
New Techniques for Best-Match Retrieval

DENNIS SHASHA and TSONG-LI WANG

New York University

A scheme to answer best-match queries from a file containing a collection of objects is described. A

best-match query is to find the objects in the file that are closest (according to some (dis)similarity

measure) to a given target.

Previous work [5, 331 suggests that one can reduce the number of comparisons required to achieve

the desired results using the triangle inequality, starting with a data structure for the file that reflects

some precomputed intrafile distances. We generalize the technique to allow the optimum use of any

given set of precomputed intrafile distances. Some empirical results are presented which illustrate

the effectiveness of our scheme, and its performance relative to previous algorithms.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:

Nonnumerical Algorithms and Problems-sorting and searching; H.2.4 [Database Management]:

Systems--query processing; H.3.3 [Information Storage and Retrieval]: Information Search and

Retrieval-sear&process; 1.2.m [Artificial Intelligence]: Miscellaneous

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Best match, distance metrics, file searching, heuristics, lower

bounds, matching, topology, upper bounds

1. INTRODUCTION

In this paper we are concerned with the best-match problem (also known as the
“nearest neighbor problem” [35], or the “closest point problem” [31]). Given a
file of objects, the best-match problem is to find the ones which are most similar
or closest to a given target (or query) according to some (dis)similarity measure.
This type of retrieval arises in many applications.’ In information systems,
documents in a file are often ranked in order of decreasing similarity with a given
query. One way of computing the similarity between a document and the query
is to count the number of terms in common between them; the documents
presented to the user first are those that contain the greatest number of terms
specified in the query. The best-match searching procedure in such ranked output

’ Depending on the application, the objects could refer to documents [30,38,39], records [42], patterns

[15], points [31], strings [17-191, trees [32], graphs [6, 121, and so forth.

This work was supported in part by the NSF under grant IRI-8901699 and by the Office of Naval

Research under grants N00014-85-K-0046 and N00014-90-J-1110.
Authors’ address: Courant Institute of Mathematical Sciences, New York University, New York, NY

10012.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1990 ACM 1046-8188/90/0400-0140 $01.50

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990, Pages 140-158.

New Techniques for Best-Match Retrieval * 141

retrieval systems identifies the terms in common between the query and each of
the documents in the file [36]. In molecular biology, to gain information about a
newly sequenced protein, biologists compare the protein’s amino acid sequence
against those of many known proteins, searching for ones with very similar
sequences. From such sequence similarities it is often possible to infer similarities
in the structures or functions of the related proteins [18, 191. In pattern classi-
fication, a nearest neighbor assignment strategy is widely used: an unlabeled
sample is assigned to the category to which a majority of its nearest neighbors
belong [8, 251. In many other areas, the best-match type algorithm has been
found effective for estimating multivariate density [4], minimizing head
movement on direct access I/O devices [25], or sequencing pens for plotting
devices [31.

1 .l Previous Techniques for Best-Match Retrieval

One straightforward way of solving the best-match problem is to compute the
(dis)similarity value between each object of the file and the target, and then to
search for the objects with maximum similarity (or minimum dissimilarity). The
major problem with this approach is its computational expense, particularly when
there are many targets to be identified and the file is large. To reduce computa-
tional effort, many techniques have been presented in the literature.

Smeaton and van Rijsbergen [35], Murtagh [22], and Perry and Willett [27]
employ inverted files for best-match searching in document retrieval systems.
The search procedure starts with the shortest inverted file lists and calculates an
upper bound during (or before) the processing of each query list. The bound
represents the maximum possible similarity value for those documents that have
not yet been inspected; if it is less than the similarity for the current nearest
neighbor, no further documents need to be processed because none of them can
possibly be a better match. Various upper bounds have been derived by the
authors; the similarity measures applied include Dice, Overlap, Cosine coeffi-
cients, etc. (see [30, 391 for definitions of these measures). Other strategies that
use bounding procedures to eliminate (dis)similarity computation in various
contexts have been suggested by Mohan and Willett [21], Fukunaga and
Narendra [15], Feustel and Shapiro [12], to name a few. Lucarella, in [20],
describes a document retrieval system based on inverted file organizations and
nearest neighbor search techniques.

Special data structures other than inverted files have also been proposed.
Shamos and Hoey [31], for example, employ the Voronoi diagram for the best-
match problem for points on a plane. Ito and Kizawa [17] devised HL files
(Hierarchically organized files based on a Linear ordering) for spelling correction
applications. They give a recursive procedure to search the file for retrieving
similar strings. Friedman et al. [141 partition a d-dimensional feature space using
the k - d tree method and search by descending the tree. Eastman, Weiss and
Zemankova [g-11] generalize k - d tree methods to high dimensional space,
which are particularly useful for document retrieval.

Another strategy for the best-match problem is to use hashing. Du and Lee [7]
use Gray code as a multikey hashing function for finding closest symbolic records.
The dissimilarity measure they use is the Hamming distance. Bentley et al. [4],

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

142 - D. Shasha and T.-L. Wang

Rohlf [29], and Murtagh [231 give algorithms for points in Euclidean space. Their

algorithms work by hashing points onto directly addressable cells and then
searching for best matches in the same or closely adjacent cells. An excellent
survey on using tree structures and hashing techniques for best-match retrieval
can be found in [24, 251.

In contrast to the above approaches, many of which need assumptions such as
that the (dis)similarity measures have finite dimensionality (e.g., Euclidean), or
that the objects can be ordered linearly, Burkhard and Keller [5] give an algorithm
based on the weakest possible assumption on dissimilarity measures, namely,
they only satisfy the fundamental properties of a distance metric. The authors
precompute the distances of all objects in a file to a randomly chosen object,
called the reference point, and develop cut-off procedures to eliminate certain
distance calculations by simply using the triangle inequality. Shapiro 1331 later
improved their method by having more reference points and by deriving stricter
cut-off criteria for eliminating objects. He concluded that large improvements
can be achieved by the proper choice and location of reference points.

