
on the basis of the first reference point, and eliminates objects Ok if there 
exists a reference point 0’ such that ] d(Ok, 0’ ) - d( T, 0’ ) ] > [, whereas SW 
picks objects Oi with the smallest ADM[n + 1, i ] value first and eliminates Ok if 
ADM[n + 1, lz] > t;. Figure 7b shows the relative performance of the two heuristics 
(for picking objects) employed by each algorithm. To isolate the effect of cut-off 
procedures, the same BKS’s cut-off criterion was used for both algorithms. 
Figure 7c shows the relative performance of the cut-off procedures employed by 
each algorithm, where the same BKS’s heuristic was used. 

These figures show that SW is better than BKS, and that the more reference 
points that are used (i.e., the more distances that are precomputed), the greater 
the improvement. Figure 7b shows that the SW’s superiority is primarily due to 
a better heuristic for choosing objects at each stage. The different cut-off criteria 
for the two algorithms has only a minor influence on performance (Figure 7~). 
Notice that the PERFO is very high for both algorithms on the protein data, 
being close to that of the brute-force method. This happens because the density 
of precomputed distances we considered is low-lower than 0.1, even when five 
reference points are used. 

In practice, when distance calculation is cheap, using BKS may be advan- 
tageous, as it incurs little overhead. However, when distance calculation is 
extremely expensive, SW should have better overall performance. 

4.5 Effect of Data Structures 

An interesting question arises naturally, based on Burkhard’s work: Given a fixed 
number of distances, say, M, that one is allowed to calculate beforehand, what is 
the best set of distances (or edges) to choose? That is, what kinds of data 
structures for a file can yield best performance? We have tested our algorithms 
on some possible candidate structures with uniformly distributed data (similar 
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Fig. 7. Comparison of previous algorithms with ours, for both uniformly distributed data and 

proteins; file size = 150. For the generated data, distances between objectg (including the target) were 
drawn from [0, lOOOO]. 

results were obtained for proteins, and are not shown here): 

-Stars: As described in [5 and 331. 

-Bipartite graphs: Objects in the file are evenly distributed into two disjoint 

groups, with those in group i being denoted as 0;) i = 1, 2, j = 1, . . . , Size/2. 
Edges are allocated evenly and are constructed according to the following 
program: 

for i := 0, 1, , . . do begin 
for j := 1 to Size/B do 

compute “(0;) O,“,i); 
for j := 1 to Sue/2 do 

compute d (0,” , Oj+i ); 
end; 
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-Cliques: Arbitrarily choose k objects and compute distances between any two 
of them, with the constraint that ($) < M. Arbitrarily choose the remaining 
edges. 

-Random graphs: Randomly choose M edges. 

We first processed these structures by algorithm APPROXIMATE, and then 
ran our search algorithm based on the resulting maps. Our heuristic for picking 
objects was modified for cliques where objects in a clique are always examined 
prior to those outside the clique. (This is because we wanted to fully exploit the 
precomputed information.) Figure 8 illustrates the relative performance of these 
structures for various numbers of edges. 

It is evident that stars outperform all the other structures, and are the data 
structure of choice. Cliques behave poorly. This is mainly due to the fact that 
there are no edges between objects outside a clique, and hence the distance 
bounds between them and the target are very low; consequently, few objects can 
be eliminated at each stage. It is also interesting to note that random graphs 
tend to be better than bipartite graphs as the number of edges increases. 

5. CONCLUSIONS AND DISCUSSIONS 

Burkhard and Keller [5], and later Shapiro [33], employed the triangle inequality 
to reduce the computational effort for best-match file searching. Their algorithms 
depended on having certain distances precomputed. In this paper, we proposed 
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an algorithm that can take advantage of any precomputed information. Further, 
our heuristic for choosing objects for comparison outperforms Burkhard et al.‘s 
and shows a better improvement the more precomputed data is available. Simu- 
lation shows that it requires only 20% more distance calculations than the fewest 
possible for uniformly distributed distances. 

To gain an insight into the behavior of these algorithms, we conducted 
extensive experiments and tested them in various settings. The results reveal 
that the performance of all the algorithms is not only dependent on the amount 
of precomputed data, but is strongly influenced by how distances distribute over 
a range and how large the range is. They suffer, for example, when distances 
between objects (including the target) are approximately the same. 

Our results show that the multiple star topology of computed distances pro- 
posed by Burkhard et al. leads to good performance. We conjecture it is the 
topology to use if one is allowed to precompute a fixed number of distances. 
The reason is that every object is connected to every other by a set of length-two 
paths. This topological conjecture is left to theorists interested in average case 
complexity. 

Our algorithm for approximating a distance map requires O(n3) time, where n 
is the size of the file. In practice, it may be infeasible to perform such approxi- 
mation in a single run when files are very large. For this case, we suggest dividing 
the whole file into subfiles, applying our scheme to each to find the desired 
objects, and then comparing them to get the final result. We also note that 
setting up the complete distance matrix requires O(tn2), where t is the cost of a 
distance calculation. There is thus a trade-off between approximating the map 
as against setting up the complete distance matrix. Under the assumption that 
distance calculation is the dominant cost, maintaining an ADM is no doubt the 
method of choice. On the other hand, as t becomes smaller or n becomes larger, 
the latter option may become more attractive. (In the latter case the ADM, as 
well as algorithm APPROXIMATE, become redundant.) 

The work reported here is based on a single processor architecture. Recently, 
there have been attempts to extend techniques for informational retrieval to 
multiprocessor architectures [16, 26, 28, 371. Stewart and Willett [36], for 
example, describe three techniques that allow parallel searching of k - cl trees. 
Their results support the use of multiprocessor systems for searching applications 
in information retrieval. In [403, we investigated the possibility of parallelizing 
our search algorithm. We assumed that a set of processors would work by 
comparing objects with the target and eliminating distance calculations concur- 
rently. We found that to use these processors effectively, one should delay 
multiprocessing to later stages of a search. This result agrees with our experi- 
mental results that most objects are eliminated in the first several stages of a 
search. If many processors execute at these stages, most compute distances to 
objects that the serial algorithm would eliminate. In the later stages the serial 
algorithm eliminates fewer objects, so parallelism is more usefuLl 

‘*The quest.ion of why most eliminations occur in the early stages of the algorithm may also be 
interesting to average case theorists. 
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