1.2 Motivation and Assumptions

In this paper we introduce new techniques for best-match retrieval, assuming
with [5, 331 that only distance metric information is available. We generalize
Burkhard and Keller’s methods to make use of an arbitrary set of precomputed
distances. Our motivation for considering arbitrary sets is that at times one may
be given a set of distances which have been calculated, rather than being able to
choose which ones to calculate. Also, in practice, files are dynamic rather than
static-objects can be inserted or deleted from a file or may be updated in such
a way that distances change. Hence, as time goes on, certain precomputed
distances may become absent or obsolete, and thus our techniques can apply.

Our cost assumption is that distance computation is the dominant cost, so our
goal is to minimize such computation during searching. This assumption is
reasonable when object comparison is an extremely time-consuming job (for
example, when retrieving best matches from a sequence database, where it can
take seconds or minutes to compare even one protein or RNA structure against
another on a current model VAX [18, 321.)

The paper is organized as follows. Section 2 reviews Burkhard and Keller’s
methods. Section 3 describes our approach, where we use a Floyd-Warshall
[l3, 411 style algorithm to approximate absent intrafile distances, and develop a
search algorithm that best uses the given distance information. Section 4 reports
some experimental results. We conclude the paper in Section 5.

2. BURKHARD AND KELLER’S METHOD REVIEWED

Let 9 be a file of n objects 01, 02, . . . , 0,. The best-match problem is defined
as follow3 Given a target T, find the pairs (T, 0), VO E q with minimum
distance. The distance between two objects 0 and 0’ is given by the value of a
metric d(0, 0’). Specifically, a metric is a function d that takes pairs of objects
into nonnegative numbers, satisfying the following three properties: for any
objects 01, 02, 03, d (O,, 02) 2 0, and d (O,, 02) = 0 iff O1 = O2 (nonnegative

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval l 143

1.
2.

3.
4.
5.

precompute d(0, O’), V 0 E 3, for a randomly chosen reference point 0’ E 3;
coq;t$coT, O”); [:= d(T, 0’); B := {OO}; I := 3 - {OO};

.

use a heuristic (described below) to pick an object 0 in I;

update (B, 0, T, 0;
Z := (0 1 (d(T,O) is not computed) A (Id(O,O’) - d(T,OO)l < E)}

end;

Fig. 1. Basic search algorithm of Burkhard and Keller.

definiteness); d(O1, 0,) = d(Oz, 01) (symmetry); d(O1, 02) 5 d(O,, OS) +
d(03, 02) (triangle inequality).

Using the terminology of [5, 331, [= the current minimum distance to T,
I3 = the set of current best matches, and the function update (B, 0, T, E) tests
whether d(T, 0) 5 [and, if so, updates B and [. Let I = the set of candidates
(i.e., objects that haven’t been eliminated, nor been compared). Burkhard and
Keller’s algorithm proceeds in stages and is paraphrased in Figure 1.

Step 3 picks objects according to the criterion:] d(Xk, 0’) - d(T, 0’) 1 5

I d(&+l, 0’) - d (T, 0’) 1, where X,, k = 1,2,3, . . . , is the object picked at stage
k. Observe that I d (0, 0’) - d (Z’, 0’) 1 is a lower bound for d (T, 0). The heuristic
used picks the object with the smallest lower bound first. Each stage eliminates
objects whose lower bounds are already greater than [, the current minimum
distance (step 5, cut-off criterion). The algorithm stops with the closest objects
being in B and the minimum distance being ,$.

Shapiro improves step 1 above by precomputing d(0, O’), VO E 9$ i = 1, 2,
. . .) s, for s reference points Oi E 52; Step 2 is then refined by computing the
distances between T and the s reference points, and 5 is set to the minimum of
these distances, In step 3, objects are chosen such that] d(Xk, 0’) - d(T, 0’) 1

5 ldL&+~, 0’) - d(T, Ol) 1, and the I obtained at each stage is {O) (d(T, 0) is

not computed) A (V:==,(I d(0, 0’) - d(T, 0’)] 5 t))] (cut-off criterion).
Let us construct a weighted graph on Sz; which reflects precomputed informa-

tion, such that there is an edge e between Oi and Oj iff d (Oi, 0,) has been

computed, and the weight of e, denoted w(e), is d(Oi, 0,). It can be seen that
Burkhard’s algorithm starts with a star, whereas there are s stars for Shapiro’s,
each centered with a different reference point. In the next section we relax this
requirement by accepting any topology on the weighted graph and present an
algorithm that achieves the optimal approximation for those unknown intrafile
distances.

3. OUR APPROACH

Our data structure must handle an arbitrary set of precomputed distances and
allow us to approximate, with the greatest possible accuracy, other distances. We
call our structure an approximate distance map (ADM) for x which is an n X n
matrix with each entry ADM[i, j] being either the exact distance between objects
Oi and Oj , or (if that is not computed) being a lower bound for d(Oi, Oj). This
bound may be rather crude (i.e., too low) initially, and it will be gradually refined
after new distances between T and objects in Y are computed.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

144 l D. Shasha and T.-L. Wang

To compute the ADM, consider the weighted graph constructed on 97 Define
a path from Oi = Oi, to Oj = Oin as a sequence of distinct objects Oi,, O,, . . . , Oin
such that (Oi,, Oi,], (Ok, Oi,), . . . , (Oi,-,, Oi,,) are edges in the graph, and the
weight of the path is the sum of the weights of its constituent edges.

LEMMA 1. (Generalized Triangle Inequality). Suppose there is a path P from

Oi to Oj. Let .G be the edge of maximum weight in P. Then

d(Oi, Oj) 2 W(6) - C w(e).
&P-Ii)

PROOF. By induction on the number of objects in P and repeated application
of the triangle inequality. Cl

Lemma 1 states that one can obtain a lower bound for d (Oi, Oj) by applying
the triangle inequality to a path from 0; to Oj. Of course, such a bound is useless
if the term on the right-hand side of the inequality is less than or equal to 0.
Generally, we want this bound to be as high as possible. Let P(i, j) be the set
containing all paths from Oi to Oj. We define ADM[i, j] i’.o be the maximum
bound obtained from all paths in P(i, j). So, ADM[i, j] 5 d(Oi, Oj). By the
triangle inequality, ADM[i, j] = d(Oi, 0;) if edge (Oi, Oj] E P(i, j).

It is impractical, in general, to enumerate all paths in P(i, j) to get ADM[i, j],
because there may be an exponential number of them. Instead, we use a dynamic
programming technique similar to the transitive closure algorithm [41] to com-
pute the ADM. To facilitate the computation, we also maintain an additional
matrix MIN, where MIN[i, j] is the minimum weight of any path from Oi to Oj .
Thus, MIN[i, j] gives the least upper bound of the distance between Of and Oj,
given the current distance information. So, MIN[i, j] > d(Oi, Oj). Clearly,
MIN[i, j] = d(Oi, Oj) if {Oi, Oj) E P(i, j).

Following [2], let ADM,[i, j] (respectively, MINJi, j]), 0 5 k 5 n, be the
greatest lower bound (respectively, least upper bound) of any path from Oi to Oj
that does not pass through an object numbered higher than k.

LEMMA 2. Let Sk(i, j), 1 5 k 5 n, denote the set of paths going from Oi to 0,
and then from Ok to Oj, without passing through an object numbered higher than
k. Suppose Sk(i, j) # 0. Let Bk(i, j) be the greatest lower bound obtained by
applying the generalized triangle inequality to all the paths in Sk(i, j). Then

ADMkml[i, k] - MINkeI[k, j]
ADMkwl[j, k] - MINk-, [k, i]

for 1 5 k 5 n

PROOF. Let P E &(i, j) be a path yielding Bk(i, j). Let P, be the segment of
P between Oi and Ok and Pz be the segment of P between Ok and Oj. Suppose
first that the edge G of maximum weight is in P,. By Lemma 1, we get

Bk(i, j) = w(e) - C w(e) - C w(e).
eEP*-(iI C?EPZ

Claim that

ADMkdl[i, k] = w(e) - C w(e).
c&P,-lil

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval l 145

Proof of Claim. By induction,

ADMk--l[i, k] I w(e) - 2 w(e).
&P1-{ij

If inequality held, we could construct a path P’ in Sk(i, j) by concatenating a
path Pi, which yields ADMkpl[i, k], and Pz. The bound achieved by P’ would be
greater than Bk(i, j), contradicting the definition of Bk(i, j). 0

By an analogous argument,

MINkel[k, j] = C w(e).
&P,

Thus, Bk(i, j) = ADMkpl[i, k] - MINLel[k, j].
If 6? is in Pp, symmetric arguments yield Bk(i, j) = ADMkml [j, k] -

MINkeI[k, i]. q

From the lemma above, we have, for each k,

ADMk-1 [i, j 1
ADM,[i, j] = max ADMk-,[i, k] - MINLpl[k, j]

ADMkpl[j, k] - MINkel[k, i]

Moreover [21,

MINk[i’ j1 = min
MIX-1 16 j 1
MINkel[i, k] + MINk-1 [k, j]

These formulas give rise to a Floyd-Warshall style algorithm for computing
the approximate distance map. The procedure is given in Figure 2.2

Using induction on k, we obtain

THEOREM 1. Algorithm APPROXIMATE correctly computes matrices ADM
and MIN; that is, the lower (respectively, upper) bound of any path going from
Oi to Oj is less (respectively, greater) than OF equal to ADM[i, j] (respectively,
MIN[i, j]), given the distances that have been computed.

Thus, given a weighted graph G of arbitrary topology (i.e., an arbitrary set of
precomputed distances), we can apply algorithm APPROXIMATE to it and
obtain two matrices ADM and MIN. Theorem 1 guarantees that each entry
(i, j) in the matrix ADM (respectively, MIN) represents the greatest lower bound
(respectively, least upper bound) of all paths between Oi and Oj in G. Using the
bound information, we are able to eliminate the largest possible number of objects
that could not be a best match, given the computed distance information.

3.1 Searching Using an ADM

We first augment the ADM with an additional row, row n + 1, for object T
(i.e., treating T as 0,+1) with ADM[n + 1, i] being the current greatest lower

‘Due to the symmetry, one may improve the running time of the presented algorithm by only
computing the lower triangular part of the matrices.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

146 l D. Shasha and T.-L. Wang

for i := 1 to n do
for j := 1 to n do

if d(Oi, Oj) is known then begin
ADM[i, j] := d(Oi, Oj); MZN[i,j] := d(Oi, Oj)

end
else begin

ADM[i, j] := 0; MZN[i, j] := co
end;

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do begin
ADM[i, j] := max (ADM[i, j], ADM[i, k] - MZN[L, j], ADME, k] - MZN[b, i]);
MZN[i, j] := min (MZN[i, j], MZN[i, k] + MZN[k, j]);

end:

Fig. 2. Algorithm APPROXIMATE.

bound for d (T, Oi).3 After comparing an object with T, we update I so that it
contains only the objects 0;‘s whose ADM[n + 1, i] is still less than or equal
to [. Figure 3 gives our search algorithm.

The algorithm picks candidates (i.e., objects that are still in I) according to
the following heuristic (step 3). It picks the first object randomly, and in
subsequent stages, it selects an object Oi such that the lower bound of the distance
between Oi and the given target T is minimized based on all previous candidates
(i.e., ADM[n + 1, i] 5 ADM[n. + 1, j], VOj E I). The object having the least
lower bound is expected to be the closest object to T. If several candidates have
the same lower bound, the algorithm selects one that has the least upper bound
(i.e., the one with the smallest MIN value). The reason for doing so is that the
smaller the difference between the lower and upper bounds, the more precise the
estimated distance is. Ties on the difference are broken arbitrarily.4

It is worth noting that, starting with an optimal approximate distance map
(Theorem l), the algorithm developed here is the best possible for the best-match
problem, in the sense that given an object at stage i, it throws out all the objects
that can be inferred to be irrelevant to the solution at that stage. What may
influence the performance of the algorithm is the heuristic utilized in selecting
objects at each stage-the better the heuristic (or the better our luck), the better
performance the algorithm achieves.

3.2 Updating Augmented ADM and MIN

Each computation of the distance between T and some object 0, may lead to
modifications of the augmented ADM and MIN. Observe that the value of
d(T, Ok) affects only the paths going through (T, OkI. Let L (respectively, U) be
the new lower (respectively, upper) bound of the paths from 0; to 0, via {T, Ok);

-
3 We discuss how to update such an augmented ADM in Section 3.2. For now, let us assume that this
map can somehow be maintained.

4 We have tested several other heuristics for picking candidates, such as picking objects with the

greatest lower bound, picking objects with the least (or greatest) upper bound, or picking objects at

random. It is shown [40] that the heuristic presented here (i.e., picking objects with the least lower
bound) achieves the best performance over all other heuristics.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval * 147

5.

6.

(:= co; B := 0; z := F.

initialize and approximaie ADM and MZN as done in Figure 2, and

augment ADM and MZN with an additional row for object T;
while Z # 0

use a heuristic (described below) to pick an object 0 in I;

update (B, 0, T, 0;
update the augmented ADM and MZN;
Z := {Oi 1 (d(T, Oi) is not computed) A (ADM[n + 1, i] 5 [)}

end;

Fig. 3. Our search algorithm.

as in Lemma 2, we obtain

L = max
ADM[1’, n + l] - d(T, O/J - MIN[K, j]
ADM[i k] - d(Z’, Ok) - MIN[n + 1, j]

ADM]j, k] - d(T, 0,J - MIN[i n + l]

.ADM[n + 1, j] - d(Z’, Ok) - MIN[1’, k]

*d(T, Ok) - MIN[i, n + l] - MIN[k, j]
d(T, 0,J - MIN[i k] - MIN[j, IZ + l]

and

U = min
1

MIN[1’, n + l] + d(T, Ok) + MIN[k, j]
MIN[i, k] + d(T, Ok) + MIN[n + 1, j]’

Thus, after computing d(T, Ok), to find the new (tighter) bounds for the
distances between objects Oi, Oj E (T) U z it suffices to compare ADM[1’, j]
(respectively, MIN[& j]) with L (respectively, U) (recall that ADM[n + 1, ;]

always gives the current greatest lower bound for d(T, 0;)).

Note that we update only the pairs whose distances are still unknown. For
those pairs of objects whose distances have been calculated, the distance values
already represent both the best lower bounds and upper bounds, and hence they
need not be modified. Calculating L and U takes only constant time. Thus the
overhead incurred by updating a map is negligible when most intrafile distances
are present.

If, however, there exist a large portion of object pairs in the file whose distances
are absent, the recomputation would be quite expensive. In such a situation we
could update the bounds for pairs (T, Oi), Oi E 3; while keeping the initial bounds
for (Oi , Oj), Oi, Oj E St (this strategy is similar to the one suggested in [l] for
maintaining shortest paths in a sizable graph), or could only update the bounds
for pairs (T, 0), where 0 is still a candidate. In [34], both the updating policies
have been shown empirically to be very competitive to the one that globally
updates the bounds for all object pairs (including the target), yet saving a
significant amount of computation time.

4. PERFORMANCE ANALYSIS

A series of experiments were performed to evaluate the effectiveness of our search
algorithm, as well as its performance relative to those proposed previously.
Table I shows the basic parameters used in the experiments.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

148 . D. Shasha and T.-L. Wang

Table I. Experimental Parameters

Parameter Meaning

Size Number of objects in the file
Density Portion of known distances in the map

MinDistance Minimum distance between objects

MaxDistance Maximum distance between objects

[MinDistance, MaxDistance] specifies the range over which distances between
objects (including the target) are distributed. The Density parameter represents
the portion of known distances in a map, and is computed by dividing the number
of object pairs with known distances by the total number of object pairs in the
corresponding file. To compare different algorithms for the best-match query,
the following metric was used:

pERl.70 = NumCompared X 1007
Size

0

where NumCompared is the number of objects actually compared. PERFO stands
for PERcentage of brute Force cost (i.e., the cost of comparing the target with
every object in the file). One would like this percentage to be as low as possible.

4.1 Uniformly Distributed Distances

In the first set of experiments we showed how varying densities and file sizes
impact the performance of our search algorithm. The sample maps used in the
experiments were synthesized as follows. We used a random-number generator
to produce interobject distance values for each pair of objects (including the
target), where the values were distributed uniformly over some positive interval.
Each such value was inserted into a (Size + 1) X (Size + 1) auxiliary map,
provided that it did not violate the triangle inequality. After generating the map,
we randomly selected Density X (Size X (Size - 1))/2 entries from the lower
triangular part of the Size x Size matrix of interobject distances, excluding the
target. (Entries in the (Size + 1)th row and (Size + 1)th column represented
distances between the target and objects in the file.)

Figure 4 presents the result, where distances between objects (including the
target) were drawn from the range [0, 10000].5 Files with sizes 100,150, 200, 250,
300 were examined. It can be seen that PERFO drops (i.e., improves) as the
density of a map increases; the improvement slows down after the density is
greater than 0.3. No trend is evident with regard to file sizes, though PERFO
seems slightly lower (i.e., better) for larger files. This probably happens because
the larger the file, the more entries need to be generated. Since the distance
range is fixed, it becomes more likely that several objects have the same distance
from the currently examined object (which may cause them to be eliminated at
the same time).

One interesting finding is that most irrelevant objects tend to be discarded in
the initial stages of a search. For example, for Density = 0.9 and Size = 150, our

‘In this, and subsequent figures, each point of the graph represents the average value over thirty

maps.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval l 149

60

- 100

10 1 1 I I I 1 I I I I 1

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9

Density

Fig. 4. Effect of densities for uniformly distributed distances; distances
between objects (including the target) are drawn from [0, lOOOO].

algorithm completes a search in 27 stages, eliminating 123 objects on the average,
among which nearly 80 objects are eliminated in the first 10 stages; only
43 objects are discarded in the remaining 17 stages. A possible explanation for
this behavior is that most objects whose lower bounds are greater than the current
minimum distance are eliminated in the earlier stages, leaving few to discard in
the later stages.

We next examined the behavior of our search algorithm for varying distance
ranges. It was expected that the parameters MinDistance and MaxDistance have
strong influence on the performance of the algorithm. If MaxDistance 5 2 X

MinDistance, the algorithm cannot eliminate any object because the greatest
lower bound that could possibly be attained is (MaxDistance - MinDistance): if
this difference is less than or equal to the minimum distance a best match could
have, our cut-off procedure becomes useless (cf., Figure 3, step 6).6 On the other
hand, if one enlarges the difference, the algorithm should improve, as more
objects farther away from the target than the current minimum distance can be
generated, which may cause more objects to be eliminated at each stage.

Figure 5 confirms this speculation. Here, PERFO is plotted as a function of
ln(MaxDistance/MinDistance) for different densities. The MinDistance is fixed

’ An extremum situation is that all objects (including the target) are equally distant from each other,

in which case the proposed algorithm degenerates to the brute-force method (linear search over all
objects in the file).

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

150 ’ D. Shasha and T.-L. Wang

70
P

E 60

R

F
50

0 40

30

20

10

L-----

-----_
--

0.75 0.9 1.1 1.6 2.3 3

a$iFfw3

Fig. 5. Effect of distance ranges for uniformly distributed distances;

file size = 150, minimum distance between objects (including the target)

= 1000.

at 1000. We can see from the figure that when the value of MinDdance is large
relative to MaxDistance, a small increase in the distance range improves PERFO
considerably. The improvement slows down asymptotically.7

We also compared the number of distance computations our heuristic (for
picking objects) required with the minimum number possible. That number was
obtained by trying all possible permutations of distance calculations and finding
the one that answered the query with the fewest possible of such calculations.
The experiment was conducted using 30 files of size 20; the distances were drawn
from the range [0, lOOOO]. It was found that our heuristic was within 20%, on
the average, of the optimum. This result is encouraging, given the fact that we
have no way of knowing a priori what the best distances to calculate are.

4.2 Nonuniformly Distributed Distances

To see the effect of nonuniform distribution for distances between objects, two
extremum experiments were performed on maps with size 150 and densities 1,
0.5, and 0.01 (they represent complete, half complete, and very sparse maps,
respectively).

‘We repeated the same size and range experiments for Burkhard et al.‘s algorithms and obtained
similar results. This was unsurprising because all the algorithms essentially depend on the triangle

inequality to eliminate distance calculations when searching a tile.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval * 151

In the first experiment, we considered files in which objects are far from one
another, but one is very close to the target T. We generated a target-object
distance value from the range [0, 1OO],8 and then generated all other distances
from the range [lOOO, lOOOO].’ Our results show that the values of PERFO, in
this case, are very low (1.3% for Density = 1, 3.4% for Density = 0.5, and 60.4%
for Density = 0.01, respectively). In particular, for complete maps, at most two
comparisons are needed to get the closest object. This is not surprising, since our
heuristic for picking objects can always make the right choice after its first try.

In the second experiment, we considered files in which objects are close to
one another, but far from T. We generated distances between file objects from
the range [0, l’OOO], and then generated target-object distances from the range
[lOOOO, b]. Figure 6 shows how PERFO varies with b (the maximum distance
from file objects to T).l”

We see from the figure that PERFO improves dramatically as b increases. The
reason is similar to that for the distance range experiments presented earlier
(i.e., the larger the maximum distance to T, the more objects farther away from
T than the current minimum distance there are, and hence the more objects that
can be eliminated at each stage). Notice also that, under this circumstance, our
algorithm suffers when objects in a file have approximately the same distance
from T.

4.3 Results for Protein Data

To learn more about the performance of our algorithm in real applications, we
have run it on a set of proteins. The data set was chosen, since protein comparison
is expensive, as marked in Section 1. One hundred fifty-one proteins were
randomly selected from the sequence database of Thinking Machines. Each
protein has between 4 and 20 amino acids. (An amino acid is represented by
a numerical or alphabetical character.) The interprotein distances were com-
puted based on the dayhoff score metric [18].” (Unlike the data generated in
Section 4.1, we found that the interprotein distances were distributed very
unevenly. In the sample database, there are lots of small clusters in which
proteins are close to one another. Clusters and all other nonclustered proteins
are (roughly) equally distant from each other.)

’ Here, “generated distances from the range [a, b]” actually means “used a random-number generator

to produce distances, which were distributed uniformly over the range [a, b].” The distance maps

were synthesized as described in Section 4.1.

‘This type of distance distribution is analogous to what Perry and Willett described in [27, p. 611,

where they considered the distributions of the similarity values for a set of documents and queries.

They observed an extremely skewed distribution for the test collections: the great majority of

the documents have a very small, or zero, similarity with the query. Few documents (less than 3%

of the documents on the average) are close to the query (having similarity values greater than 0.2,
measured by the Dice coefficient).

lo Due to the triangle inequality, b in this case cannot he greater than 11000.

I1 The dayhoff score metric differs from, albeit is isomorphic to, a distance metric in the sense that

the higher the score between two proteins, the closer they are. We used the following formula to
compute the distance between two proteins based on their scores: d (p,, pz) = c - s (p,, pz), where c

is an empirical constant assuring that the difference satisfies the conditions of distance metrics, and

s (p, , pz) is the score between proteins p1 and pz .

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

152 l D. Shasha and T.-L. Wang

El
Density

0.01

---- 0.5
1

. .
‘.

10100 lob00 10500 lob00 11000

b (Maximum Distance to T)

Fig. 6. Effect of varying maximum distance from file objects to 2’ for a

nonuniformly distributed distance case; file size = 150, minimum distance

from file objects to 2’ = 10000, distances between tile objects were drawn

from [0, lOOO].

Our algorithm was run on these proteins thirty times, each time a randomly
selected (distinct) protein was used as the target. Table II shows the means and
standard deviations of the number of proteins compared for various densities.

Comparing Table II with Figure 4, the values of PERFO obtained from the
proteins are higher (i.e., worse) than those from the generated data. Moreover, it
was observed that proteins are eliminated rather unstably-in some runs no
protein is eliminated; in others a large number of proteins are suddenly eliminated
within some stage. The reasons are obvious in retrospect. If the target is a
member of a cluster, our heuristic (for picking objects) can quickly locate best
matches, yielding a very low PERFO. On the other hand, if the target does not
belong to any cluster, our cut-off procedure becomes ineffective, which results in
many proteins being computed.

4.4 Comparison to Previous Methods

We performed a number of experiments to compare the relative performance of
our search algorithm to those proposed by Burkhard and Keller [5] and Shapiro
[33], with the condition that the same distance information is given. The
experiments were carried out using both uniformly distributed data and proteins.
The data were made up as described in Sections 4.1 and 4.3. (In the following,

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval

Table II. Statistics for Protein Data

. 153

Density

1 0.9 0.7 0.5 0.3 0.1 0.05 0.01

Mean 95 98 106 111 125 138 143 147

Deviation 66 62 53 46 32 14 7 3

PERFO 63.3% 65.3% 70.7% 74.0% 83.3% 92.0% 95.3% 98.0%

Burkhard and Shapiro’s algorithms are collectively referred to as BKS and ours
is called SW.)

Figure 7a illustrates the behavior of these algorithms for various numbers of
reference points. The reference points were chosen arbitrarily and, as suggested
in [33], were kept outside clusters when running proteins. To better exploit the
precomputed distances, instead of picking its first object randomly, SW was
modified to first pick the reference points, and then pick objects with the least
lower bound in subsequent stages (cf., Figure 3, step 3).

Recall that BKS picks objects with the smallest lower bound first, estimated
on the basis of the first reference point, and eliminates objects Ok if there
exists a reference point 0’ such that] d(Ok, 0’) - d(T, 0’)] > [, whereas SW
picks objects Oi with the smallest ADM[n + 1, i] value first and eliminates Ok if
ADM[n + 1, lz] > t;. Figure 7b shows the relative performance of the two heuristics
(for picking objects) employed by each algorithm. To isolate the effect of cut-off
procedures, the same BKS’s cut-off criterion was used for both algorithms.
Figure 7c shows the relative performance of the cut-off procedures employed by
each algorithm, where the same BKS’s heuristic was used.

These figures show that SW is better than BKS, and that the more reference
points that are used (i.e., the more distances that are precomputed), the greater
the improvement. Figure 7b shows that the SW’s superiority is primarily due to
a better heuristic for choosing objects at each stage. The different cut-off criteria
for the two algorithms has only a minor influence on performance (Figure 7~).
Notice that the PERFO is very high for both algorithms on the protein data,
being close to that of the brute-force method. This happens because the density
of precomputed distances we considered is low-lower than 0.1, even when five
reference points are used.

In practice, when distance calculation is cheap, using BKS may be advan-
tageous, as it incurs little overhead. However, when distance calculation is
extremely expensive, SW should have better overall performance.

4.5 Effect of Data Structures

An interesting question arises naturally, based on Burkhard’s work: Given a fixed
number of distances, say, M, that one is allowed to calculate beforehand, what is
the best set of distances (or edges) to choose? That is, what kinds of data
structures for a file can yield best performance? We have tested our algorithms
on some possible candidate structures with uniformly distributed data (similar

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

154 l D. Shasha and T.-L. Wang

100

I-
e-

‘--’

90

P 80 1
E

0 50 -
'. '. '. '.

40 -

I I I I

1 2 3 4 5

Number of Reference Points

(a) Comparison of algorithms.

P
80

E

R

F

0 . . . ‘. ‘. ‘.
40 -

I I I 1

1 2 3 4 5

Number of Reference Points

(b) Comparison of heuristics (for picking objects);
the BKS’s cut-off procedure was used.

1 2 3 4 5

Number of Reference Points

(c) Comparison of cut-off procedures; the BKS’s
heuristic (for picking objects) was used.

Fig. 7. Comparison of previous algorithms with ours, for both uniformly distributed data and

proteins; file size = 150. For the generated data, distances between objectg (including the target) were
drawn from [0, lOOOO].

results were obtained for proteins, and are not shown here):

-Stars: As described in [5 and 331.

-Bipartite graphs: Objects in the file are evenly distributed into two disjoint

groups, with those in group i being denoted as 0;) i = 1, 2, j = 1, . . . , Size/2.
Edges are allocated evenly and are constructed according to the following
program:

for i := 0, 1, , . . do begin
for j := 1 to Size/B do

compute “(0;) O,“,i);
for j := 1 to Sue/2 do

compute d (0,” , Oj+i);
end;

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval l 155

100

90

80

P

E 70

R

F 60

0

50

40

.

.
._..

. ‘.

- - - - bipartite

2n 3n 411

Number of Edges (n = 150)

Fig. 8. Effect of data structures for uniformly distributed distances; file

size = 150, distances between objects (including the target) were drawn

from [0, lOOOO].

-Cliques: Arbitrarily choose k objects and compute distances between any two
of them, with the constraint that ($) < M. Arbitrarily choose the remaining
edges.

-Random graphs: Randomly choose M edges.

We first processed these structures by algorithm APPROXIMATE, and then
ran our search algorithm based on the resulting maps. Our heuristic for picking
objects was modified for cliques where objects in a clique are always examined
prior to those outside the clique. (This is because we wanted to fully exploit the
precomputed information.) Figure 8 illustrates the relative performance of these
structures for various numbers of edges.

It is evident that stars outperform all the other structures, and are the data
structure of choice. Cliques behave poorly. This is mainly due to the fact that
there are no edges between objects outside a clique, and hence the distance
bounds between them and the target are very low; consequently, few objects can
be eliminated at each stage. It is also interesting to note that random graphs
tend to be better than bipartite graphs as the number of edges increases.

5. CONCLUSIONS AND DISCUSSIONS

Burkhard and Keller [5], and later Shapiro [33], employed the triangle inequality
to reduce the computational effort for best-match file searching. Their algorithms
depended on having certain distances precomputed. In this paper, we proposed

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

156 l D. Shasha and T.-L. Wang

an algorithm that can take advantage of any precomputed information. Further,
our heuristic for choosing objects for comparison outperforms Burkhard et al.‘s
and shows a better improvement the more precomputed data is available. Simu-
lation shows that it requires only 20% more distance calculations than the fewest
possible for uniformly distributed distances.

To gain an insight into the behavior of these algorithms, we conducted
extensive experiments and tested them in various settings. The results reveal
that the performance of all the algorithms is not only dependent on the amount
of precomputed data, but is strongly influenced by how distances distribute over
a range and how large the range is. They suffer, for example, when distances
between objects (including the target) are approximately the same.

Our results show that the multiple star topology of computed distances pro-
posed by Burkhard et al. leads to good performance. We conjecture it is the
topology to use if one is allowed to precompute a fixed number of distances.
The reason is that every object is connected to every other by a set of length-two
paths. This topological conjecture is left to theorists interested in average case
complexity.

Our algorithm for approximating a distance map requires O(n3) time, where n
is the size of the file. In practice, it may be infeasible to perform such approxi-
mation in a single run when files are very large. For this case, we suggest dividing
the whole file into subfiles, applying our scheme to each to find the desired
objects, and then comparing them to get the final result. We also note that
setting up the complete distance matrix requires O(tn2), where t is the cost of a
distance calculation. There is thus a trade-off between approximating the map
as against setting up the complete distance matrix. Under the assumption that
distance calculation is the dominant cost, maintaining an ADM is no doubt the
method of choice. On the other hand, as t becomes smaller or n becomes larger,
the latter option may become more attractive. (In the latter case the ADM, as
well as algorithm APPROXIMATE, become redundant.)

The work reported here is based on a single processor architecture. Recently,
there have been attempts to extend techniques for informational retrieval to
multiprocessor architectures [16, 26, 28, 371. Stewart and Willett [36], for
example, describe three techniques that allow parallel searching of k - cl trees.
Their results support the use of multiprocessor systems for searching applications
in information retrieval. In [403, we investigated the possibility of parallelizing
our search algorithm. We assumed that a set of processors would work by
comparing objects with the target and eliminating distance calculations concur-
rently. We found that to use these processors effectively, one should delay
multiprocessing to later stages of a search. This result agrees with our experi-
mental results that most objects are eliminated in the first several stages of a
search. If many processors execute at these stages, most compute distances to
objects that the serial algorithm would eliminate. In the later stages the serial
algorithm eliminates fewer objects, so parallelism is more usefuLl

‘*The quest.ion of why most eliminations occur in the early stages of the algorithm may also be
interesting to average case theorists.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

New Techniques for Best-Match Retrieval . 157

ACKNOWLEDGMENTS

We are grateful to the anonymous referees and to Kaizhong Zhang for their
useful comments on the preliminary versions of this paper. We wish to thank
Jill Mesirov of Thinking Machines, who provided the proteins and their pairwise
distances used for performing some of the experiments. Thanks also to Richard
Cole, Rakesh Agrawal, Mitra Basu and Deepak Sherlekar for their help in doing
this work.

REFERENCES

1. AGRAWAL, R., AND JAGADISH, H. V. Efficient search in very large databases. In Proceedings of

the 14th International Conference on Very Large Data Bases (1988), 407-418.

2. AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. Data Structures and Algorithms. Addison-

Wesley, Reading, Mass., 1983.

3. ANDERSON, D. P. Techniques for reducing pen plotting time. ACM Trans. Gr. 2, 3 (July 1983),

197-212.

4. BENTLEY, J. L., WEIDE, B. W., AND YAO, A. C. Optimal expected-time algorithms for closest

point problems. ACM Trans. Math. Softw. 6, 4 (Dec. 1980), 563-580.
5. BURKHARD, W. A., AND KELLER, R. M. Some approaches to best-match file searching. Commun.

ACM 16,4 (Apr. 1973), 230-236.

6. CLAUS, V., EHRIG, M., AND ROZENBERG, G. Graph-Grammars and Their Application to Com-

puter Science and Biology. Springer, New York, 1979.

7. Du, H. C., AND LEE, R. C. T. Symbolic Gray code as a multikey hashing function. IEEE Trans.

Pattern Anal. Much. Zntell. 2, 1 (Jan. 1980), 83-90.
8. DUDA, R. O., AND HART, P. E. Pattern Classification and Scene Analysis. Wiley, New York,

1973.
9. EASTMAN, C. M., AND WEISS, S. F. A tree algorithm for nearest neighbor searching in document

retrieval systems. In Proceedings of the ACM SIGZR International Conference on Information

Storage and Retrieual (1978). ACM, New York, 1978,131-149.

10. EASTMAN, C. M., AND WEISS, S. F. Tree structures for high dimensionality nearest neighbor

searching. Znf. Syst. 7, 2 (1982), 115-122.

11. EASTMAN, C. M., AND ZEMANKOVA, M. Partially specified nearest neighbor searches using

k - d trees. Znf. Process. Lett. 15, 2 (1982), 53-56.

12. FEUSTEL, C. D., AND SHAPIRO, L. G. The nearest neighbor problem in an abstract metric space.

Pattern Recognition Lett. 1, 2 (1982), 125-128.

13. FLOYD, R. W. Algorithm 97: Shortest path. Commun. ACM 5,6 (June 1962), 345.
14. FRIEDMAN, J. H., BENTLEY, J. L., AND FINKEL, R. A. An algorithm for finding best matches in

logarithmic expected time. ACM Trans. Math. Softw. 3, 3 (Sept. 1977), 209-226.
15. FUKUNAGA, K., AND NARENDRA, P. M. A branch and bound algorithm for computing k-nearest

neighbors. IEEE Trans. Comput. 24, 7 (July 1975), 750-753.

16. HOLLAAR, L. A. The Utah text retrieval project. Znf. Technol. Res. Deu. 2 (1983), 155-167.

17. ITO, T., AND KIZAWA, M. Hierarchical file organization and its application to similar-string

matching. ACM Trans. Database Syst. 8,3 (Sept. 1983), 410-433.
18. LANDER, E., MESIROV, J. P., AND WASHINGTON, T. Protein sequence comparison on a data

parallel computer. In Proceedings of the IEEE 1988 International Conference on Parallel Process-
ing (Aug. 1988). IEEE, New York, 1988,257-263.

19. LIPMAN, D. J., AND PEARSON, W. R. Rapid and sensitive protein similarity searches. Science

227 (1985), 1435-1441.
20. LUCARELLA, D. A document retrieval system based on nearest neighbor searching. J. Znf. Sci.

14 (1988), 25-33.

21. MOHAN, K. C., AND WILLED, P. Nearest neighbor searching in serial tiles using text signatures.

J. Znf. Sci. 11 (1985), 31-39.
22. MURTAGH, F. A very fast exact nearest neighbor algorithm for use in information retrieval. Znf.

Technol. Res. Dew. 1 (1982), 275-283.

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

158 l D. Shasha and T.-L. Wang

23. MURTAGH, F. Expected-time complexity results for hierarchic clustering algorithms which use

cluster centers. I$. Process. Lett. 16, 5 (June 1983), 237-241.

24. MURTAGH, F. A survey of recent advances in hierarchical clustering algorithms. IEEE Computer

26,4 (1983), 354-359.

25. MURTAGH, F. Multidimensional clustering algorithms. In Lectures in Computational Statistics,

J. M. Chambers, J. Gordesch, A. Klas, L. Lebart, and P. P. Sint, Eds., Physica-Verlag, Vienna,

1985.

26. PAIGE, R. C., AND KRUSKAL, C. P. Parallel algorithms for shortest path problems. In Proceed-

ings of the IEEE 1985 International Conference on Parallel Processing (1985). IEEE, New York,

1985,14-19.

27. PERRY, S. A., AND WILLETT, P. A review of the use of inverted files for best match searching

in information retrieval systems. J. Znf. Sci. 6 (1983), 59-66.

28. POGUE, C. A., AND WILLETP, P. An evaluation of document retrieval from serial tiles using the

ICL Distributed Array Processor. Online Reu. 8 (1984), 569-584.

29. ROHLF, F. J. A probabilistic minimum spanning tree algorithm. Znf. Process. L&t. 7 (1978),

44-48.

30. SALTON, G., AND MCGILL, M. J. Introduction to Modern Znformation Retrieval. McGraw-Hill,

New York, 1983.

31. SHAMOS, M. I., AND HOEY, D. Closest-point problems. In Proceedings of the 16th IEEE

Symposium on Foundations of Computer Science (Oct. 1975). IEEE, New York, 1975,151-162.

32. SHAPIRO, B. A., AND ZHANG, K. Comparing multiple RNA secondary structures using tree

comparisons. Manuscript, Division of Cancer Biology and Diagnosis, NIH, Frederick, Md., 1989.

33. SHAPIRO, M. The choice of reference points in best-match file searching. Commun. ACM 20, 5

(May 1977), 339-343.

34. SHASHA, D., AND WANG, T.-L. Optimal best-match retrieval. Tech. Rep. TR 480, Courant

Institute of Mathematical Sciences, New York Univ., New York, Dec. 1989.

35. SMEATON, A. F., AND VAN RIJSBERGEN, C. J. The nearest neighbor problem in information

retrieval: An algorithm using upperbounds. ACM SIGZR Forum 16 (1981), 83-87.

36. STEWART, M., AND WILLETT, P. Nearest neighbor searching in binary search trees: Simulation

of a multiprocessor system. J. Dot. 43,2 (June 1987), 93-111.
37. TESKEY, F. N. Novel computer architectures for data storage and retrieval. Rep. 5845, British

Library Research and Development Dept., London, 1986.

38. VAN RIJSBERGEN, C. J. The best-match problem in document retrieval. Commun. ACM 17, 11

(Nov. 1974), 648-649.

39. VAN RIJSBERGEN, C. J. Information Retrieual. 2nd ed. Butterworths, London, 1979.
40. WANG, T.-L., AND SHASHA, D. Query processing for distance metrics. In Proceedings of the

16th International Conference on Very Zarge Data Bases (Brisbane, Australia, Aug. 1990).

41. WARSHALL, S. A theorem on boolean matrices. J. ACM 9,l (Jan. 1962), 11-12.
42. Yu, C. T., LUK, W. S., AND SIU, M. K. On the estimation of the number of desired records with

respect to a given query. ACM Trans. Database Syst. 3, 1 (Mar. 1978), 41-56.

Received February 1990; revised July 1990; accepted August 1990

ACM Transactions on Information Systems, Vol. 8, No. 2, April 1990.

